

Flavor at low and high p_T

Jernej F. Kamenik

Ljubljana 3/10/2019

Outline

Flavor & high p_T physics interplay in several ways

- Complementary constraints on NP models from low energy precision observables vs. high p_T searches
- Nontrivial flavor structure affects collider signatures & reach
- Anomalies in B/D/K physics motivate NP searches at high p_T

Flavor bounds on NP vs. LHC reach

Flavor bounds on NP vs. LHC reach

SM as EFT: $\mathcal{L}_{\text{BSM}} \to \mathcal{L}_{\nu\text{SM}} + \sum_{i,(d>4)} \frac{\mathcal{Q}_i^{(d)}}{\Lambda^{d-4}}$

Flavor bounds on NP vs. LHC reach

LHC bad dream scenario: (mini)split SUSY

LHC bad dream scenario: (mini)split SUSY

30 NP thresholds neutron Kaon W. Altmannshofer et al. EDM m ixin g 1308.3653 beyond direct reach 10 Now $\tan \beta$ EDM electron] charm Flavor (& CPV) m ixin g 30 neutron electron EDM EDM powerful probes of 10 PeV sfermions Kaon ~2025 $an\beta$ mixing charm mixing Significant 10^{2} 10^{5} 10 10^{3} 10^{4} $m_{\tilde{q}} = m_{\tilde{i}} = |\mu|$ (TeV) improvements (+generic FV) **MEG upgrade** Mu3e Mu2e expected in next LHCb 25fb⁻¹ decade

 $|m_{\tilde{B}}| = |m_{\tilde{W}}| = 3 \text{ TeV}, \ |m_{\tilde{e}}| = 10 \text{ TeV}$

Flavor & high-p₇ as complementary NP probes

Flavor safe NP? Flavor already broken in SM (Higgs).

$$\mathcal{H}_{mat} = \underbrace{\frac{c_{RL}^{IJ}}{\Lambda^n} H^{\dagger} \bar{D}^I Q^J \times X}_{A^n} + \frac{c_{LR}^{IJ}}{\Lambda^n} H \bar{Q}^I D^J \times X}_{A^n} + \underbrace{\frac{c_{RL}^{IJ}}{\Lambda^n} \bar{Q}^I Q^J \times X}_{A^n} + \underbrace{\frac{c_{RR}^{IJ}}{\Lambda^n} \bar{D}^I D^J \times X}_{A^n} + \underbrace{\frac{c_{RR}^{IJ}}{\Lambda^n} + \underbrace{\frac{c_{RR$$

Any (additional) scalar coupling to SM fermions introduces additional breaking (can be aligned with Higgs)

New (massive) vectors coupling to SM fermionic currents can preserve flavor

 \Rightarrow FCNCs loop & GIM suppressed (as in SM)

see e.g. J.F.K. & C. Smith 1111.6402

$$c^{IJ} \to (g/(4\pi))^2 V_{tI}^* V_{tJ} \times c^{33}$$

D'Ambrosio et al. hep-ph/0207036

Flavor & high- p_T as complementary NP probes

Example: simplified DM models with (pseudo)scalar mediators

$$\mathcal{L}_{\rm DM} = i \, g_{\chi} \, A \, \bar{\chi} \gamma^5 \chi \, + \sum_{f=q,\ell,\nu} i \, g_f \, A \, \bar{f} \gamma^5 f$$

- Direct DM detection suppressed
- SM Yukawa-like couplings: $g_f = \sqrt{2} g_Y m_f / v$
- No missing E_T signals for $m_{\chi} > m_A/2$

Flavor & high- p_T as complementary NP probes

Example: simplified DM models with (pseudo)scalar mediators

Flavor probes of the Higgs sector

generation of masses in SM through Higgs mechanism

 \Rightarrow Higgs has hierarchical couplings to fermions

$$y_f^{\rm SM} = \sqrt{2}m_f/v$$

How well have we tested this? A. Dery et al., 1302.3229

- proportionality
- factor of proportionality
- diagonality
- CP nature:

Many proposals

1306.5770, 1406.1722, 1503.04830, 1505.03870, 1505.06689, 1507.02916, 1606.09621, 1611.05463 ...

Flavor anomalies motivate high- p_T searches

Semileptonic B anomalies: LFU in charged currents

Intriguing exp. situation: O(3σ) combined tension with SM ~20% (upwards) deviation! see also talk by Kitahara

Flavor anomalies motivate high- p_T searches

Semileptonic B anomalies: neutral currents

see talks by Langenbruch, Watanuki

at O(2.5o), 20% (downwards) deviation!

$$R_{\rm K} = \frac{\int d\Gamma[B^+ \to K^+ \mu^+ \mu^-]/dq^2 \cdot dq^2}{\int d\Gamma[B^+ \to K^+ e^+ e^-]/dq^2 \cdot dq^2}$$

Flavor anomalies motivate high- p_T searches

Semileptonic B anomalies: neutral currents

see talks by Langenbruch, Watanuki

Implications for high p_T: general considerations

B-anomalies in presence of (heavy) NP:

$$\mathcal{L}_{\text{BSM}} \to \mathcal{L}_{\nu\text{SM}} + \sum_{i,(d>4)} \frac{\mathcal{Q}_i^{(d)}}{\Lambda^{d-4}}$$

Deviations in flavor \Rightarrow indications of NP scale

$$[\text{scale}] = \frac{[\text{mass}]}{[\text{coupling}]}$$

Unitarity/Perturbativity

 \Rightarrow upper bound on coupling

Di Luzio & Nardecchia, 1706.01868

 \Rightarrow upper bound on NP d.o.f. mass

Implications for high p_T: general considerations

LFUV in $R(D^{(*)})$: $\Lambda \simeq 2.5 \,\text{TeV}$ e.g. $\mathcal{Q} = (\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma_{\mu}P_{L}\nu)$

 \Rightarrow tree-unitarity $M_{\rm NP} \lesssim 6.5 {\rm TeV}$

up to the edge of LHC kinematical reach

see e.g. Altmannshofer et al., 1704.06659 Iguro et al., 1810.05843

LFUV in $R_{K^{(*)}}$ (& other obs.) : $\Lambda \sim 40 \text{TeV}$

e.g. $\mathcal{Q} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\mu}\gamma^{\mu}P_{L}\mu)$

 \Rightarrow NP d.o.f.s accessible at LHC only if their couplings to bs and/or $\mu\mu$ suppressed!

Implications of LFUV for NP flavor breaking

NP needs to respect SM gauge symmetry

Si

 $\mathcal{Q}_i[Q, D, U, L, E]$

At EW scale: in terms of four-fermion operators

$$R_{K^{(*)}} \underbrace{\left(\begin{array}{c} \epsilon_{ij}^{L} \epsilon_{kl}^{Q}(\bar{L}_{i}L_{j})(\bar{Q}_{k}Q_{l}) \\ \epsilon_{ij}^{E} \epsilon_{kl}^{Q}(\bar{E}_{i}E_{j})(\bar{Q}_{k}Q_{l}) \end{array}}_{\epsilon_{ij}^{E} \epsilon_{kl}^{Q}(\bar{E}_{i}E_{j})(\bar{Q}_{k}Q_{l})} \underbrace{\left(\begin{array}{c} \epsilon_{ij}^{EL} \epsilon_{kl}^{QD}(\bar{E}_{i}H^{\dagger}L_{j})(\bar{Q}_{k}HD_{l}) \\ \epsilon_{ij}^{LE} \epsilon_{kl}^{QU}(\bar{L}_{i}HE_{j})(\bar{Q}_{k}\tilde{H}U_{l}) \end{array} \right)}_{\epsilon_{ij}^{E} \epsilon_{kl}^{E} \epsilon_{kl}^{QU}(\bar{L}_{i}HE_{j})(\bar{Q}_{k}\tilde{H}U_{l})} R(D^{(*)}) \\ R_{L} \\ R_{L}$$

Application of crossing - mono-tau production @ LHC

A. Greljo et al., 1811.07920

$$\sigma \sim \mathcal{L} \times \hat{\sigma}$$

★ heavy flavour pdf. suppression $\mathcal{L}_{ij} \propto \int f_i(x) f_j(\hat{s}/sx) dx$ ✓ compensated by high partonic energy $\hat{\sigma} \propto (\hat{s}/M^2)^2$

Application of crossing - mono-tau production @ LHC

Excludes W_R-v_R explanation, constrains some LQ scenarios

Implications of LFUV for NP flavor breaking

Absence of BSM LFUV, FCNCs in Kaon, Charm, Tau decays requires approximate alignment with the 3rd generation

Fajfer et al., 1206.1872 Bordone et al., 1702.07238

Immediate implications for LHC

Flavor alignment implies lower NP scale:

$$(\bar{Q}_3 Q_3)(\bar{L}_3 L_3) \to V_{cb}(\bar{c}b)(\bar{\tau}\nu)$$

 $\Rightarrow R(D^{(*)}) \text{ anomaly}$
 $\Lambda \sqrt{|V_{cb}|} \sim 500 \,\text{GeV}$

 $(\bar{Q}_3 Q_3)(\bar{L}_2 L_2) \rightarrow V_{tb} V_{ts}(\bar{s}b)(\bar{\mu}\mu)$ $\Rightarrow R_{K^{(*)}}$ anomaly $\Lambda \sqrt{|V_{ts}|} \sim 8 \,\text{TeV}$

Well within LHC reach!

Still only marginally!

Enhanced LFUV in top processes: LHC phenomenology: bb →

 $(\bar{Q}_3Q_3)(\bar{L}_3L_3) \to V_{cb}(\bar{c}b)(\bar{c}c) \to V_{cb}(\bar{c}c)(\bar{c}c) \to V_{cb}(\bar{c}c)(\bar{c}c$

Currently tested to O(10%)

 $\mathcal{B}_e = 13.3(4)(4)\%, \ \mathcal{B}_\mu = 13.4(3)(5)\%, \ \mathcal{B}_{\tau_h} = 7.0(3)(5)\%,$

ATLAS, 1506.05074

Enhanced LFUV in top processes:

$$(\bar{Q}_3Q_3)(\bar{L}_3L_3) \to V_{cb}(\bar{c}b)(\bar{\tau}\nu) + V_{tb}(\bar{t}b)(\bar{\tau}\nu)$$

Currently tested to O(10%)

 $\mathcal{B}_e = 13.3(4)(4)\%$, $\mathcal{B}_\mu = 13.4(3)(5)\%$, $\mathcal{B}_{\tau_h} = 7.0(3)(5)\%$,

ATLAS, 1506.05074

Weak gauge invariance \Rightarrow neutral currents

 $(\bar{Q}_3Q_3)(\bar{L}_3L_3) \to V_{cb}(\bar{c}b)(\bar{\tau}\nu) + V_{tb}(\bar{t}b)(\bar{\tau}\nu) + (\bar{b}b)(\bar{\tau}\tau)$

W'/Z' explanation only allowed if light (M < 400 GeV) or broad ($\Gamma/M > 20\%$)

Leptoquark, charged scalar explanations disfavored

Departures from strict $U(2)_F$ limit can ameliorate the bounds

see e.g. Buttazzo et al., 1706.07808 Importance of EW radiative corrections: B-anomalies without new quark flavor violation

Starting with flavor conserving non-universal operators:

 $(\bar{L}_2 L_2)(\bar{U}_3 U_3)$ $(\bar{E}_2 E_2)(\bar{U}_3 U_3)$

EW matching & RGE induce LFUV in rare FCNC B decays

Aebischer et al., 1512.02830 Faroughy et al., 1805.04917

see also Blanger, Delaunay, & Westhoff, 1507.06660 Bauer et al., 1511.01900 Becirevic & Sumensari, 1704.05835

Effective NP scale now loop-suppressed:

 $\frac{\sqrt{|V_{ts}|}}{4\pi} \sim 600 \,\mathrm{GeV}$

 \Rightarrow automatically respects 3rd gen. alignment

 \Rightarrow d.o.f.'s mediating R_K well within LHC kinematical reach

$R_{K^{(*)}}$ without new flavor violation: a UV completion

JFK, Soreq & Zupan, 1704.06005

VL quark partner of right-handed top (T),

- charged under gauged U(1)'(Z', h')
- T- t_R mix after U(1)' breaking induced U(1)' charge of t_R

(similar mechanism possible to induce muon U(1)' charge)

$R_{K^{(*)}}$ without new flavor violation: a UV completion

JFK, Soreq & Zupan, 1704.06005

VL quark partner of right-handed top (T),

- charged under gauged U(1)'(Z', h')
- T- t_R mix after U(1)' breaking induced U(1)' charge of t_R

(similar mechanism possible to induce muon U(1)' charge)

Flavor is powerful guide to high- p_T searches at LHC:

 In case new phenomena are discovered at LHC, flavor physics will allow to disentangle different possible interpretations and discriminate between different proposals and scenarios

Example: 125GeV Higgs)

 In case no new d.o.f.s are seen at LHC, precision tests of flavor, CP, B & L possibly best probes forward

⇒ their sensitivity in many cases already (far) exceeds energies/scales attainable in present and planned collider & cosmic ray experiments. Flavor is powerful guide to high- p_T searches at LHC:

 In case of significant signals of NP in flavor observables can identify prospective LHC experimental targets

Generally, NP d.o.f.'s accommodating tentative B-anomalies could be beyond LHC reach.

Phenomenological and model-building considerations point towards more optimistic scenarios

- Low energy constraints can point to lighter mediators!
- Example of fruitful interplay between NP searches at energy and intensity frontiers