1 of 16

Imperial College London

Semileptonic Decays at LHCb Beauty 2019

MATTHEW TILLEY ON BEHALF OF THE LHCb COLLABORATION

October 3, 2019

Matthew Tilley on behalf of the $\rm LHCb$ collaboration

Semileptonic Decays at LHCbBeauty 2019

INTRODUCTION

- $\bigcirc\,$ Tools and techniques for semileptonic decays at $\rm LHCb$
- $\bigcirc~$ The limit for the rare decay $B^-
 ightarrow \mu^- \mu^+ \mu^-
 u$
- \bigcirc The measurement of the semitauonic ratio $R(J/\psi)$
- $\bigcirc~$ The preliminary measurement of $B^-
 ightarrow p \overline{p} \mu^- \overline{
 u}$
- \bigcirc Other talks on analyses using semileptonic decays at LHCb:
 - Michel de Cian: Lifetime measurements
 - · Marcello Rotondo: Heavy flavour production

Matthew Tilley on behalf of the $\rm LHCb$ collaboration

Semileptonic Decays at LHCbBeauty 2019

Semileptonics at a Hadron Collider

- $\bigcirc\,$ At B-factories, strong kinematic constraints are provided by the other B in the decay
- \bigcirc Con: No equivalent tagging technique at LHCb can be used
- \bigcirc Pro: Large *B* production
- \bigcirc At LHCb, rely on the visible products and the strongly boosted B particles

arXiv:1807.08680

Diverse physics program for semileptonic decays (measuring CKM matrix elements, form factors, LFU, production properties, CPV)

Matthew Tilley on behalf of the $\rm LHCb$ collaboration

Semileptonic Decays at LHCbBeauty 2019

Corrected Mass

- \bigcirc Apply a correction to the B mass to try an get a sharp peak for use in fitting
- \bigcirc Use a correction to the visible mass which contains information from the momentum carried away by the neutrino
- \bigcirc Strongly boosted B helps with the vertex reconstruction
- \bigcirc The p_T' is the momentum transverse to the B flight direction

 $m_{CORR} = \sqrt{m_{vis}^2 + |p_T'|^2} + |p_T'|$

Matthew Tilley on behalf of the $\rm LHCb$ collaboration

Approximate B Momentum

 \supset An alternative method is to make an approximation of the B momentum

$$p_z(B) \approx (m_b/m_{vis})p_z(vis)$$

 $\bigcirc\,$ Allows reconstruction of variables like missing mass, lepton energy in the $B\mbox{-}{\rm frame}$ and q^2

arxiv.org/abs/1506.08614

CHARGED TRACK ISOLATION

- Backgrounds with additional charged tracks become a large source of background when you do not reconstruct the full signal decay.
- An MVA applied to tracks around the event has been developed to help with this

 \bigcirc Score the additional tracks on how likely it is that they are associated with the B decay vertex

Motivation for $B^- \rightarrow \mu^- \mu^+ \mu^- \nu$

DOI: 10.1134/S1063778818030092

 \bigcirc Decays $B^-
ightarrow \mu^-
u$ and $B^-
ightarrow \mu^-
u \gamma$ are very difficult at LHCb

 $\bigcirc~$ The decay $B^-\to\mu^-\mu^+\mu^-\nu$ receives a contribution of the radiative decay with a virtual photon

Result for $B^- \to \mu^- \mu^+ \mu^- \nu$

- O arxiv.org/abs/1812.06004
- \bigcirc Fit in corrected mass
- \bigcirc Lower than the prediction from Danilina and Nikitin
- Limit set at

 $\mathcal{B}(B^- \to \mu^- \mu^+ \mu^- \nu) < 1.6 \times 10^{-8} \text{, 95\%}$ confidence level

Motivation for $R(J/\psi)$

- \bigcirc Looking for more LFU measurements with b
 ightarrow c au
 u results to contribute
- \bigcirc The ratio $R(J/\psi)$ is a B_c probe on LFU
- $\bigcirc~$ Test of predictions ranging from ≈ 0.25 to ≈ 0.3 for $R(J/\psi),$ depending on the modeling of the form factors
 - See Judd Harrison's slides for a new lattice QCD prediction 0.3050(74)(Preliminary).

Result of $R(J/\psi)$

- \bigcirc Fit in three dimensions, missing mass, decay time and a function Z of q^2 and lepton energy in the *B*-frame
- \bigcirc The ratio of $R(J/\psi)$ is measured
- Largest systematics are from the lack of knowledge of the form factors and MC statistics
- \bigcirc Less than 2σ above the range of predictions
- arxiv.org/abs/1711.05623

$$R(J/\psi) = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst})$$

Motivation for $B^- \to p \overline{p} \mu^- \overline{\nu}$

- \bigcirc It is the first observation of a semileptonic decay of a meson to baryons.
- \bigcirc In hadronic decays with a $p\overline{p}$ in the final state a strong threshold enhancement effect is observed. This is a clean environment to study this.
- \bigcirc The first step in the study of the semitauonic ratio measurement $R(p\overline{p})$ is the discovery of the muon mode.
- \bigcirc Evidence provided from the Belle experiment with (3.0σ) for $B^- \to p\overline{p}e^-\overline{\nu}$ and (1.3σ) for $B^- \to p\overline{p}\mu^-\overline{\nu}$.

The branching fraction measurement from the Belle experiment is

$$\begin{split} \mathcal{B}(B^- \to p \overline{p} \ell^- \overline{\nu}) &= (5.8^{+2.4}_{-2.1} \pm 0.9) \times 10^{-6} \\ \mathrm{arxiv.org/abs}/1306.3353 \end{split}$$

Motivation for $B^-\to p\overline{p}\mu^-\overline{\nu}$

- O Prediction using pQCD from Geng and Hsiao arXiv:1107.0801
- Over-prediction of the branching fraction, $\mathcal{B}(B^- \to p\overline{p}\ell^-\overline{\nu}) = (1.04 \pm 0.24 \pm 0.12) \times 10^{-4}$
- \bigcirc Contains a prediction for the differential branching fraction as a function of $p\overline{p}$ mass

Preliminary result for $B^- \to p \overline{p} \mu^- \overline{\nu}$

$$B^{+} \rightarrow p \overline{p} \mu^{+} \nu_{\mu}$$
Part-Reco $p \overline{p} X \mu^{+} \nu_{\mu}$

$$(h \rightarrow p) \text{ MisID}$$
Combinatorial

 \bigcirc Fit performed in corrected mass for bins of $m(p\overline{p})$

 \bigcirc Normalised to

$$B^- \to (J/\psi \to \mu^+ \mu^-) K^-$$

Preliminary measurement of the branching fraction from $\rm LHCb$ is:

$$\begin{split} \mathcal{B}(B^- \to p \overline{p} \mu^- \overline{\nu}) &= (5.27^{+0.23}_{-0.24} \pm 0.21 \pm 0.15) \times 10^{-6} \\ \text{(stat., syst., norm. BF)} \end{split}$$

Preliminary result for $B^- \to p \overline{p} \mu^- \overline{\nu}$

- \bigcirc Differential branching fraction in bins of $m(p\overline{p})$
- Threshold enhancement effect is clearly visible
- Model overlaid is normalised to the observed branching fraction. The shape is compatible with the result

CONCLUSIONS

- $\bigcirc~$ Limit on the rare decay $B^- \rightarrow \mu^- \mu^+ \mu^- \nu$
- \bigcirc Measurement of the B_c semitauonic ratio $R(J/\psi)$
- $\bigcirc\,$ First observation of $B^-\to p\overline{p}\mu^-\overline{\nu}$ and measurement of its differential branching fraction

But what comes next?

The Future of Semileptonics at LHCb

- \bigcirc More measurements of decays with a b
 ightarrow c au
 u quark transition
- \bigcirc High B production means $\rm LHCb$ can probe rarer and rarer semileptonic decays
- \bigcirc Potential for a $b \rightarrow u \tau \nu$ measurement at LHCb with $R(p\bar{p})$

Many more exciting things to come from LHCb semileptonics!

Matthew Tilley on behalf of the $\rm LHCb$ collaboration

Semileptonic Decays at LHCbBeauty 2019

