Lattice Spectroscopy (focus on exotics)

Sasa Prelovsek

Faculty of Mathematics and Physics, University of Ljubljana

Department of Theoretical Physics, Jozef Stefan Institute, Ljubljana

University of Regensburg

Beauty 2019, Ljubljana 30.9.2019

Sasa Prelovsek, Lattice Spectroscopy

Outline

Theoretical spectrum of hadrons containing b and c quarks (focus on lattice QCD results)

Hadrons

• Recently discovered/confirmed in experiment

excited Ω_c , $\overline{c}c$ with J = 3, P_c , $B_c(2S)$, Λ_b

• Long-standing challenges for theory

 $Z_c, Z_b, X(3872)$

• Predictions, yet undiscovered

 $bb\overline{q}\overline{q}$ ', highly excited $\overline{b}b$ and $\overline{c}c$, $\overline{b}Gb$ and $\overline{c}Gc$ hybrids, scalar B, beautiful baryons

A number of interesting experimentally discovered exotic states (for example Zc(4430)) will not be discussed – those are typically to challenging for ab-initio lattice treatment

Some recent reviews

The *XYZ* states: experimental and theoretical status and perspectives

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. Thomas, A. Vairo, C.-Z. Yuang 1907.07583, submitted to Physics Reports

The Belle II Physics book, Quarkonium(like) Physics (chapter 14)

N. Brambilla, B. Fulsom, C. Hanhart, Y. Kiyo, R. Mizuk, R. Mussa, A. Polosa, S. Prelovsek, C. P. Shen *1808.10567, Progress of Theoretical and Experimental Physics*

Multiquark Hadrons

A. Ali, L. Maiani, A. D. Polosa Cambridge University Press, 2019, doi:10.1017/9781316761465

Hadronic molecules

F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou *1705.00141, Rev. Mod. Phys. 90 (2018) 015004*

Pentaquark and Tetraquark states

Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu 1903.11976, Progress in Particle and Nuclear Physics 107 (2019) 237

The hidden-charm pentaquark and tetraquark states

H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu 1601.02092, Physics Reports 639 (2016) 1

Heavy-Quark QCD Exotica R. F. Lebed, R. E. Mitchell, E. S. Swanson 1610.04528, Progress in Particle and Nuclear Physics 93 (2017)

Multiquark Resonances A. Esposito, A. Pilloni, A.D. Polosa 1611.07920, Physics Reports 668 (2017) 1-97

Exotics: Heavy Pentaquarks and Tetraquarks

A. Ali, J. Lange, S. Stone 1706.00610, Progress in Particle and Nuclear Physics (2019) 237

Lattice QCD

$$L_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \sum_{q=u,d,s,c,b,t} \overline{q}i\gamma_\mu(\partial^\mu + ig_s G^\mu_a T^a)q - m_q\overline{q}q$$

input: g_s , m_q

Numerical evaluation of QFT Feynman path integrals on discretized Eucledian space-time

$$\int DG Dq D\overline{q} e^{-S_{QCD}/\hbar}$$

 $S_{QCD} = \int d^4x \, L_{QCD}[G(x), q(x), \overline{q}(x)]$

Extracted quantity: \mathbf{E}_{n} = energy of QCD eigenstate with given quantum numbers

$$E_1(p=0, J^P=0^-) = m_B$$

Hadrons that were recently discovered/confirmed in exp

plot taken from M. Padmanath, 1905.09651

 $P_c = \text{uud}\overline{c}c \rightarrow (\text{uud})(\overline{c}c): \text{p J/}\Psi,...$

$$\rightarrow$$
 (udc) ($\overline{c}u$): $\Sigma_c^+ \overline{D}^0,...$

Indications that $\Sigma_{c}^{+} D^{(*)}$ molecular component is important:

- **experiment** finds them slightly below those thresholds
- supported by **pheno. models** with ρ/ω exchange Karliner & Rosner. 1506.06386. PRL2015

these effective models at hadron level PREdicted (2010-2012) Pc slightly below $\Sigma_c^+ D$ and $\Sigma_c^+ D^*$ thresholds, with masses roughly compatible with exp [Wu, Molina, Oset, Zou, 1007.0573, PRL; Wu et al., 1202.1036. PRC, Yang et al, 1105.2901]

Chiral quark model incorporating ρ/ω exchange also support Pc below $\Sigma_c^+ \underline{D}$ [Wang et al, 1101.0453, PRC]

Some of those models predict other states that have not been experimentally confirmed (yet).

 J^{P} not determined from exp.

Expected J^P for molecule in s-wave:

 $\Sigma_{c}(\frac{1}{2}^{+})\overline{D}(0^{-}) \rightarrow J^{P} = \frac{1}{2}^{-}$ $\Sigma_c(\frac{1}{2}^+)\overline{D}^*(1^-) \rightarrow J^P = \frac{1}{2}^-, \frac{3}{2}^-$

Lattice QCD addressed simplified question:

Do Pc resonances appear in one-channel

$$p J/\psi \rightarrow P_c \rightarrow p J/\psi$$

scattering where it is decoupled from other channel?

Answer: No [Skerbis, S. P., 1811.02285, PRD 2019]

This indicates that coupling of p J/ ψ channel with other two-hadron channels is responsible for Pc in experiment (in line with LHCb result)

Sasa Prelovsek, Lattice study of Zb

[LHCb 2019,

PRL1

	New ex	xcited	Λ_b^{0}	bdu			
							J ^P (exp)
	$\sum_{b}^{*} region$	om	[LHCD, 19 $\Lambda_{\rm b}(6152)^0$	$\begin{array}{c} 1907.13598 \\ \hline \\ background \\ total \\ +++++++++ \\ +++++ \\ +++++ \\$		Λ _b ⁰ m=5619 MeV	1⁄2 +
8 MeV)			$ = \Lambda_{b}(6146)^{\circ} = $		PDG -	۸ _b ⁰ (5912)	1/2 -
ates/(3						۸ _b ⁰ (5920)	3/2 -
Candid						Λ _b ⁰ (6146)	?
-			$6.2 m(\Lambda_b^0 \pi^+ \pi^-) [\text{GeV}]$	۸ _b ⁰ (6152)	?		
Table taken from Chen et. al. 1406.6561, EPL 2015			Q Chen et al.	quark model predictionsChen et al.Ebert et al.Roberts & PervinCapstick & Isgur			
	$J^{P}(nL)$	Exp. [1]	This work	Ref. [9]	Ref. [50]	Ref. [51]	Masses of excit

• Quark models favor 3/2⁺ and 5/2⁺

• Masses of excited Λ_b^0 have not been determined by lattice QCD (to my knowledge).

Masses of excited A_c⁰ in lattice QCD preliminary: Padmanath et al. 2013
 [1311.4806, proc. CHARM2013]

• splittings between m(Λ_b^{0}) and m(Λ_c^{0}) differ in 1/m_Q contributions 11

		T, F T			
	$\frac{1}{2}^{+}(1S)$	5619.4	5619	5620	
	$\frac{1}{2}^{-}(1P)$	5912.0	5911	5930	
	$\frac{\bar{3}}{2}^{-}(1P)$	5919.8	5920	5942	
new Λ _b ikely have	$\frac{\tilde{3}}{2}^{+}(1D)$		6147	6190	
P=3/2+, 5/2+	$\frac{5}{2}^{+}(1D)$		6153	6196	
	$\frac{5}{2}^{-}(1F)$		6346	6408	
	$\frac{\bar{7}}{2}^{-}(1F)$		6351	6411	
	$\frac{\bar{7}}{2}^{+}(1G)$		6523	6598	
	$\frac{\bar{9}}{2}^{+}(1G)$		6526	6599	
	_				

Hadrons that are long-standing challenges for theory

10.75

10.7

RS data

Background

Model-0 Model-1 Model-2 Model-3

Consensus on the nature of Zc(3900) has not been achieved

- re-analysis of all experimental data is compatible with several scenaria resonance pole above th., bound state, virtual bound state, kinematical enhancement via triangular diagram
 [Pilloni et al, 1612.06490, PLB 2017]
- Lattice QCD :

extract scattering matrix for coupled channel scattering $~J/\psi~\pi~,~Dar{D}*$

[Ikeda et al., HALQCD, 1602.03465, PRL]

HALQCD method (which was not verified yet on any conventional resonance)

- $Z_c^*(3900)$ coupled-channel effect due to sizable J/ $\Psi \pi$ and DD* coupling, not genuine resonances (i.e. pole on the unphysical sheet above DD* th.)
- [Chen et al., CLQCD, 1907.03371]
- Luscher's method : no narrow resonance behavior found near DD* th.
- in line with previous lattice study that did not extract the scattering matrix [S.P. et al, 1401.7623, PRD 2015]

[Ikeda et al., HALQCD, 1602.03465, PRL]

χ_{c1}(2P) aka X(3872)

 \overline{CC} + $\overline{cq}\overline{q}c$

D*

D

Aim: look for poles in DD* scattering matrix

- Lattice QCD
- first evidence [S.P.,Leskovec, 1307.5172, PRL 2013]
- Fock components: [Padmanath, Lang, S.P., 1503.03257, PRD 2015]

crucial: $D\overline{D}^*$, $\overline{c}c$, less important: $(\overline{cq})(cq)$ no charged partner found up to m=4.2 GeV (in agreement with exp)

- pole for X found although
 <u>cc Fock component omitted, qq annihilation omitted</u>
 (in contrary: lattice studies find that <u>cc</u> is crucial for getting pole related to X)

> exp indication that X is not completely molecular:

ideal combination of I=0,1 (molecule) would lead to completely dominant rate to J/ Ψ ρ (since J/ Ψ ω is 7 MeV above and ω is very narrow), while exp rates are comparable

$$\overline{c}c: (I = 0)$$

molecule: $(I = 0) + (I = 1)$
 $X \rightarrow J/\psi \ \omega, J/\psi \ \rho$

mass not accurate enough to determine whether it is a bound state below th.

Theoretical predictions of yet undiscovered hadrons

S. Ryan & D. Wilson, Hadron Spectrum Coll, private communication details in Lattice2019 talk (to appear)

lattice QCD: m_π≈400 MeV relativistic b-quark: main challenge a m_h errors

states above BB threshold treated as strongly stable $2M_B - M_n \approx 1.2 \text{ GeV}$ most of states below B B experimentally discovered

previous lattice results on excited <u>b</u>b spectrum [Wurtz, Lewis, Woloshyn, 1505.04410, PRD]

EFT+lattice prediction of hybrids [Brambilla, Lai, Segovia, Castella, Vario, 1805.07713, PRD 2019]

Sasa Prelovsek, Lattice Spectroscopy charmonium and charmonium hybrids: see backup

18

lattice QCD, taking into account effects of BK^(*) threshold [C. Lang, D. Mohler, S.P., R. Woloshyn: 1501.0164, PLB2015]

Baryons with b and/or c

lattice QCD, omitting strong decays

[Brown, Detmold, Meinel, Orginos, 1409.0497]

Non-existence of strongly stable fully beautiful tetraquark

Lattice QCD: No indication for strongly stable state with J^{PC}=0⁺⁺, 1⁺⁺, 2⁺⁺

[Hughes, Eichten, Davies, HPQCD, 1710.03236, PRD 2018]

Lesson: all Wick contractions (expect for <u>b</u>b annihilation) need to be taken into account, otherwise false bound state emerges

Extracting scattering matrix from lattice

Resonance above one threshold

$$R \rightarrow H_1 H_2$$
 $T(E) \xleftarrow{} E_n$

Lattice simulation of one-channel scattering via Luscher's method: doable

Resonance above two or more thresholds

most of exotic hadrons are above more than one threshold, for example Zc(4430)

$$R \rightarrow H_1 H_2, \ H_1' H_2'$$

$$Channel a: \ H_1 H_2 \\ Channel b: \ H_1' H_2'$$

$$T(E) = \begin{bmatrix} a -> a & a -> b \\ T_{aa}(E) & T_{ab}(E) \\ T_{ab}(E) & T_{bb}(E) \\ b->a & b -> b \end{bmatrix}$$

Lattice simulation of coupled-channel scattering via Luscher's method: challenging

- several coupled channels studied in the light-quark sector (Hadron Spectrum collaboration)
- only simulations for hadrons with heavy quarks excited D mesons [Moir, Peardon, Ryan, Thomas, Wilson, 1607.07093, JHEP 2016]
 Z. ab annual task
 - Z_c channel [Chen et al., CLQCD, 1907.03371]

Conclusions

- Compliments to experimental colleagues for discovering a number of conventional and unconventional hadrons !
- Masses of ground and excited hadrons: lattice results and exp agree well
- Lattice QCD can extract scattering matrices for scattering of hadrons: their poles give information on resonances, bound states and virtual bound states
- Dyson-Schwinger approach has also started to look for poles in the scattering matrices
- predictions for many yet undiscovered hadrons
- look for strongly stable double-bottom tetraquarks if possible ... \overline{bbud} , \overline{bbus}
- understanding conventional and exotic states above several thresholds requires extraction of coupled-channel scattering matrices from lattice ...
 Challenging, but hopefully forthcoming

Backup

Excited charmonia, charmonium hybrids

Excited Ω_c^*							
CSS	TABLE I. Re The subscript f uncertainty is su mass is given s width is not sig	TABLE I. Results of the fit to $m(\Xi_c^+K^-)$ for the mass, width, yield, and significance for each resonance. The subscript fd indicates the feed-down contributions described in the text. For each fitted parameter, the first uncertainty is statistical and the second systematic. The asymmetric uncertainty on the $\Omega_c(X)^0$ arising from the Ξ_c^+ mass is given separately. Upper limits are also given for the resonances $\Omega_c(3050)^0$ and $\Omega_c(3119)^0$ for which the width is not significant.					
[LHCb 2017,	Resonance	Mass (MeV)	Г (MeV)	Yield	N _σ		
1703.04639, PRL 2017]	Γ $\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1 \substack{+0.3 \\ -0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$	20.4		
	$\Omega_c(3050)^0$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4		
5 resonance			<1.2 MeV, 95% C.L.				
poaks	$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.5}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$	$1/40 \pm 100 \pm 50$	23.9		
peaks	$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7 \pm 1.0 \pm 0.8$	$2000 \pm 140 \pm 130$	21.1		
discovered by LHC	b $\[\Omega_c(3119)^0 \]$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4		
,			<2.6 MeV, 95% C.L.				
	$\mathbf{\Omega}_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$			
	$\Omega_c(3066)^0_{\mathrm{fd}}$			$700\pm40\pm140$			
	$\Omega_c(3090)_{\rm fd}^0$			$220\pm60\pm90$			
	$\Omega_c(3119)_{\mathrm{fd}}^{0}$			$190\pm70\pm20$			

TABLE I. Yields of the six resonances, and comparison of the mass measurements to the LHCb values. In rows 4 and 5, the units are MeV/c^2 . None of the mass measurements include the uncertainty in the ground-state Ξ_c^+ which is common to both experiments.

[Belle 2017,

1711.07927, PRD (2018)]

Ω_c Excited state	3000	3050	3066	3090	3119	3188
Yield	37.7 ± 11.0	28.2 ± 7.7	81.7 ± 13.9	$\textbf{86.6} \pm \textbf{17.4}$	3.6 ± 6.9	135.2 ± 43.0
Significance	3.9σ	4.6 σ	7.2σ	5.7σ	0.4σ	2.4σ
LHCb mass Belle mass (with fixed Γ)	$\begin{array}{c} 3000.4 \pm 0.2 \pm 0.1 \\ 3000.7 \pm 1.0 \pm 0.2 \end{array}$	$\begin{array}{c} 3050.2\pm0.1\pm0.1\\ 3050.2\pm0.4\pm0.2 \end{array}$	$\begin{array}{c} 3065.5 \pm 0.1 \pm 0.3 \\ 3064.9 \pm 0.6 \pm 0.2 \end{array}$	$\begin{array}{c} 3090.2\pm0.3\pm0.5\\ 3089.3\pm1.2\pm0.2 \end{array}$	3119 ± 0.3 ± 0.9 	$\begin{array}{c} 3188\pm5\pm13\\ 3199\pm9\pm4 \end{array}$
	lowest 4 resonance peaks confirmed by Belle				n-observation of G	$\Omega_{\rm c}(3119)$ nt with LHCb

Charmonium resonances in DD from LHCb: first discovery of charmonium with J=3

Sasa Prelovsek, Lattice Spectroscopy

