BEAUTY 2019

18th INTERNATIONAL CONFERENCE ON B-PHYSICS AT FRONTIER MACHIES

Ljubljana, Slovenia, September 30-October 4, 2019

Heavy flavour production at LHCb

Marcello Rotondo

Laboratori Nazionali di Frascati

On behalf of the LHCb collaboration

BEAUTY 2019

M. Rotondo

Heavy flavour production

 Cross-section of heavy-flavour hadrons measurements in various environments and experimental setup

- Studies of heavy hadron properties at production
 - Particle-antiparticle asymmetry
 - Hadron polarization
 - Fragmentation fractions

- Provide powerful QCD test
- Needed for tuning of event generators
 - Crucial ingredients for searches and measurements of rare or new processes
 - Crucial for precise measurements of b-hadron decay properties
- Measurement of CP violation observables
- Amplitude analysis of heavy hadron decays
- Branching fractions often measured as ratio with decay modes of B^{+/0} mesons accurately known from B-Factory measurements

BEAUTY 2019

M. Rotondo

Heavy flavor production with LHCb

- LHCb geometrical acceptance allows to perform unique measurements in the forward region
 - Complementary to ATLAS/CMS and Alice

- Complementary collision data at LHC: pPb, and PpPb at different √s_{NN}
- Fixed-target mode with data taken with SMOG: injecting He, Ne, Ar in the interaction point

Many results on charm and beauty production in heavy ion is <u>not covered here</u>

 Key detector systems: Vertex reconstruction, dedicated particle identification systems (µ and charged hadrons)

Integrated Recorded Luminosity (1/fb)

Outline

- Heavy Quarkonium in pp
 - Production of $\psi(2S)$ at 7 and 13 TeV NEW
 - Production of $\eta_c(1S)$ NEW
- Open charm and beauty in pp
 - Λ_{b} and B_{s} production fractions at 13 TeV
 - B_c production fraction at 7 and 13 TeV
 - $\Xi_{\rm b}$ production fraction and asymmetry at 7, 8 and 13 TeV
 - Ξ_{cc} production rate at 13 TeV NEW
- Conclusions

Heavy Quarkonium production

- Two scales of production
 - Hard process for $Q\overline{Q}$ formation
 - Hadronisation of $Q\overline{Q}$ at softer scale
- Several models proposed to describe the underlying dynamics
 - Color-Singlet Model (CS)
 - Non-relativistic QCD (NRQCD)

$$d\sigma(pp \to H + X) = \sum_{n} d\sigma(pp \to Q\overline{Q}_n + X) \times \langle \mathcal{O}_n^H \rangle$$

QQ production: short distance, perturbative cross sections and PDFs

Hadron production: long distance matrix elements, non-perturbative part

Production of $\psi(2S)$ at 7 and 13 TeV

- Study separately prompt production (pp collision vertex) and production in b-decays
 - From simultaneous fit to m(µ⁺µ⁻) and pseudo-lifetime distribution

BEAUTY 2019

M. Rotondo

arXiv:1908.03099 √s = 7, 13 TeV ∫Ldt ~ 614, 275 pb⁻¹

 $t_z = \frac{\left(z_{\psi(2S)} - z_{\rm PV}\right) \times M_{\psi(2S)}}{p_z}$

Production of $\psi(2S)$ at 7 and 13 TeV

• Differential cross section

 New measurement at 7 TeV supersedes earlier result based on smaller event sample

arXiv:1908.03099

- Studied also ratios of cross-sections
- Ratio between ψ(2S) and J/ψ production cross-sections
- Ratio between the ψ(2S) productions at 13 and 7 TeV
 - Overall good description of both ratios

- Overall good agreement with predictions
- Deviation at low p_τ for prompt ψ(2S): important to extend theory predictions to low p_τ

Production of $\eta_c(1S)$

- Update of the analysis of the first prompt η_c(1S)→pp production measurement at 7 and 8 TeV: LHCb EPJC75(2015) 311
- Measurement relative to $J/\psi \rightarrow p\overline{p}$ to cancel uncertainties

PAPER-2019-024 √s = 13 TeV ∫Ldt ~ 2 fb⁻¹

- Prompt and from b-hadron decays are separated cutting on t_z
- Strategy used also at 7 and 8 TeV

Both techniques yield consistent results

 Yields extracted directly from a fit to t_z

Production of $\eta_c(1S)$

• First measurement of $\eta_c(1S)$ production measurement at 13 TeV

- With present statistics no energy dependence on $\sigma(\eta_c)/\sigma(J/\psi)$ has been observed
- Inclusive production in b-decays consistent with previous results

$$\mathcal{B}_{b \to \eta_c X} = (5.51 \pm 0.32 \pm 0.29 \pm 0.77) \times 10^{-3}$$

 $(\sigma_{\eta_c})_{13 \text{ TeV}}^{6.5 \text{ GeV} < p_T < 14.0 \text{ GeV}, 2.0 < y < 4.5}$

= $1.26 \pm 0.11 \pm 0.08 \pm 0.14 \,\mu b$

 Result consistent with CS model prediction (Feng et al. NPB 945 (2019) 114662)

$$\sigma_{\eta_c} = 1.56^{+0.83}_{-0.49}{}^{+0.38}_{-0.17}$$

Production of open beauty & charm

• The b-hadron production cross section can be expressed as a convolution of $d\sigma(pp \rightarrow b\overline{b})$ and the b hadron fragmentation function $D_{b \rightarrow B}(x)$

$$\frac{d\sigma^{B}}{dp_{T}^{B}} = \int dp_{T}^{b} dx \underbrace{\frac{d\sigma^{pp \to b\bar{b}}}{dp_{T}^{b}}}_{Parturbative:} \mathcal{D}_{b \to B}(x) \delta(p_{T} - xp_{T}^{b})$$
Perturbative:
Can be computed
Non-perturbative:
not known from first principles

• The relative b-hadron production in bins of B meson kinematics allows us to experimentally probe the shape of the b quark fragmentation functions

The probabilities for a b quark to hadronise in a specific hadron H_b are essential to determine absolute branching fractions of H_b

$$f_{H_b} = Prob(b \to H_b)$$

Relative Λ_{b} and B_{s} production at 13 TeV

- Measure $f_s/(f_u + f_d)$ and $f_{\Lambda b}/(f_u + f_d)$ with semileptonic decays
- All b hadron species have almost the same semileptonic widths $\Gamma_{\rm SL}$

 $\Gamma_{SL}(B_s) = \Gamma_{SL}(B)[1 - (1.0 \pm 0.5)\%]$ $\Gamma_{SL}(\Lambda_b) = \Gamma_{SL}(B)[1 + (3.0 \pm 1.5)\%]$

Bigi, Mannel, Uraltsev JHEP09(2011)012

PRD 100 (2019) 031102

∫Ldt ~ 1.67 fb⁻¹

√s = 13 TeV

- Better control of the theoretical uncertainties than using hadronic decays: $B_s \to J/\psi \varphi \:/\: B \to J/\psi \: K^{(^*)}$
- Analysis in bins of b-hadron p_{τ} and $\eta,$ restricted to the region
 - 4 < p_T < 25 GeV
 Update of the previous measurement at 7TeV

- 2 < η < 5

at 7TeV **LHCb PRD 85(2012)032008** (different 0 < p_T < 25 GeV)

- η computed from the flight direction
- Neutrino missing: hadron $p_T(H_b)$ obtained applying a correction to the reconstructed $p_T(H_c\mu)$ as a function of $m(H_c\mu)$ determined from simulation

M. Rotondo

Relative Λ_{b} and B_{s} production at 13 TeV

- Reconstructed charm hadrons (D⁰→Kπ, D⁺→Kππ, D_s→KKπ, Λ_c→pKπ) are combined with muons
 - B_s decay mainly in $D_s X$ but can also give $D^0 K$, $D^+ K$
 - $\Lambda_{\rm b}$ decay mainly in $\Lambda_{\rm c} X$ but can also give D⁰p, D⁺n

$H_b \to H_c \mu \nu_\mu X$	Yields (10^6)
D^0	13.775
D^+	4.283
D_s^+	0.845
Λ_c^+	1.753

PRD 100 (2019) 031102

- Resonant and non-resonant $B_s \rightarrow (D^0K) \mu v$ and $\Lambda_b \rightarrow (D^0p) \mu v$ from simultaneous fit to mass distributions and vertex likelihood difference $\chi^2(D^0\mu h) - \chi^2(D^0\mu)$
- Clearly peaks due to D_{s1} and D_{s1}* and Λ_c excited states
- Large component of non-resonant contribution

Relative $\Lambda_{\rm b}$ and $B_{\rm s}$ production at 13 TeV

$$\frac{f_s}{f_u + f_d} = \frac{n_{\text{corr}}(\overline{B}^0_s \to D\mu^-)}{n_{\text{corr}}(B \to D^0\mu^-) + n_{\text{corr}}(B \to D^+\mu^-)} \frac{\tau_{B^-} + \tau_{\overline{B}^0}}{2\tau_{\overline{B}^0_s}} (1 - \xi_s) + 4$$
Theory corrections

$$\frac{f_{A_b^0}}{f_u + f_d} = \frac{\left(n_{\rm corr}(A_b^0 \to H_c \mu^-)\right)}{n_{\rm corr}(B \to D^0 \mu^-) + n_{\rm corr}(B \to D^+ \mu^-)} \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{A_b^0}} (1 - \xi_{A_b^0})$$

• Summing over \boldsymbol{p}_{T} and $\boldsymbol{\eta}$

$$\frac{f_s}{f_u + f_d} = 0.122(6) \ \boldsymbol{\sigma}_{\text{tot}} = 4.9\% \qquad \frac{f_{\Lambda_b^0}}{f_u + f_d} = 0.259(18) \ \boldsymbol{\sigma}_{\text{tot}} = 6.9\%$$

- Correction on $f_u + f_d$ (B \rightarrow Dµ) due to cross feed from B \rightarrow D_sKµvX
- $\begin{array}{l} f_{s}: \mbox{ efficiency and BF corrected} \\ \mbox{ yields of } D_{s}X \mbox{ and DK} \\ f_{\Lambda b}: \mbox{ efficiency and BF corrected} \\ \mbox{ yields of } \Lambda_{c}X \mbox{ and Dp,n} \end{array}$

- Largest uncertainties are BFs for
 - $D_s \rightarrow KK\pi$: 3.3%
 - $\Lambda_c \rightarrow pK\pi$: 5.3%
- Production rate for both B_s and Λ_b
 - $p_T(H_b)$ dependence
 - No η dependence

PRD 100 (2019) 031102

B_c production fraction

- With a similar approach used to extract $f_{s,\Lambda b} / (f_d + f_u)$
- Using semileptonic $B_c \rightarrow J/\psi \mu \nu$ decays

BEAUTY 2019

 $\frac{f_c}{f_u + f_d} \equiv \frac{n_{\rm cor}(B_c^- \to J/\psi\,\mu^-\overline{\nu})}{n_{\rm cor}(B \to D^0 X \mu^-\overline{\nu}) + n_{\rm cor}(B \to D^+ X \mu^-\overline{\nu})} \frac{\langle \mathcal{B}_{\rm sl} \rangle}{\mathcal{B}(B_c^- \to J/\psi\,\mu^-\overline{\nu})}$ - 4.5 < p_τ < 25 GeV</p> Need inputs from theory: large discrepancies between models JUMH - 2.5 < η < 4.5 p⊥ Signal yields extracted fitting $m_{\rm cor} \equiv \sqrt{m_{H_c\mu}^2 + p_{\perp}^2 + p_{\perp}}$ SV **PV** [GeV] 1400 [GeV 350 LHCb preliminary LHCb preliminary 1200 300 E **Potential** 13TeV 7TeV 0.1Candidates / 0.1 1000 background from 250 E $B_c \rightarrow J/\psi \mu \nu$ $B_c \rightarrow \psi(2S) \mu v$ Candidates 800 200 E $B_c \rightarrow J/\psi \tau v$ found to be 150 600 $B_c \rightarrow \chi_{c0,1,2} \mu \nu$ negligible 400 100 Combinatorial 200 50 10 10 6 9 7 8 9 7 8 5 6 5 m_{cor} [GeV] m_{cor} [GeV]

PAPER-2019-033

√s = 7, 13 TeV

Two heavy quarks: $\Gamma_{SI}(B_c) \neq \Gamma_{SI}(B)$

∫Ldt ~ 1, 1.6 fb-1

NEV

B_c production fraction

PAPER-2019-033

$$\frac{f_c}{f_u + f_d} \cdot \mathcal{B}(B_c^- \to J/\psi \,\mu^- \overline{\nu}) = (7.07 \pm 0.15 \pm 0.24) \cdot 10^{-5} \text{ for } 7 \,\text{TeV},$$
$$\frac{f_c}{f_u + f_d} \cdot \mathcal{B}(B_c^- \to J/\psi \,\mu^- \overline{\nu}) = (7.36 \pm 0.08 \pm 0.30) \cdot 10^{-5} \text{ for } 13 \,\text{TeV}.$$

• Assuming $BF(B_c \rightarrow J/\psi \mu v) = (1.95 \pm 0.46)\%$, where the uncertainty reflects the spread in the calculations

$$\frac{f_c}{f_u + f_d} = (3.63 \pm 0.08 \pm 0.12 \pm 0.86) \ 10^{-3} \text{ for 7 TeV},$$
$$\frac{f_c}{f_u + f_d} = (3.78 \pm 0.04 \pm 0.15 \pm 0.89) \cdot 10^{-3} \text{ for 13 TeV},$$

- Measurement of the form factors and precise lattice calculations would pin down the error on $f_c / (f_d + f_u)$
- The slope of the ${\rm p_T}$ dependence is similar to the one measured for the ${\rm B_s}$
- $f_{c}(13)/f_{c}(7){=}1.02\pm0.02\pm0.04{:}$ no increase of B_{c} fraction with \sqrt{s}

$\Xi_{\rm b}$ production fraction

- Decay chain: $\Xi_b^{-} \to J/\psi \Xi^{-}$, $\Xi^{-} \to \Lambda \pi^{-}$
- Production rate measured as ratio to kinematically similar decay $\Lambda_{_{b}} \rightarrow J/\psi \Lambda$

3/2 in SU(3) flavour symmetry

 $R = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda)} = \begin{bmatrix} f_{\Xi_b^-} \\ f_{\Lambda_b^0} \end{bmatrix} \frac{\Gamma(\Xi_b^- \to J/\psi\Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda)} \frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}}$ $\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \text{ TeV}]$ SU(3) flavor symmetry (30%)

 $\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (8.2 \pm 0.7 \pm 0.6 \pm \underline{2.5}) \times 10^{-2} \quad [\sqrt{s} = 13 \text{ TeV}].$

Predictions:

Measured

efficiencies

Ratio of the yields

Corrected for the

 $f_{\Xi_b^0}/f_{\Lambda_b^0} = 0.065 \pm 0.020$ Wang, EPJC 79 5 (2019) 429 $f_{\Xi_b^0}/f_{\Lambda_b^0} = 0.050 \pm 0.020$ Jiang, Yu EPJC 78, (2018) 224

- 2 < η < 6

- First measurement of $\Xi_{\rm b}$ production
- Also first measured of the $\Xi_{\rm b}\,$ production asymmetry
- Precise determination of the $\Xi_{\rm b}$ mass

Summary

- Many results in Heavy Flavour production from LHCb
 - Only most recent reported here
- Great progress in the theory/experiment agreements, but still many inconsistencies remain
 - Efforts needed in both theory and experiment to establish a consistent model for Heavy Flavour production
- These measurements provide crucial inputs for tuning of MC needed for precise measurements in LHC
- Many other results in the pipeline: stay tuned!

Thanks !

BACKUP

Heavy flavour production at LHC

BEAUTY 2019

M. Rotondo

$B_c \rightarrow J/\psi \mu v$ branching fraction predictions

Ref.\Mode	$J/\psi \mu^- \overline{ u}$	$\eta_c \mu^- \overline{\nu}$	$\psi(2S)\mu^-\overline{\nu}$	$\left(\sum_{i=1}^{3} \chi_{c_i}\right) \mu^- \overline{\nu}$	$h_c \mu^- \nu$	$\mathcal{B}_{\mathcal{SL}}$ of B_c^-
Rui et al. EPJC76(2016) 564	6.4	5.0	1.3			13.6
Ebert et al. PRD82(2010) 034019				0.5		
Ebert et al. PRD68(2003) 094020	1.4	0.5				2.9
Qiao et al. PRD87(2013) 014009	7.5	2.4				10.9
Chang et al. CPMA58(2015) 071001	1.9	0.6	0.1			3.5
Ivanov et al. PRD73(2006) 054024	2.3	0.9		0.8		4.2
Huang, Zao, EPJC51(2007) 833	2.7	1.8				5.5
Wang et al. PRD79(2009) 054012	1.6	0.8				3.4
Hernandez et al. PRD74(2006) 074008	1.7	0.5		0.6		3.3
Colangelo et al. PRD61(2000)034012	1.7	0.2				2.9
Gouz et al. PAN67(2004) 1559	1.9	0.8	0.1			3.7
Abd El-Hady et al. PRD62(2000)014019	2.3	0.9				4.2
Kiselev, hep-ph/0211021	2.2	0.8	0.1			4.0
Chang, Chen PRD49(1994)3399	2.6		0.1	1.1		4.2
Ivaniv et al PRD63(2001)074010	2.5	1.1				4.6
Scora, Isgur PRD52(1995)2783	1.3	0.8	0.2			3.1
Yu. Anisimov et al. PAN62(1999)1739	1.4	0.7				3.1
Wang, Zhu, ArXiv: 1808.10830	1.5	0.7		0.5	0.3	3.2
Geng et al. ArXiv: 1809.02968	1.9	0.6	0.1	0.3	0.31	3.5
Leljak et al. Arxiv: 1901.08368	2.2	0.8				4.0

Heavy flavour in pN collisions

- Beauty production in pPb collision PRD 99 (2019) 052011
 - Differential cross section B⁰, B⁺. Λ_{b} hadrons in p_{T} and y
 - Small nuclear effects, in agreement with predictions
- Prompt Λ_c in pPb JHEP 02 (2019) 102
 - Forward-backward: in agreement with predictions
 - Λ_c/D^0 ratio: lower than predicted in the forward direction and pT> 7 GeV
- Y(nS) production in pPb collisions JHEP 11 (2018) 194
 - Suppression of n>1 states, in agreement with predictions and previous measurements
 - Stronger suppression at low p_T
- J/Ψ and D⁰ in pAr and pHe (gas) **PRL 122 (2019) 132002**
 - First measurement of charm in fixed-target mode
 - Data agree with predictions without intrinsic valence-like charm contribution