Semi)_I @	ntonic)ecav
Scilli	,	prome	

Lei Zhang

Institute of High Energy Physics, Chinese Academy of Sciences

On behalf of the BESIII Collaboration

October 3, 2019, Ljubljana, Slovenia

中國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

・ 一 ・ ・ ・ ・ ・ ・

Outline

Introduction to **BESIII**

(Semi)-Leptonic Decay

Hadronic Decay

Summary

æ

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction to **BESIII**

(Semi)-Leptonic Decay

Hadronic Decay

Summary

æ

(日)

э

BESIII Experiment

BESIII Experiment

Beijing Electron Positron Collider II(BEPCII)

- Double ring e^+e^- collider
- $E_{cm}: 2 \sim 4.6$ GeV, operated since 2008
- Designed Luminosity : 10³³ cm⁻² s⁻¹ was achieved in April 2016!
- Beam crossing angle: 22 mrad

(Beijing Spectrometer III) BESIII

- Acceptance: 93% of 4π
- MDC: $\sigma_p/p = 0.5\%$ at 1 GeV
- EMC: $\sigma_E/E = 2.5\%$ at 1 GeV
- ToF: $\sigma = 80$ ps (110 ps) in barrel (endcap)

(日) (同) (日) (日) (日)

- 9 layer RPC Muon System
- Superconducting Solenoid: 1 T

Lei Zhang(IHEP)

Results about Charm Decays at BESI

Data Sets for Charm Decays

Introduction to **BESIII**

(Semi)-Leptonic Decay

Hadronic Decay

Summary

Lei Zhang(IHEP)

Results about Charm Decays at BESIII

æ

Motivation on $D_{(s)}$ (Semi)-Leptonic Decay

- Extract CKM matrix element and hadronic form facters (FFs) from measured branching fraction (BF):
 - Test unitarity of CKM matrix with $|V_{cd(cs)}|$ and search for new physics.
 - Test LQCD calculations of $f_{D_{(s)}}$ and FFs $f_+(q^2)/V(q^2), A_{1,2}(q^2)$.
- Test the lepton flavour universality (LFU).
- Help to understand the internal structure of light scalar mesons.

Double Tag Method

- Charged conjugated processes are implied in this report
- Double tag (DT) method is used for most analyses
- Advantages: independent of N_{DD̄}; identify ν through missing mass; low background; systematics associated with tag can be canceled in the ratio

$D^+ \rightarrow \tau^+ \nu_{\tau}$ (2.93 fb⁻¹ dataset @ E_{cm} = 3.773 GeV with DT method)

Submitted to PRL(arXiv:1908.08877)

Lei Zhang(IHEP)

10/27

$D_s^+ \rightarrow \mu^+ \nu_\mu$ (3.19 fb⁻¹ dataset $@E_{cm} = 4.178$ GeV with DT method)

Results about Charm Decays at BESI

$D^0 \rightarrow K^- \mu^+ \nu_\mu$ (2.93 fb⁻¹ dataset @ E_{cm} = 3.773 GeV with DT method)

Lei Zhang(IHEP)

Results about Charm Decays at BESI

12/27

$D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$ (3.19 fb⁻¹ dataset @ E_{cm} = 4.178 GeV with DT method)

• Simultaneous fit \Rightarrow Combined results:

$$\begin{split} \mathcal{B}(D_s^+ \to \eta e^+ \nu_e) &= (3.323 \pm 0.063 \pm 0.063)\% \\ \mathcal{B}(D_s^+ \to \eta' e^+ \nu_e) &= (0.824 \pm 0.073 \pm 0.027)\% \\ \mathcal{B}_{\text{CLEO}}(D_s^+ \to \eta e^+ \nu_e) &= (2.28 \pm 0.14 \pm 0.19)\% \\ \mathcal{B}_{\text{CLEO}}(D_s^+ \to \eta' e^+ \nu_e) &= (0.68 \pm 0.15 \pm 0.06)\% \end{split}$$

LCSR line from PRD88,03402(2013)

- 4 同 6 4 日 6 4 日 6

$$f_{+}^{D_{s}^{+} \to \eta}(0)|V_{cs}| = 0.4465 \pm 0.0051 \pm 0.0035$$
$$f_{+}^{D_{s}^{+} \to \eta'}(0)|V_{cs}| = 0.477 \pm 0.049 \pm 0.011$$

3

$D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$ (3.19 fb⁻¹ dataset @ E_{cm} = 4.178 GeV with DT method)

$$\Rightarrow \phi_P = (40.1 \pm 2.1 \pm 0.7)^\circ$$

(日) (同) (三) (三)

$D \rightarrow \pi \pi e \nu_e$ (2.93 fb⁻¹ dataset @ E_{cm} = 3.773 GeV with DT method)

$$f_{\omega} = (1.28 \pm 0.41 \pm 0.15)\%$$

 $r_V = V(0)/A_1(0) = 1.695 \pm 0.083 \pm 0.051$

 $r_2 = A_2(0)/A_1(0) = 0.845 \pm 0.056 \pm 0.039$

$D \rightarrow \pi \pi e \nu_e$ (2.93 fb⁻¹ dataset $\mathbb{Q}E_{cm}$ = 3.773 GeV with DT method)

Use $\mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e) \times \mathcal{B}(a_0(980)^0 \to \eta \pi^0) < 3.0 \times 10^{-4}$ from BESIII PRL121,081802(2018) and other inputs from PDG.

 $\Rightarrow R > 2.7$ @90%CL \Rightarrow Tetraquark favored for f_0 and a_0

$D_s^+ \rightarrow K^{(*)0} e^+ \nu_e$ (3.19 fb⁻¹ dataset @ E_{cm} = 4.178 GeV with DT method)

Use **BESIII** and **CLEO** measurement

	Values
$f_{+}^{D_s^+ \to K^0}(0)/f_{+}^{D^+ \to \pi^0}(0)$	$1.16 \pm 0.14 \pm 0.02$
$r_V^{D_s^+ \to K^{*0}}/r_V^{D^+ \to \rho^0}$	$1.13 \pm 0.26 \pm 0.11$
$r_2^{D_s^+ \to K^{*0}} / r_2^{D^+ \to \rho^0}$	$0.93 \pm 0.36 \pm 0.10$

• Agree with LQCD predictions and U-spin ($d \leftrightarrow s$) symmetry

• First FFs Measurement

Lei Zhang(IHEP)

(日) (同) (三) (三)

$D_s^+ \rightarrow \phi e^+ \nu_e$ (3.19 fb⁻¹ dataset @ E_{cm} = 4.178 GeV with DT method)

- ▶ PWA is performed to $D_s^+ \to K^+ K^- e^+ \nu_e$ with 604 events (~5% bkg).
- Data can be well described with $D_s^+ \to \phi e^+ \nu_e$.
- ▶ No signal is observed (< 3σ) from $f_0(980)$ or non-resonant K^+K^- S-wave.

ullet Measured Lorentz invariant FFs ratio at $q^2=0$ and absolute BF, compared with theoretical predictions.

	$r_V = V(0)/A_1(0)$	$r_2 = A_2(0)/A_1(0)$	$\mathcal{B}(D_s^+ \to \phi e^+ \nu_e)(\%)$
PDG2018	$1.80{\pm}0.08$	0.84±0.11	2.39 ± 0.16
this work	$1.79{\pm}0.19{\pm}0.06$	$0.77{\pm}0.15{\pm}0.07$	$2.35 \pm 0.10 \pm 0.10$
BESIII(@4.009GeV)[PRD97,012006(2018)]	-	-	$2.26 \pm 0.45 \pm 0.09$
BABAR [PRD78,051101(R)(2008)]	$1.807{\pm}0.046{\pm}0.065$	$0.816{\pm}0.036{\pm}0.030$	$2.61 \pm 0.03 \pm 0.08 \pm 0.15$
CLEO [PRD80,052009(2009)]	-	-	$2.36 \pm 0.23 \pm 0.13$
CLEO [PRD92,012009(2015)]	-	-	$2.14 \pm 0.17 \pm 0.08$
LQCD [PRD90,074506(2014)]	1.72 ± 0.21	0.74±0.12	-
CLFQM [EPJC77,587(2017)]	1.42	0.86	3.1 ± 0.3
CLFQM [PRD78,054002(2008)]	1.49	0.95	2.3
HQET [PRD72,034029(2005)]	1.80	0.52	2.4

$D_s^+ \rightarrow \phi e^+ \nu_e$ (3.19 fb⁻¹ dataset @ E_{cm} = 4.178 GeV with DT method)

Lei Zhang(IHEP)

19/27

$D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e$ (2.93 fb⁻¹ dataset @ E_{cm} = 3.773 GeV with DT method)

• $\bar{K}_1(1270)^0$ is reconstructed with $K^-\pi^+\pi^0$ final state

First observation of semileptonic D decays into axial-vector meson (> 10σ)

	$\mathcal{B}(D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e)$
This work	$(2.30 \pm 0.26 \pm 0.18 \pm 0.25) \times 10^{-3}$
$CLFQM[EPJC77,863(2017)](\theta_{K_1} = 33^\circ)$	$(3.20 \pm 0.40) \times 10^{-3}$
$LCSR[JPG46, 105006(2019)](\theta_{K_1} < 0)$	$(17\sim21)\times10^{-3}$

• θ_{K_1} is the mixing angle of two states $K_{1A}({}^1P_1)$ and $K_{1B}({}^3P_1)$

Lei Zhang(IHEP)

Introduction to **BESIII**

(Semi)-Leptonic Decay

Hadronic Decay

Summary

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

A 🕨

A theory model: Diagrammatic Approach

- Start from Chau and Cheng: PRL56,1655(1986),PRD36,137(1987)
- All decays can be described in terms of six different quark diagrams
- Each amplitude can be determined by experiment

$D_{*}^{+} \rightarrow p\bar{n}$ (3.19 fb⁻¹ dataset $\mathbb{Q}E_{cm}$ = 4.178 GeV with DT method)

- W-annihilation featured as short-distance is expected to be small: $\mathcal{B} \sim 10^{-6}$
- Long-distance can enhance to $\mathcal{B} \sim 10^{-3}$ [PLB663,326(2008)]
- First evidence was reported by CLEO with 13.0 ± 3.6 signal events:

 $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3} [\text{PRL100,181802(2008)}]$

First observation with 193 ± 17 signal events (> 10σ) $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.21 \pm 0.10 \pm 0.05) \times 10^{-3}$

- Short distance dynamics is not the driven mechanism
- Hadronization process driven by nonperturbative dynamics determines the underlying physics

Lei Zhang(IHEP)

24/27

$D_s^+ \rightarrow \omega \pi^+(K^+)$ (3.19 fb⁻¹ dataset $@E_{cm}=$ 4.178 GeV with DT method)

Q.Qin et al.[PRD89,054006(2014)] predicts: $\mathcal{B}(D_{a}^{+} \rightarrow \omega K^{+}) \sim 0.6 \times 10^{-3} (\mathcal{A}_{cn} \sim -0.6 \times 10^{-3}) (\rho - \omega \text{ mixing is neglected})$ $\mathcal{B}(D_s^+ \to \omega K^+) \sim 0.07 \times 10^{-3} (\mathcal{A}_{cp} \sim -2.3 \times 10^{-3}) (\rho \cdot \omega \text{ mixing is considered})$ First result from CLEO [PRD80,051102(R)(2009)]: $\mathcal{B}(D^+ \to \omega \pi^+) = (2.1 \pm 0.9 \pm 0.1) \times 10^{-3}$ PRD99,091101(R)(2019) $\mathcal{B}(D_{c}^{+} \rightarrow \omega K^{+}) < 2.4 \times 10^{-3}$ @90%CL 20 (b) Events/10 MeV/c² 40 - (a) Events/10 MeV/c 30 20 10 First observation (6.7σ) : $\mathcal{B}(D_{e}^{+} \rightarrow \omega \pi^{+}) = (1.77 \pm 0.32 \pm 0.13) \times 10^{-3}$ 0.8 0.9 0.8 0.9 06 06 07 First evidence (4.4σ) : $M_{\pi^{+}\pi^{-}\pi^{0}}$ (GeV/c²) M ### (GeV/c2) $\mathcal{B}(D_s^+ \to \omega K^+) = (0.87 \pm 0.24 \pm 0.08) \times 10^{-3}$ $\omega \pi(a,c)$ 15 [[] (d) $\omega K(\mathsf{b},\mathsf{d})$ (c) Events/2 MeV/c² Events/2 MeV/c² 20 According to Qin et al, implies: 10 $\mathcal{A}_{cp} \sim -0.6 \times 10^{-3}$ • $D^+_{a} \rightarrow \omega K^+$: a good decay to search for **CPV** 1.95 19 1.95 1.9 M_{sig} (GeV/c²) M_{sin} (GeV/c²)

$D_s^+ ightarrow \pi^+ \pi^0 \eta$ (3.19 fb $^{-1}$ dataset $@E_{cm}$ = 4.178 GeV with DT method)

$P D_s^+ \to \rho^+ \eta$ (External W emission) is domin
--

PWA with 1239 DT events (purity 97.7%) and BF: $\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \eta) = (9.50 \pm 0.28 \pm 0.41)\%$ $\mathcal{B}_{\text{CLEO}}(D_s^+ \to \pi^+ \pi^0 \eta) = (9.2 \pm 0.4 \pm 1.1)\%$

First observation of
$$D_s^+ \to a_0(980)\pi$$
:
 $\mathcal{B}(D_s^+ \to a_0(980)\pi, a_0(980) \to \pi\eta)$

 $= (1.46 \pm 0.15 \pm 0.23)\%$

Why is it so large(W-annihilation decays?)?

Attract attention from theorists quickly: Y.K. Hsiao et al [arXiv:1909.07327]: a₀ (980) as tetraquark Raquel Molina et al [arXiv:1908.11557]: a₀ (980) as molecular state

	PRL123,112	2001(2019)
Amplitude	ϕ_n (rad)	FF _n
$ \begin{array}{c} D_s^+ \rightarrow \rho^+ \eta \\ D_s^+ \rightarrow (\pi^+ \pi^0)_V \eta \\ D_s^+ \rightarrow a_0(980)\pi \end{array} $	0.0 (fixed) 0.612±0.172±0.34 2.794±0.087±0.04	$\begin{array}{r} 0.783 \pm 0.050 \pm 0.021 \\ 2 & 0.054 \pm 0.021 \pm 0.025 \\ 4 & 0.232 \pm 0.023 \pm 0.033 \end{array}$
3 2 W ² ₁ (GeA ₃ C ₄)	(a) 2 3 0	(b)
⁵⁰ ⁶⁰ ⁶⁰ ⁶⁰ ⁶⁰ ⁶⁰ ⁶⁰ ⁶⁰ ⁶	(GeV ² /c ³) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	M _{mp0} (GeV/c ²)
Exercised of the formation of the format	(e) (b) 20 (c) 20 (c) 10 (c) 20 (c) 20 (

M_{a^en} (GeV/c²)

Introduction to **BESIII**

(Semi)-Leptonic Decay

Hadronic Decay

Summary

æ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Summary and Outlook

- In this report, some recent results about D_(s) decays are discussed. Thanks to the largest data samples produced at threshold, in a very clean environment, BESIII has a leading role as follow:
 - Precise measurement of decay constants, FFs and CKM elements ⇒ precision improved much, up to less than 1% (f^{D→K}₊(0)|V_{cs}))
 - LFU test \Rightarrow No evidence of violation found in charm sector at 1.5% precision level
 - PWA with high purity \Rightarrow provide necessary information for dynamic study
 - Study the nature of light scalar mesons in semileptonic decay \Rightarrow tetraquark description favored for f_0 and a_0 , the mixing angle information for η - η' and $K_1(1270)$
- Many analyses about $D_{(s)}$ decays are in process.
- BESIII will take more data at threshold in the future, more results are expected!

Thank you!

- 4 回 > - 4 回 > - 4 回 >