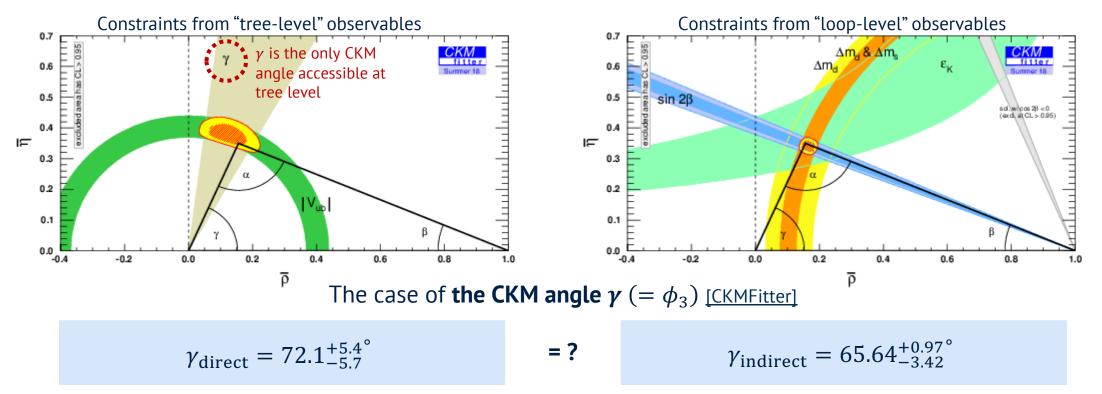
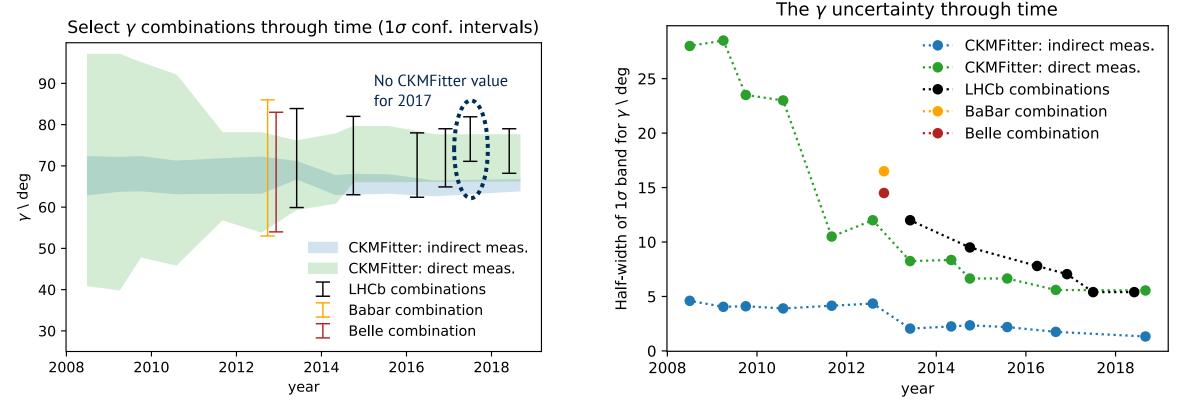
Measuring the CKM angle γ with LHCb


Mikkel Bjørn, on behalf of the LHCb collaboration Beauty • Ljubljana • 2019

a na an

Is the Unitarity Triangle a triangle?

Crucial flavour physics goal: experimentally test consistency of the CKM mechanism by over-constraining parameters

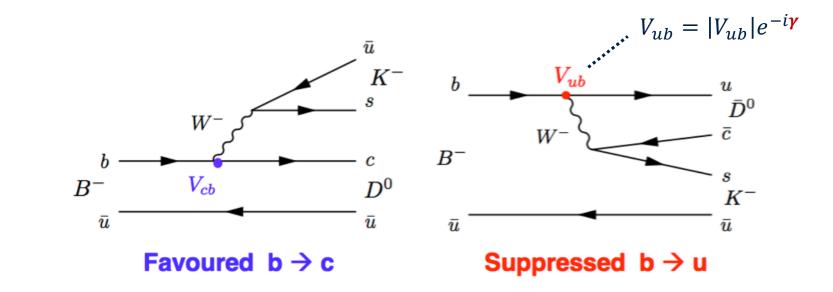


Measured in $B \rightarrow DK$ decays and friends

- Theoretically **clean**: $\delta \gamma_{\text{theory}} / \gamma \simeq 10^{-7}$ [JHEP.01(14)51]
- SM benchmark: NP contributions to tree level process expected to be small (although not excluded by data: [PRD.92(15)033002])

Indirect determination from other CKM parameters

- $\sin 2\beta$ from $B^0 \to J/\psi K_S^0$
- Δm_d and Δm_s from $B_{(s)}^0$ mixing
- ϵ_k from neutral kaon CPV measurements


LHCb dominates current world averages of direct γ measurements

The focus of **this talk**:

- LHCb results from $B^0 \rightarrow DK^{*0}$ ADS/GLW [JHEP.08(19)41] and $B^{\pm} \rightarrow DK^{\pm}$ GGSZ [JHEP.08(18)176] measurements with data from 2015 and 2016
- The **LHCb** γ **combination** and a look towards the future

BaBar combination: [arXiv:1301.3283], Belle combination: [arXiv:1301.2033]. CKMFitter results: [CKMFitter.in2p3.fr]. Latest LHCb combination: [LHCb-CONF-2018-002]

How to measure γ in $B^{\pm} \rightarrow DK^{\pm}$: "the text book example"

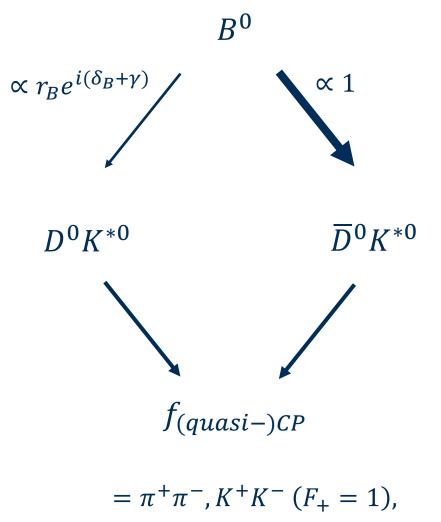
Access to γ via **interference between** $b \rightarrow c$ and $b \rightarrow u$ transitions

• γ is the EW (CP-violating) phase between the $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow \overline{D}^0 K^{\pm}$ amplitudes *(up to relative corrections of* $O(\lambda^4) \simeq 2 \times 10^{-3}$)

$$\frac{A(B^- \to \overline{D}{}^0 K^-)}{A(B^- \to D^0 K^-)} = r_B \exp[i(\delta_B - \gamma)] \qquad \qquad \frac{A(B^+ \to D^0 K^+)}{A(B^+ \to \overline{D}{}^0 K^+)} = r_B \exp[i(\delta_B + \gamma)]$$

Exploited using many *D* final states and with other similar *B* decays

30. September, 2019

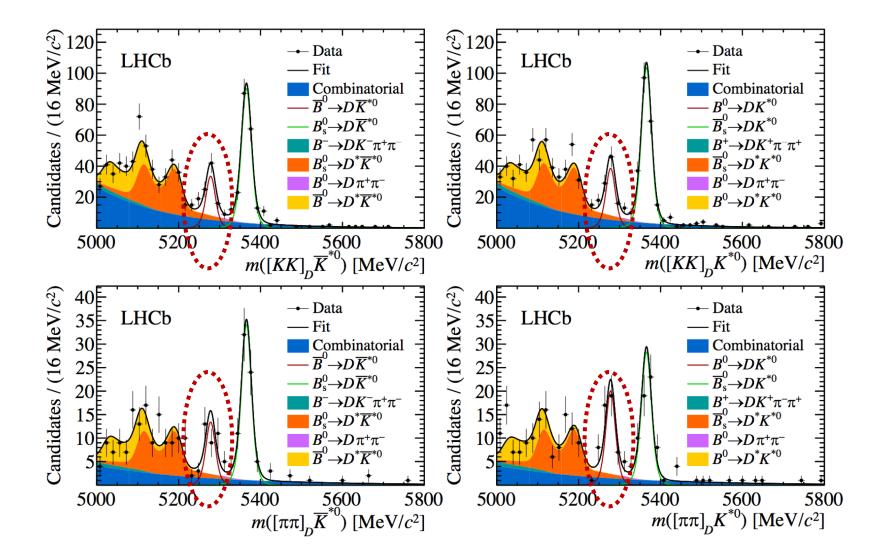

The GLW method with $B^0 \rightarrow D(\rightarrow h^+h^-[\pi^+\pi^-])K^{*0}$ decays

Coherence factor due to other resonances in $B^0 \to DK^+\pi^ \kappa = 0.958^{+0.005}_{-0.046}$ [PRD.93(16)112018] $d\Gamma \propto 1 + r_B^2 + 2\kappa r_B (2F_+^f - 1)\cos(\delta_B \pm \gamma)$

Observables of interest: yield asymmetries and ratios

$$A_{CP}^{f} = \frac{\Gamma(\bar{B}^{0} \to f\bar{K}^{*0}) - \Gamma(B^{0} \to fK^{*0})}{\Gamma(\bar{B}^{0} \to f\bar{K}^{*0}) + \Gamma(B^{0} \to fK^{*0})}$$
$$= \frac{2\kappa r_{B}^{X} (2F_{+}^{f} - 1) \sin \delta_{b}^{X} \sin \gamma}{1 + r_{B}^{2} + 2\kappa (2F_{+}^{f} - 1) \cos \delta_{B} \cos \gamma}$$

 $\equiv R'_{CP}$: measured independently **in fit** via yield ratio to corresponding $D^0 \rightarrow K^- \pi^+$ mode and known BF

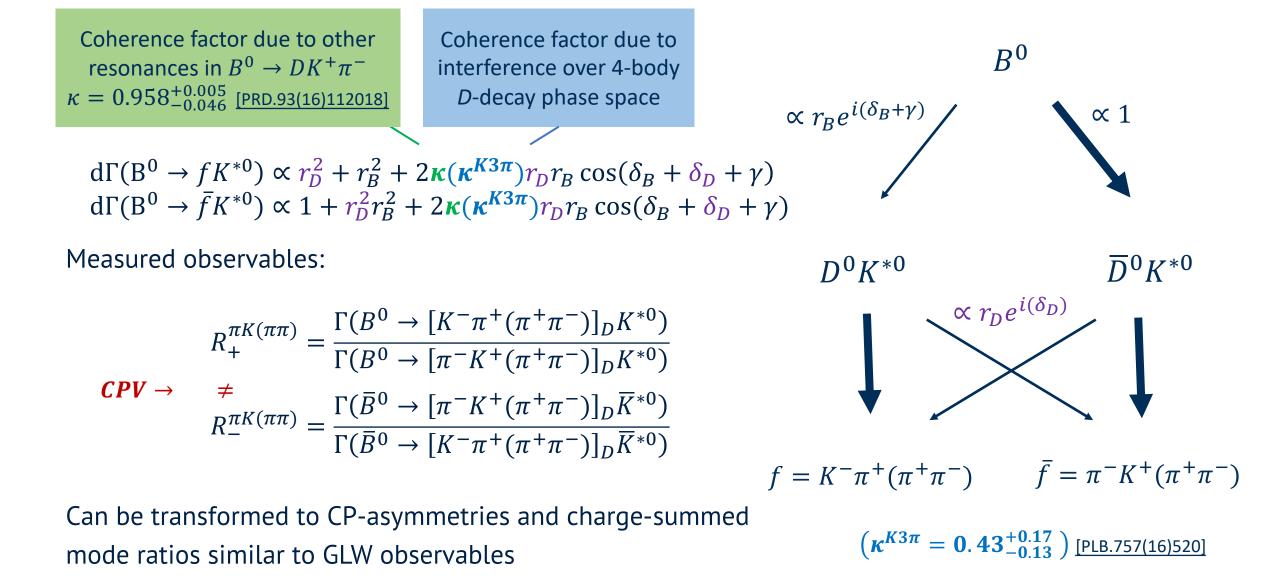

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ ($F_{+} = 0.769 \pm 0.023$) [JHEP.01(18)144]

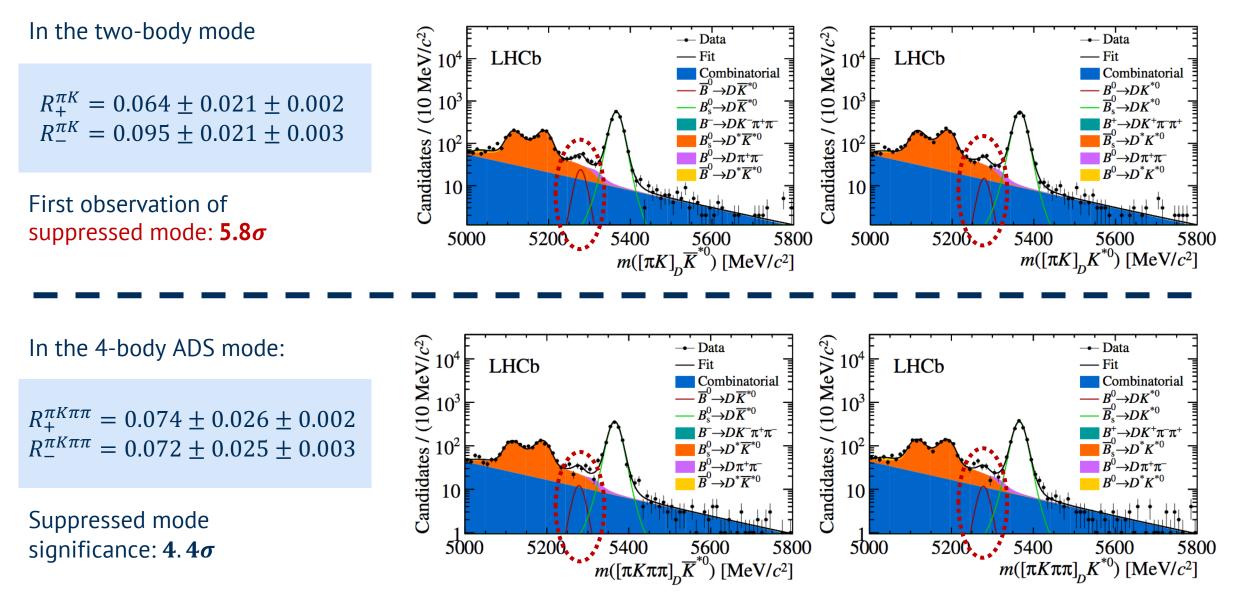
Ratio and asymmetry observables are **directly obtained** in fit

Corrected for

- Different selection efficiencies
- Detection charge-asymmetries
- $B^0 \overline{B}^0$ production asymmetry

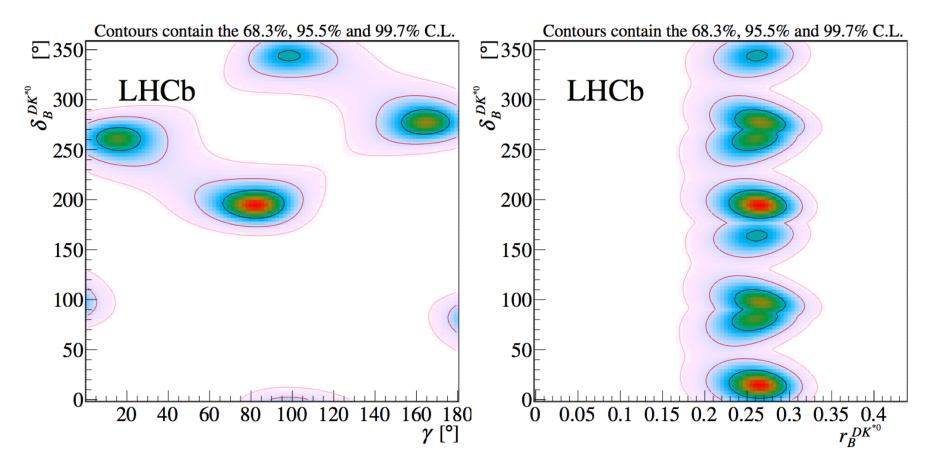
$$A_{CP}^{KK} = -0.05 \pm 0.10 \pm 0.01$$
$$R_{CP}^{KK} = 0.92 \pm 0.10 \pm 0.02$$
$$A_{CP}^{\pi\pi} = -0.18 \pm 0.14 \pm 0.01$$
$$R_{CP}^{\pi\pi} = 1.32 \pm 0.19 \pm 0.03$$





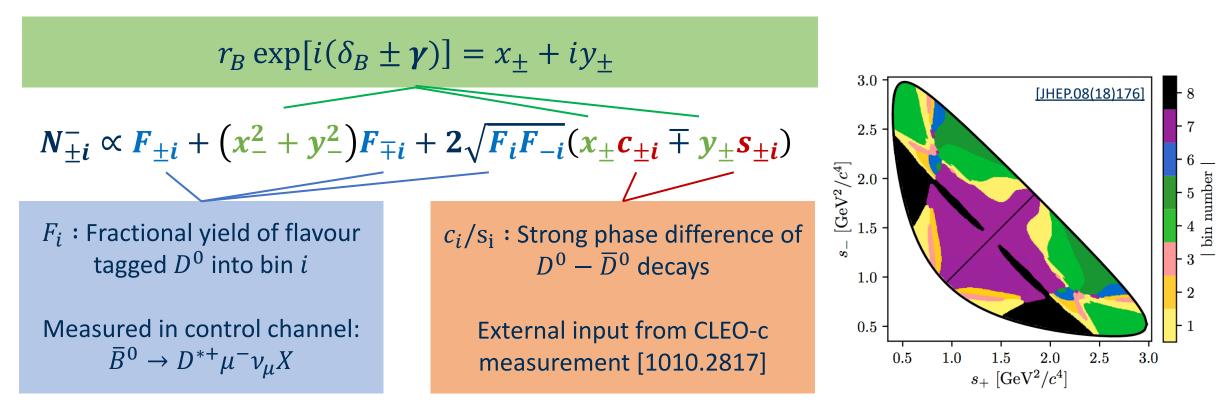
$$A_{CP}^{4\pi} = -0.03 \pm 0.15 \pm 0.01$$

$$R_{CP}^{4\pi} = 1.01 \pm 0.16 \pm 0.04$$

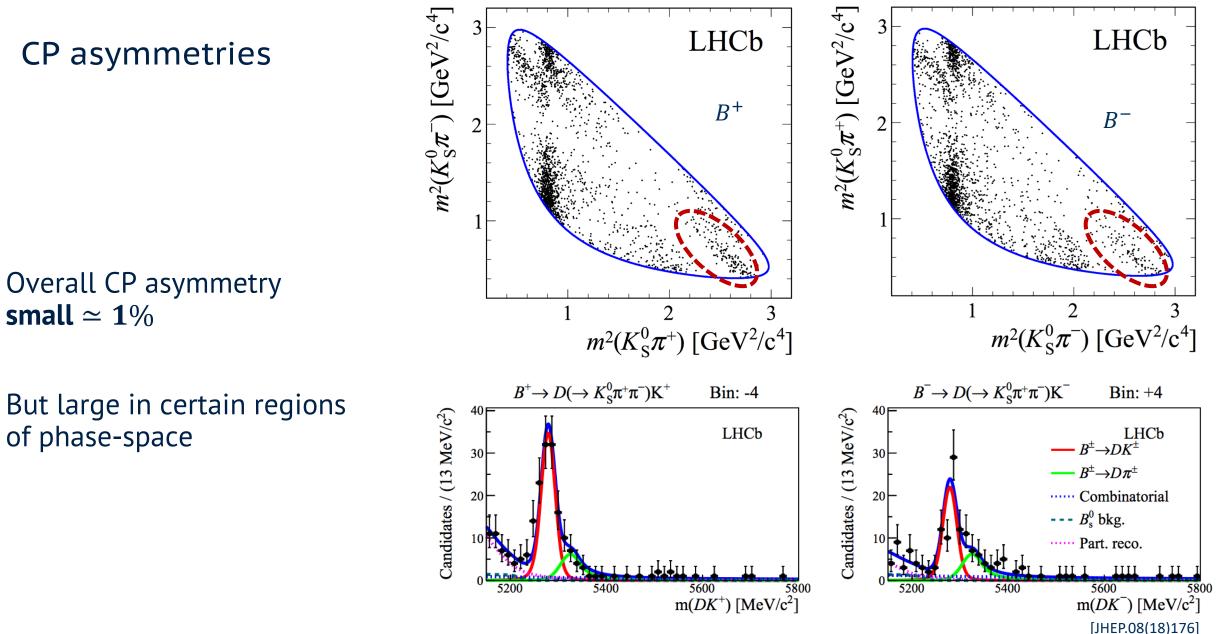

First observation of decay mode: 8.4σ

The ADS method with $B^0 \rightarrow D(\rightarrow h'^+h^-[\pi^+\pi^-])K^{*0}$ decays

Physics parameters in $B^0 \rightarrow DK^{*0}$ decays



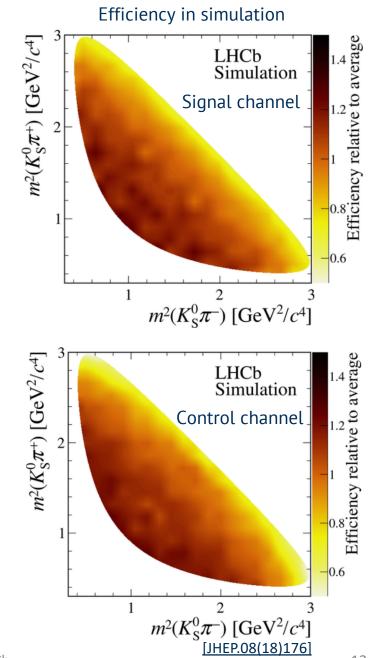
CP-violating observables put constraints on $(\gamma, r_B^{DK^{*0}}, \delta_B^{DK^{*0}})$


- $r_B^{DK^{*0}} = 0.265 \pm 0.023 \rightarrow 50$ % decrease in uncertainty compared to current LHCb combination
- \rightarrow showcase improvements to come from Run 2 dataset

Divide phase space of $D \rightarrow K_S^0 h^+ h^-$ decay into bins and measure yields in each

- Analysis is **independent of modelling** of *D* decay
- Sensitivity from **phase-space distribution**, not overall asymmetries \rightarrow overall production/detection/ K_S^0 -CPV asymmetries have no impact

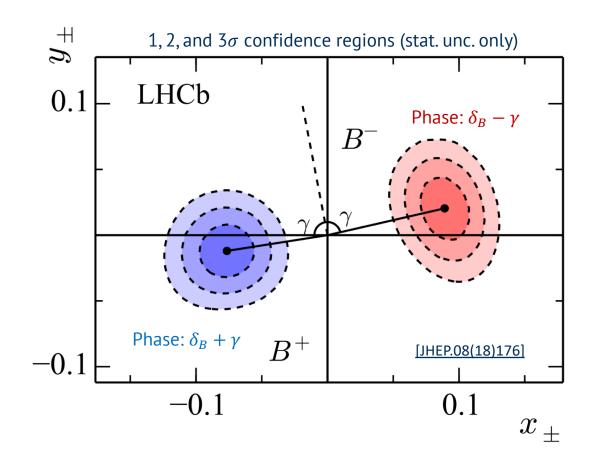
[JHEP.08(18)176]



Phase-space dependent efficiency

Significant variation in reconstruction efficiency over phase-space

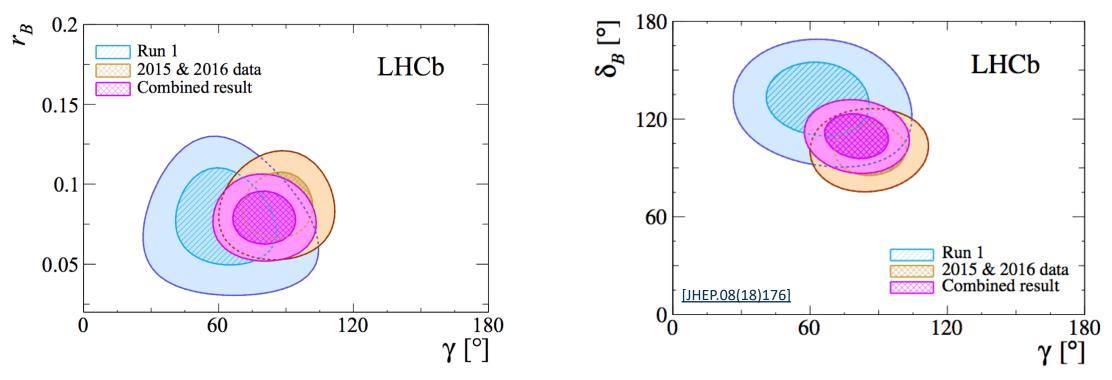
Handled in data-driven manner: Measure F_i in control channel: $\overline{B}^0 \to D^{*+} (\to D^0 \pi^+) \mu^- \nu_{\mu} X$


- Flavour tagged D⁰ from B decay: similar efficiency profile
 → still correct for signal-control efficiency difference
- Signal-control channel efficiency ratio from simulation
 → effects of simulation imperfections cancel to first order
- Naturally incorporates effects of bin migration and D-mixing [PRD.82(10)034033]

Statistical uncertainty dominates $(\simeq 8^{\circ} \text{ on } \gamma)$

Leading systematic uncertainties

- Strong-phase measurements from CLEO
 (~ 4° on γ)
- Efficiency correction between signal and semi-leptonic control channels (≃ 1.5° on γ)
- Secondary effects from D-mixing [PRD.82(10)034033] and K_S^0 CPV [JHEP.07(19)106] well under control
 - Important for a future $B^{\pm} \rightarrow D\pi^{\pm}$ GGSZ measurement

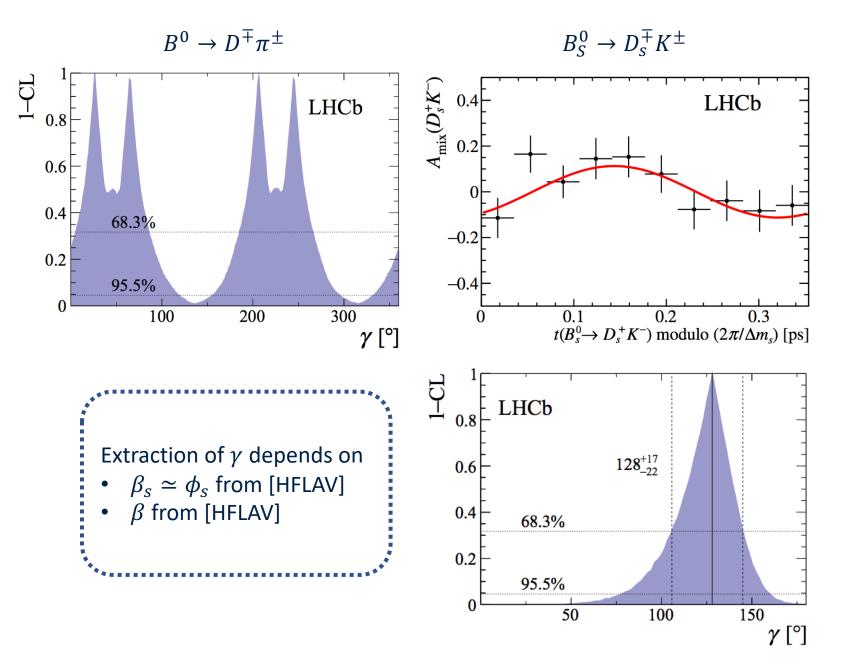


Interpreted and combined with Run 1 GGSZ measurement [JHEP.10(14)97] using gammacombo [JHEP.12(16)87]

 $\gamma = 87^{\circ +11^{\circ}}_{-12^{\circ}}$

Combined Run 1 and 15/16: $\gamma = 80^{\circ + 10^{\circ}}_{-9^{\circ}}$

Most precise stand-alone determinations of γ to date (at 2σ level)

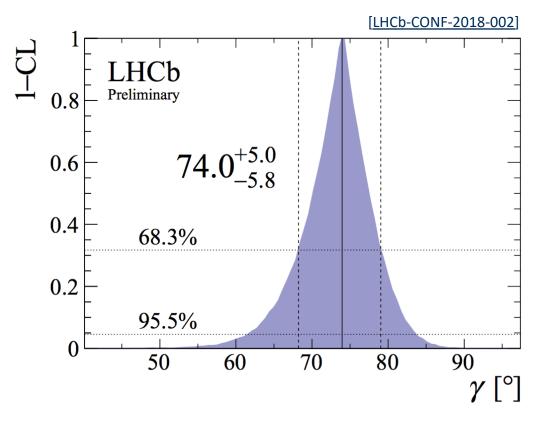

Time dependent γ measurements

LHCb has also published **timedependent** γ measurements using

- $B_s^0 \to D_s^{\pm} K^{\pm}$ [JHEP.03(18)59]
- $B^0 \rightarrow D^{\mp} \pi^{\pm}$ [JHEP.06(18)84]

Measurements are based on

- Interference between **mixing** and decay amplitude sensitive to **CP-violating phase** $\gamma + (-)2\beta_{(s)}$
- Use the **3** fb⁻¹ Run **1** dataset


Best knowledge of γ comes from **combining many measurements**

LHCb γ measurements from $B^+ \to D^{(*)}K^{(*)+}$, $B^0 \to DK^{*0}, B^0 \to D^{\mp}\pi^{\pm}$, and $B_s^0 \to D_s^{\mp}K^{\mp}$ decays are combined in a maximum likelihood fit

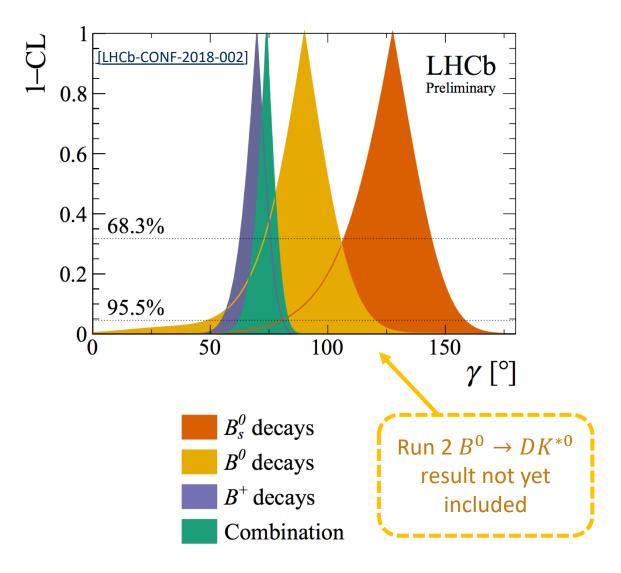
- 98 observables & 40 free parameters
- Good overall fit quality: $p = 69.6 \pm 0.5 \%$

Most precise determination of γ by a single experiment:

$$\gamma = 74.0^{+5.0}_{-5.8}$$

3 fb⁻¹ Run 1 dataset ● Includes 2 fb⁻¹ 15+16 data ● Not in combination yet

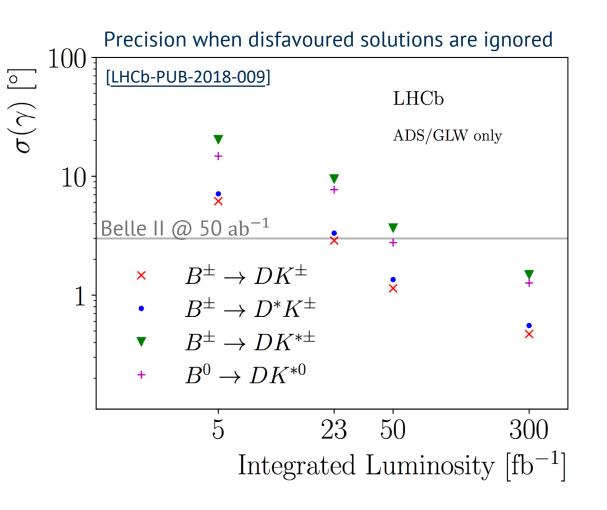
	B-decay mode	$B^+ \to DK^+$	$B^+ o D^* K^+$		$B^+ ightarrow DK^0_s \pi^+$	$B^0 ightarrow DK^+\pi^-$		$B^+ ightarrow DK^+ \pi^+ \pi^-$			
	D-decay mode		Part. reco.	Full reco.	DK*+-res.	DK ^{*0} -res.	Dalitz-method				
GLW	h^+h^-	<u>PLB.777(18)16</u>	PLB.777(18)16		<u>JHEP.17(17)156</u>	<u>JHEP.08(19)41</u>	PRD.93(16)112018	PRD.92(15)112005			
	$\pi^+\pi^-\pi^+\pi^-$	PLB.760(16)117			JHEP.17(17)156	<u>JHEP.08(19)41</u>					
	$h^+h^-\pi^0$	PRD.91(25)112014									
ADS	$K^{\pm}\pi^{\mp}$	PLB.760(16)117			JHEP.17(17)156	<u>PRD.90(14)112002</u> JHEP.08(19)41		PRD.92(15)112005			
	$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	PLB.760(16)117			JHEP.17(17)156	<u>JHEP.08(19)41</u>					
	$K^{\pm}\pi^{\mp}\pi^{0}$	PRD.91(25)112014									
GGSZ	$K^0_S h^+ h^-$	<u>JHEP.10(14)97</u> JHEP.08(18)176				MD: <u>JHEP.08(16)137</u>					
GLS	$K^0_S K^+ \pi^-$	<u>PLB.733(14)36</u>									
Time-dependent		Time dependent measurements with $B_s^0 \to D_s^{\mp} K^{\pm}$ [JHEP.03(18)59] and $B^0 \to D^{\mp} \pi^{\pm}$ [JHEP.06(18)84] decays									

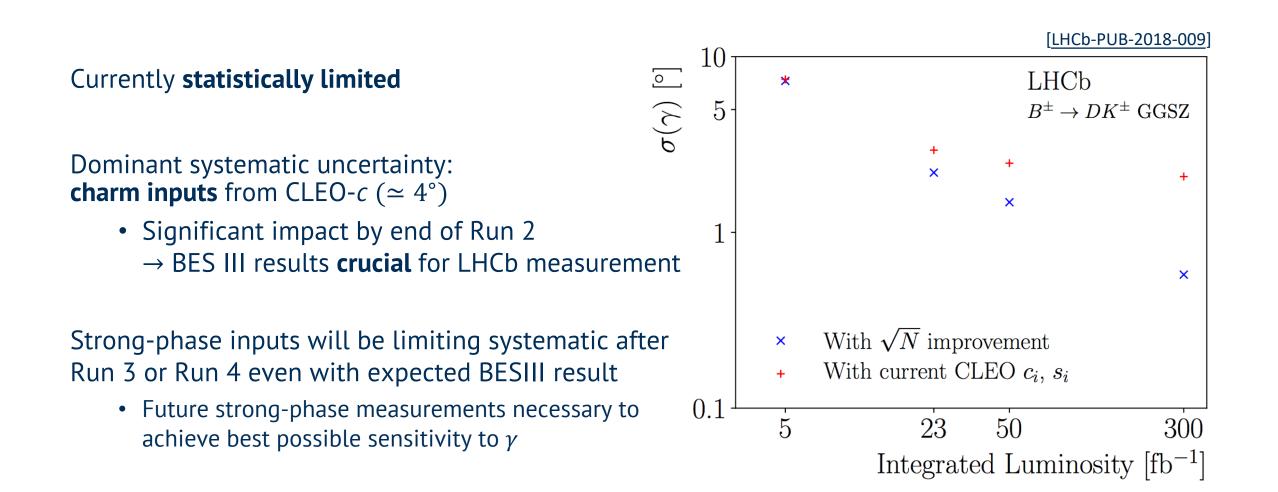

New physics could lead to different results in different *B* decays

Different *B* modes agree at 2σ level

Different modes have different challenges and systematics:

• Consistency check important part of LHCb programme


LHCb will reach **few degree precision or better** for each of B^{\pm} , B^{0} , and B_{s}^{0} with 23 fb⁻¹ collected after the LHC Run 3 [LHCB-PUB-2018-009]

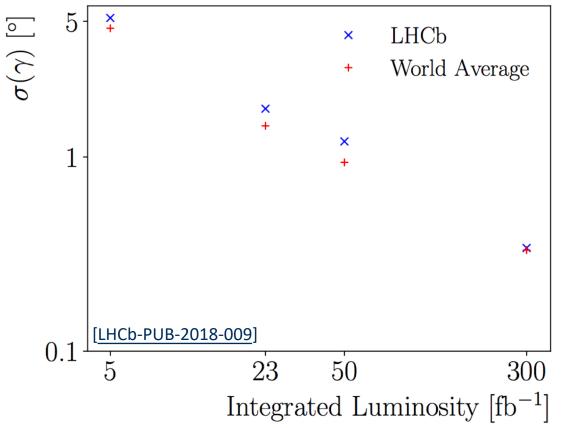


All ADS/GLW analyses are statistically limited

Dominant systematic uncertainties expected to reduce with \sqrt{N}

- Detection asymmetries determined with calibration samples
- Physics backgrounds subject to dedicated studies with larger sample

LHCb has made the World's best single-experiment determination of γ


 $\gamma = 74.0^{+5.0}_{-5.8}^{\circ}$

LHCb will continue to play crucial role in determining γ for the foreseeable future [LHCb-TDR-12]

- $\sigma(\gamma) \simeq 4^{\circ}$ with 8 fb⁻¹ data (collected by 2018)
- $\sigma(\gamma) \simeq 1.5^{\circ}$ with 23 fb⁻¹ data (collected by 2023)
- $\sigma(\gamma) \simeq 0.9$ with 50 fb⁻¹ data (collected by 2029)
- $\sigma(\gamma) \simeq 0.35^{\circ}$ with 300 fb⁻¹ data (collected with proposed Upgrade II) [LHCb-PUB-2018-009]

Thank you!

Expected LHCb precision using *current decay modes* Expected world average assuming Belle II predictions

Backup Slides

GLW [PLB.243(91)483] / [PLB.265(91)172] D^0 decay to (quasi-)CP eigenstates: $\pi^+\pi^-/K^+K^-/\pi^+\pi^-\pi^0/K^+K^-\pi^0$, $\pi^+\pi^-\pi^+\pi^-/K_S^0\pi^0/K_S^0\phi/K_S^0\omega$

 Modes with neutrals hard for LHCb, but used by BaBar & Belle (II)

GGSZ [PRD.68(03)054018]

• *D*⁰ decay to multibody, self-conjugate states:

$$K_S^0 \pi^+ \pi^- / K_S^0 K^+ K^- / K_S^0 \pi^+ \pi^- \pi^0$$

ADS [PRD.63(01)036005] / [PRL.78(97)3257]

• D^0 decays to CF & DCS final states: $K^{\pm}\pi^{\mp}/K^{\pm}\pi^{\mp}\pi^0/K^{\pm}\pi^{\mp}\pi^+\pi^-$

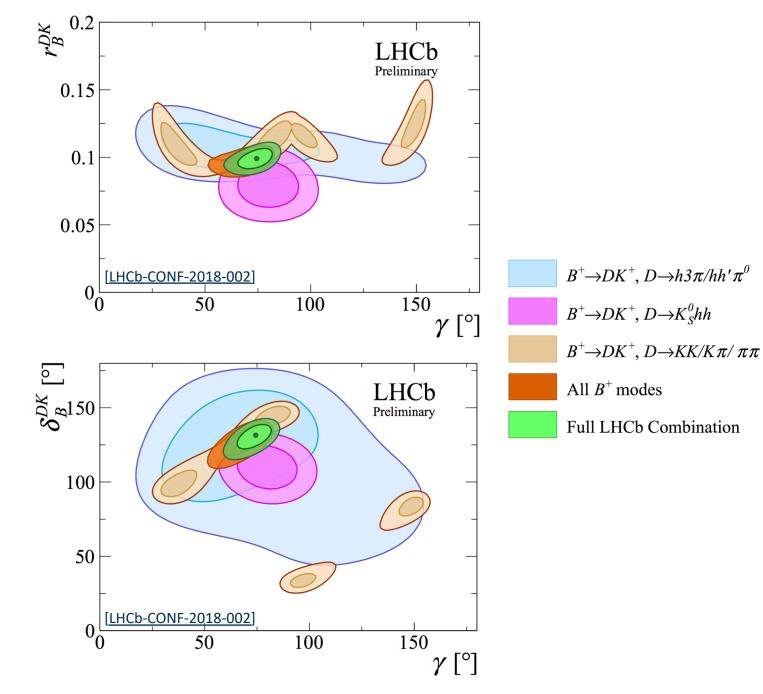
GLS [PRD.67(03)071301]

• D^0 decays to SCS non *CP* eigenstate: $K_S^0 K^{\pm} \pi^{\mp}$

Time dependent

- *CPV* from interference between mixing and decay
- LHCb has made measurements using $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ [JHEP.03(18)59] and $B^0 \rightarrow D^{\mp} \pi^{\pm}$ [JHEP.06(18)84] using 3 fb⁻¹ Run 1 data

		LHCb r	neasurements of	3 fb ⁻¹ Run 1 dataset ● Includes 2 fb ⁻¹ 15+16 data							
	B-decay mode	$B^+ \to DK^+$	$B^+ o D^* K^+$		$B^+ o DK_s^0 \pi^+$	$B^0 o DK^+\pi^-$		B^+ $ ightarrow DK^+\pi^+\pi^-$	$B^+ o D \ \pi^+$		
	D-decay mode		Part. reco.	Full reco.	DK^{*+} -res.	DK ^{*0} -res.	Dalitz-method				
GLW	h^+h^-	<u>PLB.777(18)16</u>	<u>PLB.777(18)16</u>		JHEP.17(17)156	PRD.90(14)112002 JHEP.08(19)41	PRD.93(16)112018	PRD.92(15)112005	<u>PLB.777(18)16</u>		
	$\pi^+\pi^-\pi^+\pi^-$	PLB.760(16)117			<u>JHEP.17(17)156</u>	JHEP.08(19)41			PLB.760(16)117		
	$h^+h^-\pi^0$	PRD.91(25)112014							PRD.91(25)112014		
ADS	$K^{\pm}\pi^{\mp}$	PLB.760(16)117			<u>JHEP.17(17)156</u>	PRD.90(14)112002 JHEP.08(19)41		PRD.92(15)112005	PLB.760(16)117		
	$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	PLB.760(16)117			<u>JHEP.17(17)156</u>	<u>JHEP.08(19)41</u>			PLB.760(16)117		
	$K^{\pm}\pi^{\mp}\pi^{0}$	PRD.91(25)112014							PRD.91(25)112014		
GGSZ	$K^0_S h^+ h^-$	<u>JHEP.10(14)97</u> JHEP.08(18)176				MD: <u>JHEP.08(16)137</u> MI: <u>JHEP.06(16)131</u>					
GLS	$K^0_S K^+ \pi^-$	<u>PLB.733(14)36</u>							<u>PLB.733(14)36</u>		
Time-dependent		Time dependent measurements with $B_s^0 \to D_s^{\pm} K^{\pm}$ [JHEP.03(18)59] and $B^0 \to D^{\pm} \pi^{\pm}$ [JHEP.06(18)84] decays									


* not all measurements are included in the LHCb combination. Only measurements that use the full Run 1 dataset, or Run 2 data are shown in the table.

Contributions from different *D* decays

Constraints from different **D decay modes**

- **GLW+ADS:** several narrow solutions
- **GGSZ:** single, broader solution

Serves as a **cross-check:** different methods expected to agree

