

Spectroscopy at LHCb - exotic states

Liming Zhang (Tsinghua University) On behalf of the LHCb collaboration

Beauty 2019 (29 Sep - 4 Oct, 2019, Ljubljana)

Outline

Introduction

Exotic baryons at LHCb

- □ Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$ [PRL 122 (2019) 222001]
- □ Observation of $B_{(s)}^0 \to J/\psi p \bar{p}$ decays and precision measurements of the $B_{(s)}^0$ masses [PRL 122 (2019) 191804]

Exotic mesons at LHCb

- □ Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ [EPJ C78 (2018) 1019]
- □ Model-independent observation of exotic contributions to $B^0 \rightarrow J/\psi K^+ \pi^$ decays [PRL 122 (2019) 152002]
- Summary and prospects

3

QCD describing strong interaction between quarks and gluons is not well understood due to its non-perturbative nature at low energy scale

- Hadron spectroscopy provides opportunities to test QCD and its effective models
 - e.g. lattice QCD, diquark model, potential model ...
- Exotic hadrons provide unique probe to QCD
 - Predicted in quark model

Introduction

Recent results show strong evidence for their existence

molecule?

tetraquark?

pentaquark?

hybrid?

EXOTIC

Tetra and pentaquark candidates (3fb⁻¹)

LHCb

X(4700)

5.6σ

 $4700 \ 4800 \ m_{J/\psi\phi} \ [MeV]$

LHCb

5

Confirmation of Z(4430)

[PRL 112 (2014) 222002]

Observation of four $J/\psi\phi$ structures

[PRL 118 (2017) 022003]

Observation of two charmonium pentaquarks

[PRL 115 (2015) 072001]

Evidence of exotic contribution in Cabibbosuppressed decays

[PRL 117 (2016) 082003]

Update $\Lambda_h^0 \rightarrow J/\psi p K^-$ (3+6 fb⁻¹)

- Fit inclusive $m_{J/\psi p}$ distribution
- Clear narrow structures, but background is high

Fit-2: *P*⁺_c dominated region

- Fit $m_{Kp} > 1.9$ GeV events, ~80% Λ^* background removed
- Significances: P_c(4312)⁺, 7.3σ;
 2 peaks over 1 around 4450 MeV, 5.4σ
 - Evaluated with toy simulations from 6D amplitude model
 - Have taken account of look elsewhere effect

P_c(4457)⁺

4500 4550 4600

m_{J/wp} [MeV]

Fit-3: Novel method

[PRL 122 (2019) 222001]

State

 $P_c(4312)^+$

 $P_c(4440)^+$

 $P_c(4457)^+$

Observation of three narrow structures

- The masses of $P_c(4312)^+$, $P(4440)^+$, $P_c(4457)^+$ just below mass thresholds of $\Sigma_c^+ \overline{D}^{(*)0}$
- Broad $P_c(4380)^+$ is neither be confirmed nor excluded
- J^P measures and information of P_c(4380)⁺ require detailed amplitude analysis

M [MeV]

 $4311.9 \pm 0.7^{+6.8}_{-0.6}$

 $4440.3 \pm 1.3^{+4.1}_{-4.7}$

 $4457.3 \pm 0.6^{+4.1}_{-1.7}$

 $\Gamma [MeV]$

 $9.8 \pm 2.7^{+ 3.7}_{- 4.5}$

 $20.6 \pm 4.9^{+8.7}_{-10.1}$

 $6.4 \pm 2.0^{+}_{-} \frac{5.7}{1.9}$

(95% CL)

(< 27)

(< 49)

(< 20)

 $0.30 \pm 0.07^{+0.34}_{-0.09}$

 $1.11 \pm 0.33^{+0.22}_{-0.10}$

 $0.53 \pm 0.16^{+0.15}_{-0.13}$

[PRL 122 (2019) 222001] Largest systematic uncertainty: unknown interference terms

Observation of $B^0_{(s)} \rightarrow J/\psi p \overline{p}$

 J/ψ

f_J

[PRL 122 (2019) 191804]

Decay modes are suppressed

 $B^{0}: Cabibbo suppressed \qquad B^{0}_{s}: "OZI" suppressed \\ \overline{b} \underbrace{V^{*}_{cb}}_{W^{+}} \underbrace{\overline{c}}_{J/\psi} \\ B^{0} \underbrace{V^{*}_{cb}}_{W^{+}} \underbrace{\overline{c}}_{V_{cd}} \underbrace{\overline{d}}_{\overline{u}} \overline{p} \\ d \underbrace{V^{*}_{cd}}_{u} \underbrace{\overline{d}}_{u} p \\ d \underbrace{V^{*}_{cd}}_{u} p \\ d \underbrace{V^{*}_{cd}}_$

Can be enhanced through

- Exotic states in J/ψp system
- Glueballs in $p\overline{p}$ system b[Y. K. Hsiao and C. Q. \overline{B}_{s}^{0} Geng, EPJ C75 (2015) 101, arXiv:1412.4900] \overline{s}

 $\mathcal{B}(B_s^0 \to J/\psi p\overline{p}) = (3.58 \pm 0.19 \pm 0.31) \times 10^{-6}$ larger than predicted value ~10⁻⁹

 $\mathcal{B}\left(\frac{B^{0}}{D}\rightarrow J/\psi p\overline{p}\right) = (4.51\pm0.40\pm0.43)\times10^{-7}$

Charged exotic mesons with hidden charm

All Z_c states have at least $c\bar{c}q\bar{q}$ quark content All Z_c observed so far have $J^P=1^+$

LHCb has an evidence of $Z_c(4100) \rightarrow \eta_c \pi$ that cannot be 1⁺

Tightly bound tetraquarks?

- Far from thresholds
- Large width

Hadronic molecules

At 2-body thresholds

Narrow

Evidence of $Z_c(4100)^-$ in $B^0 \to \eta_c \pi^- K^+_{(EPJ C78 (2018) 1019)}$

• $\mathcal{L} = 4.7 \text{fb}^{-1}$, 2011-2016 data

• 2D fit to $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$ distribution $N_{sig} = 1870 \pm 74$

• Dalitz plot dominated by $K^*(892)$ signal

Evidence of $Z_c(4100)^-$ in $B^0 \to \eta_c \pi^- K^+_{(EPJ C78 (2018) 1019)}$

NERS/

Evidence of $Z_c(4100)^-$ in $B^0 \to \eta_c \pi^- K^+_{(EPJ C78 (2018) 1019)}$

Adding a J^P = 1⁻ resonance in $\eta_c \pi$ with $m_Z = 4096 \pm 20^{+18}_{-22}$ MeV $\Gamma_Z = 152 \pm 58^{+60}_{-35}$ MeV improves fit by $\Delta(-2\ln \mathcal{L}) = 41.4$ (4.8 σ)

 $J^{P} = 0^{+}$ is also allowed by the data

Systematic effects on significance

Source	$\Delta(-2\ln\mathcal{L})$	Significance
Nominal fit	41.4	4.8σ
Fixed yields	45.8	5.2σ
Phase-space border veto	44.6	5.1σ
η_c width	36.6	4.3σ
$K^+\pi^-$ S-wave	31.8	3.9σ
Background	27.4	3.4σ

Z_c^- in $B^0 \to J/\psi K^+\pi^-$ from Belle [PRD 90 (2014) 112009]

- With ~30k signal, Belle observed a new $Z_c(4200)^-$ and evidence for $Z_{c}(4430)^{-}$ in $B^{0} \rightarrow J/\psi K^{+}\pi^{-}$ decays
- Exotic fit fractions are small, $(1.9^{+0.7}_{-0.5})\% Z_c(4200)^- \& (0.5^{+0.4}_{-0.1})\% Z_c(4430)^-$

Model-independent confirmation from LHCb

- THOMS
- Run-1 data, x20 Belle signal yield $m(K^+\pi^-) \in [745, 1545]$ MeV, yield: 554,500 ± 800
- Reflect $K_J^* \to K^+ \pi^-$ angular moments determined in function of $m(K^+ \pi^-)$ onto $m(J/\psi \pi^-)$
- No assumption about resonant structures, only requires knowledge of highest spin (J_{\max}^k) of K_J^* for given $m(K^+\pi^-)$ $J_{\max}^k = \begin{cases} 2 \text{ for } 1085 \le m(K^+\pi^-) < 1265 \text{ MeV} \\ 3 \text{ for } 1265 \le m(K^+\pi^-) < 1445 \text{ MeV} \end{cases}$

Used novel "3D" angular moments to boost sensitivity

Model-independent confirmation from LHCb

RS//

Summary

- Evidence of $Z_c(4100)^- \rightarrow \eta_c \pi^-$, $J^P \neq 1^+$
- Model-independent confirmation of exotic contribution to $B^0 \rightarrow J/\psi K^+\pi^-$
- Observation of $B^0_{(s)} \rightarrow J/\psi p\bar{p}$ decays
- With 10x signal yields, we observed three narrow pentaquark candidates

Prospects

- LHCb is now boosting the data to a new level
 - Expect to 7x more data (14x hadronic events) by 2029 than current, half of these by 2023
 - Could have another 6x increase from Upgrade II

 $\chi_{c1}(3872)$ lineshape from multi-channels

 Z_c (4430), also explore $B \to D_{(s)}^{(*)} \overline{D}_{(s)} K^-$? Doubly-charmed tetraquark $\mathcal{T}_{cc}^+ \to D_s^+ D^0$

More information for pentaquarks

[*] updated according to the latest result

Backup

Fits with interferences

- Interference effect is important only if two overlying P⁺_c have same J^P
- Nominal fits use incoherent sum of BW amplitudes
- Systematic uncertainty considers fits with coherent sum, including broad P⁺_c state
 - No evidence for interferences
 - But this source gives the largest uncertainty on mass and width measurements, e.g. +6.8 MeV for $P_c(4312)^+$ mass

PRL 122, 222001 (2019)

Example of a fit with interference: $P_c(4312)^+$ interfering with the broad P_c^+

Triangle diagrams?

- Can produce peaking structure at or above mass threshold, but not below
- Cannot rule out $P_c(4457)^+$ as a triangle effect

J^P of $Z_c(4100)^-$ and \mathcal{B}

- The default fit has 4.3σ for $J^P = 1^-$ over 0^+
- Systematic uncertainty reduces to 1.2σ
 - □ Alternative $K^+\pi^-$ S-wave model (NR + κ + $K_0^*(1430)^0$)
- So $J^P = 1^-$ and 0^+ are both consistent with the data

Source	$\Delta(-2\ln\mathcal{L})$	Significance
Default	18.6	4.3σ
Fixed yields	23.8	4.9σ
Phase-space border veto	24.4	4.9σ
η_c width	4.2	2.0σ
Background	3.4	1.8σ
$K^+\pi^-$ S-wave	1.4	1.2σ

Fit fraction of $Z_c(4100)^-$ is $(3.3 \pm 1.1^{+1.2}_{-1.1})\%$

 $\mathcal{B}(B^0 \to Z_c(4100)^- K^+, Z_c(4100)^- \to \eta_c(1S)\pi^-) = (1.89 \pm 0.64^{+0.73}_{-0.67}) \times 10^{-5}$

 $\mathcal{B}(B^0 \to \eta_c(1S)K^+\pi^-) = (5.73 \pm 0.24 \pm 0.13 \pm 0.66) \times 10^{-4}$

Weakly decaying *b*-flavoured pentaquarks PRD 97 (2018) 032010

 Skyrme model: heavy quarks give tightly bound pentaquark

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

 Search for mass peaks below strong decay threshold

Mode	Quark content	Decay mode	Search window
Ι	$\overline{b}duud$	$P^+_{B^0p} \to J/\psi K^+\pi^- p$	$4668{-}6220~{\rm MeV}$
II	$b\overline{u}udd$	$P_{\Lambda^0_{\iota}\pi^-}^{-1} \to J/\psi K^-\pi^- p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P^{+^{o}}_{\Lambda^{0}_{t}\pi^{+}} \rightarrow J/\psi K^{-}\pi^{+}p$	4668–5760 ${\rm MeV}$
\mathbf{IV}	$\overline{b}suud$	$P_{B_{\circ}^{0}p}^{+} \to J/\psi \phi p$	5055–6305 ${\rm MeV}$

• Upper limit on production ratio $\sigma \cdot \mathcal{B}$ wrt $\Lambda_b^0 \to J/\psi K^- p$

$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

Weakly decaying *b*-flavoured pentaquarks PRD 97 (2018) 032010

• No evidence for signal, 90% CL limits on $R < 10^{-2} - 10^{-3}$

Search for dibaryon state

• A dibaryon state [cd][ud][ud]could be produced in Λ_b^0 decays to final state $\Lambda_c^+ \pi^- p\bar{p}$

L. Maiani, et al. PLB 750 (2015) 37

• LHCb has discovered the decay $\Lambda^0_b \to \Lambda^+_c \pi^- p \bar{p}$

PLB 784 (2018) 101

Search for dibaryon state

PLB 784 (2018) 101

- Ratio of branching fractions
 - $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$
- No obvious dibaryon peak in $m(\Lambda_c^+\pi^-p)$ spectra

Search for $X_{bb\overline{b}\overline{b}} \rightarrow \Upsilon(1S)\mu^+\mu^-$ JHEP 10 (2018) 086

- Binding of double-heavy bb pairs quite different to cc+light meson cloud
- Ground state bound $b\bar{b}b\bar{b}$ tetraquark $\sim 18 - 19$ GeV in many phenomenological models.
- Typically below $\eta_b \eta_b$ threshold. Can decay to $\Upsilon(1S) \mu^+ \mu^-$
- No hint of a structure in LHCb search with 2011-2016 data. Upper limits placed.

LHCb detector and performance

LHCb collected luminosity

THOMS

