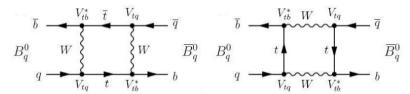
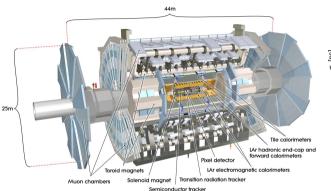
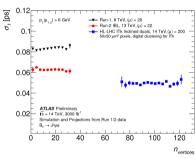
CP violation in $B_s \rightarrow J/\psi \phi$ in ATLAS

Radek Novotný on behalf of the ATLAS collaboration

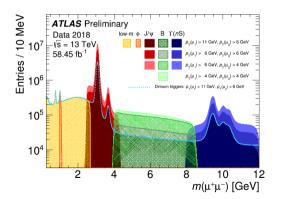

Beauty 2019, Ljubljana September 30, 2019


- ▶ $B_s^0 \to J/\psi \phi$ is used to measure CP-violation phase Φ_s potentially sensitive to New Physics
- ▶ In SM ϕ_s is related to the CKM elements and predicted with high precision $\Phi_s \simeq 2 \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)] = -0.0363_{-0.0015}^{+0.0016}$ rad



- ▶ Other quantity in B_s^0 mixing is $\Delta\Gamma_s = \Gamma_s^L \Gamma_s^H$, where Γ_s^L and Γ_s^H are the decay widths of the different mass eigenstates. $\Delta\Gamma_s$ is not sensitive to New Physics, however measurement is interesting to test a theory.
- ► The New Physics processes could introduce additional contributions to the box diagrams describing the *B*⁰ mixing

ATLAS detector



- ▶ Inner Detector: PIX, SCT and TRT, $p_T > 0.4 \, \text{GeV}$, $|\eta| < 2.5$
 - ▶ Run2: new IBL 25% improvement of time resolution with respect to Run1.
 - time resolution remains stable within increasing pileup in Run 2
- ▶ Muon Spectrometer: triggering ($|\eta|$ < 2.4), precision tracking ($|\eta|$ < 2.7)

- ► Events collected with mixture of triggers based on $J/\psi \to \mu^+\mu^-$ identification, with muon p_T thresholds of either 4 GeV or 6 GeV (vary over run periods)
- ► No lifetime or impact parameter cut at HLT level

Data and Monte Carlo simulation samples

Data:

- ▶ 80.5 fb⁻¹ of 13 TeV pp collision data from 2015-2017
- Statistically combined with Run1 ATLAS results:

 - ► 4.9 fb⁻¹ (7 TeV, pp 2011) ► 14.3 fb⁻¹ (8 TeV, pp 2012)

MC samples:

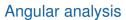
- ▶ Signal $B_s^0 \to J/\psi \phi$ MC events
- ▶ MC samples for peaking backgrounds $B_d^0 \to J/\psi K^{*0}$, $B_d^0 \to J/\psi K\pi$, $\Lambda_b^0 \to J/\psi Kp$
- ► MC samples for tagging calibration channel $B^{\pm} \rightarrow J/\psi K^{\pm}$ (systematics and cross-checks only, real data used for calibration)

Reconstruction and candidate selection

Event:

- ► Triggers (previous slide) and good quality data
- At least one PV formed from at least 4 ID tracks
- \blacktriangleright At least one pair of ID+MS identified $\mu^+\mu^-$

$J/\psi \to \mu^+\mu^-$


- ▶ Dimuon vertex fit $\chi^2/d.o.f. < 10$
- Three dimuon invariant mass windows for BB/BE/EE (barrel, endcap) muon combinations

$\phi ightarrow K^+K^-$

- $ightharpoonup p_{\Gamma}(K) > 1 \,\mathrm{GeV}$
- ▶ $1008.5 \, \text{MeV} < m(KK) < 1030.5 \, \text{MeV}$

$$\int B_s^0 o J/\psi(\mu^+\mu^-)\phi({\sf K}^+{\sf K}^-)$$

- ▶ $p_{\Gamma}(B_s^0) > 10 \,\text{GeV}$
- Four-track vertex fit $\chi^2/d.o.f. < 3$ (J/ψ mass constrained)
- Keep only the candidate with best vertex fit $\chi^2/d.o.f.$ in event
- ▶ 5150 MeV $< m(B_s^0) <$ 5650 MeV \rightarrow in total 3 210 429 B_s^0 candidates

- \triangleright $B_s^0 \rightarrow J/\psi \phi = \text{pseudoscalar to vector-vector}$
- Final state: admixture of *CP*-odd (L=1) and *CP*-even (L=0,2) states
- ► Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B_s^0 \to J/\psi K^+ K^-$ contribute to the final state
- ▶ Included in the differential decay rate due to interference with the $B_s^0 \to J/\psi(\mu^+\mu^-)\psi(K^+K^-)$ decay

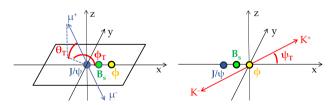


Figure: Angles between final state particles in transversity basis.

We perform unbinned maximum likelihood fit simultaneously for B_0^0 mass, decay time and the decay angles:

In
$$\mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i}) + f_s \cdot f_{B_d^0} \cdot \mathcal{F}_{B_d^0}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i}) + f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i}) + (1 - f_s \cdot (1 + f_{B_d^0} + f_{\Lambda_b})) \cdot \mathcal{F}_{bkg}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{T_i})) \}$$

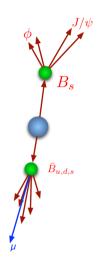
Physics parameters

- ► CPV phase φ_s
- Decay widths: ΔΓ_s, Γ_s
- ▶ Decay amplitudes: $|A_0(0)|^2$, $|A_{||}(0)|^2$, $\delta_{||}$, δ_{\perp}
- ightharpoonup S-wave: $|A_S(0)|^2$, δ_S
- $ightharpoonup \delta m_s$ fixed to PDG

Observables

- Base observables : m_i , t_i , Ω_i
 - Conditional observables per-candidate:
 - ► resolutions: σ_{m_i} , σ_{t_i} ($B p_{T_i}$ dependent) • tagging probability and method: P(B|Q)

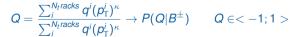
- ► Data are corrected by the decay time correction
- Mass as well as lifetime use per-candidate width and scale factor, with flavour-dependent terms weighted by tagging probability P(B|Q)
- ► Contributions from $B_d^0 \to J/\psi K^{*0}$, $B_d^0 \to J/\psi K\pi$ and $\Lambda_b^0 \to J/\psi Kp$ due to wrong mass assignment (KK)
 - ► Efficiencies and acceptance from MC
 - ▶ BR from PDG
 - Fragmentation fractions from other measurements
- Combinatorial background for angular distribution use Legendre polynomials from sidebands; fixed in the main fit

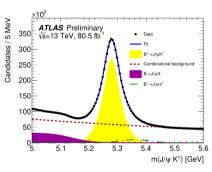


- Opposite side tagging
 - Use $b \bar{b}$ pair correlation to infer initial signal flavour from the other B meson
 - Provide the probability of signal candidate to be B_s^0 or \overline{B}_s^0

$$\begin{aligned} \mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{t_{i}}, \Omega_{i}, \boxed{P(B|Q)}, p_{T_{i}}) &= \\ P_{s}(m_{i}) \cdot P_{s}(\Omega_{i}, t_{i}, \boxed{P(B|Q)}, \sigma_{t_{i}}) \cdot P_{s}(\sigma_{t_{i}}) \\ \cdot P_{s}(\boxed{P(B|Q)}) \cdot A(\Omega_{i}, p_{T_{i}}) \cdot P_{s}(p_{T_{i}}). \end{aligned}$$

- ► Muon and Electron Tagging
 - ightharpoonup b
 ightarrow I transitions are clean tagging method
 - ightharpoonup b
 ightharpoonup c
 ightharpoonup b
 ightharpoonup c
 ightharpoonup b
 ightharpoonup c
 ightharpoonup land b
 ightharpoonup c
 ightharpoonup b
 ightharpoonup c
 ightharpoonup b
 ightharpoonup c
 ightharpoonup c
- Jet-Charge
 - information from tracks in b-tagged jet, when no lepton is found
- ► Calibration using $B^{\pm} \rightarrow J/\psi K^{\pm}$



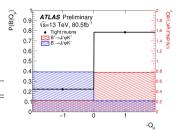


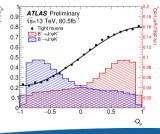
Calibration using $B^{\pm} \rightarrow J/\psi K^{\pm}$ events (real data)

- ► self tagging non oscillating channel
- ▶ Di-muon candidates in range 2.8 < $m(\mu\mu)$ < 3.4 GeV
- ▶ $p_{\rm T}(\mu) > 4 \text{ GeV}, p_{\rm T}(K^{\pm}) > 1 \text{ GeV}$
- ► Invariant mass in range $5.0 < m(\mu\mu K^{\pm}) < 5.6 \text{ GeV}$
- τ(B) > 0.2 ps to reduce prompt component of the combinatorial background

Tagging performance

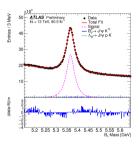
► The probability to tag a B_s^0 meson as containing a \bar{b} -quark:

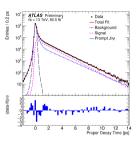

$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

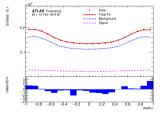

Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- p_T muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

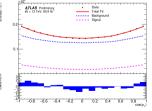
- ▶ **Dilution**: D = (1 2w), where w is the miss-tag probability
- ► Tagging Power: figure of merit of tagger performance
 - ► Depends on dilution and efficiency:

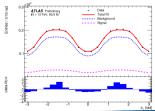
$$TP = \varepsilon D^2 = \varepsilon (1 - 2w)^2$$

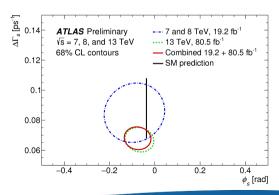






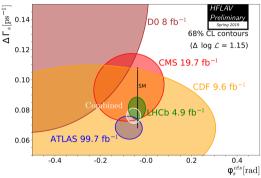

Projection and results of the mass-lifetime-angular fit


Parameter	Value	Statistical	Systematic
- Turumeter	varae	uncertainty	uncertainty
$\phi_s[rad]$	-0.068	0.038	0.018
$\Delta\Gamma_s[ps^{-1}]$	0.067	0.005	0.002
$\Gamma_s[\mathrm{ps}^{-1}]$	0.669	0.001	0.001
$ A_{ }(0) ^2$	0.219	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004
$ A_S(0) ^2$	0.046	0.003	0.004
δ_{\perp} [rad]	2.946	0.101	0.097
δ_{\parallel} [rad]	3.267	0.082	0.201
$\delta_{\perp} - \delta_{S}$ [rad]	-0.220	0.037	0.010



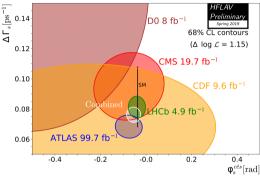
Combination of the results with the previous from Run 1

- ► A Best Linear Unbiased Estimate (BLUE) combination is performed to combine the current result with the Run 1 measurement
- ► The BLUE combination uses the measured values and uncertainties of the parameters as well as the correlations between them


Parameter	Value	Statistical	Systematic		
		uncertainty	uncertainty		
$\phi_s[rad]$	-0.076	0.034	0.019		
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.068	0.004	0.003		
$\Gamma_s[{ m ps}^{-1}]$	0.669	0.001	0.001		
$ A_{ }(0) ^2$	0.220	0.002	0.002		
$ A_0(0) ^2$	0.517	0.001	0.004		
$ A_S ^2$	0.043	0.004	0.004		
δ_{\perp} [rad]	3.075	0.096	0.091		
$\delta_{ }$ [rad]	3.295	0.079	0.202		
$\delta_{\perp} - \delta_{S}$ [rad]	-0.216	0.037	0.010		

Summary and updated overview of the experimental results

- ► Analysis of the 2015+2016+2017 ATLAS data performed
- Results combined with Run1 results
- Compatible with LHCb and CMS and the SM prediction
- Complete Run2 analysis ongoing (60 fb⁻¹ more data)

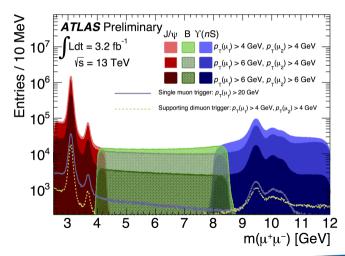


https://cds.cern.ch/record/2668482 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-009/

Summary and updated overview of the experimental results

- Analysis of the 2015+2016+2017 ATLAS data performed
- Results combined with Run1 results
- Compatible with LHCb and CMS and the SM prediction
- Complete Run2 analysis ongoing (60 fb⁻¹ more data)

https://cds.cern.ch/record/2668482 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-009/


Thanks for your attention!

Full likelihood function

	2/1/2	do
k	$O^{(k)}(t)$	$g^{(k)}(\theta_T, \psi_T, \phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{ }(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^2\left[(1-\cos\phi_s)e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_s)e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_L^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_H^{(s)} t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_L^{(s)}t}-e^{-\Gamma_H^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_S(0) ^2\left[(1-\cos\phi_s)e^{-\Gamma_{\rm L}^{(s)}t} + (1+\cos\phi_s)e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) [\frac{1}{2} (e^{-\Gamma_L^{(s)} t} - e^{-\Gamma_H^{(s)} t}) \sin(\delta_{\parallel} - \delta_S) \sin \phi_s$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
	$\pm e^{-\Gamma_S t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2}\alpha A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
10	$\alpha A_0(0) A_S(0) [\frac{1}{2} (e^{-\Gamma_{\mathbf{H}}^{(s)} t} - e^{-\Gamma_{\mathbf{L}}^{(s)} t}) \sin \delta_S \sin \phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

Systematic uncertainties

- ► Systematics assumed uncorrelated \rightarrow Total = $\sqrt{\sum_{i} \text{syst}_{i}^{2}}$
- ▶ Tagging systematics dominant for ϕ_s
 - Accounting for pile-up dependence, calibration curves model and MC precision, "Punzi" PDFs variations, difference between B^{\pm} and B_s^0 kinematics
- ▶ Fit-model time resolution systematics dominant for Γ_s and $\Delta\Gamma_s$

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	$\delta_{ }$	$\delta_{\perp} - \delta_{S}$
	[rad]	[ps ⁻¹]	[ps ⁻¹]				[rad]	[rad]	[rad]
Tagging	1.7 ×10 ⁻²	0.4×10^{-3}	0.3 ×10 ⁻³	0.2×10^{-3}	0.2×10^{-3}	2.3 ×10 ⁻³	1.9 ×10 ⁻²	2.2 ×10 ⁻²	2.2 ×10 ⁻³
Acceptance	0.7×10^{-3}	< 10^-4	$<10^{-4}$	0.8×10^{-3}	0.7×10^{-3}	2.4×10^{-3}	3.3×10^{-2}	1.4×10^{-2}	2.6×10^{-3}
ID alignment	0.7×10^{-3}	0.1×10^{-3}	0.5×10^{-3}	< 10^-4	< 10^-4	< 10^-4	1.0×10^{-2}	7.2×10^{-3}	$<10^{-4}$
S-wave phase	0.2×10^{-3}	$< 10^{-4}$	$<10^{-4}$	0.3×10^{-3}	$<10^{-4}$	0.3×10^{-3}	1.1×10^{-2}	2.1×10^{-2}	8.3×10^{-3}
Background angles model:									
Choice of fit function	1.8×10^{-3}	0.8×10^{-3}	$<10^{-4}$	1.4×10^{-3}	0.7×10^{-3}	0.2×10^{-3}	8.5×10^{-2}	1.9×10^{-1}	1.8×10^{-3}
Choice of p_T bins	1.3×10^{-3}	0.5×10^{-3}	$<10^{-4}$	0.4×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.5×10^{-3}	7.2×10^{-3}	1.0×10^{-3}
Choice of mass interval	0.4×10^{-3}	0.1×10^{-3}	0.1×10^{-3}	0.3×10^{-3}	0.3×10^{-3}	1.3×10^{-3}	4.4×10^{-3}	7.4×10^{-3}	2.3×10^{-3}
Dedicated backgrounds:									
B_d^0	2.3×10^{-3}	1.1×10^{-3}	$<10^{-4}$	0.2×10^{-3}	3.1×10^{-3}	1.4×10^{-3}	1.0×10^{-2}	2.3×10^{-2}	2.1×10^{-3}
Λ_b	1.6×10^{-3}	0.4×10^{-3}	0.2×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.8×10^{-3}	1.4×10^{-2}	2.9×10^{-2}	0.8×10^{-3}
Fit model:									
Time res. sig frac	1.4×10^{-3}	1.1×10^{-3}	$<10^{-4}$	0.5×10^{-3}	0.6×10^{-3}	0.6×10^{-3}	1.2×10^{-2}	3.0×10^{-2}	0.4×10^{-3}
Time res. p_T bins	3.3×10^{-3}	1.4×10^{-3}	0.1×10^{-2}	$< 10^{-4}$	< 10 ⁻⁴	0.5×10^{-3}	6.2×10^{-3}	5.2×10^{-3}	1.1×10^{-3}
Total	1.8 ×10 ⁻²	0.2 ×10 ⁻²	0.1 ×10 ⁻²	0.2 ×10 ⁻²	0.4 ×10 ⁻²	0.4 ×10 ⁻²	9.7 ×10 ⁻²	2.0 ×10 ⁻¹	0.1 ×10 ⁻¹