

Imperial College London

 $b \rightarrow s \ell^+ \ell^-$

Angular analyses and studies with muons at LHCb

Felix Kress, on behalf of the LHCb collaboration

Beauty 2019

2nd of October 2019

Rare Decays of b hadrons: $b \rightarrow s \ell^+ \ell^-$

- Proceed via a flavour-changing neutral current transition
- Forbidden at tree level in the SM
- Can only occur at lowest order via electroweak penguin and box diagrams
- New Physics could already appear at tree level
- Sensitive to new particles at higher energy scales than direct searches

Effective theories for SM predictions

- The heavy physics contributions in $b \rightarrow s\ell^+\ell^-$ can be integrated out to give effective couplings, parameterised by Wilson coefficients (C_i)
- $b \rightarrow s \ell^+ \ell^-$ transitions are most sensitive to C₇, C₉ and C₁₀

Experimental status of $b ightarrow s \ell^+ \ell^-$

Three different types of measurements:

1.) Branching fractions: suffer from form factor and hadronic uncertainties

2.) Angular analysis: some observable's form factors cancel to first order however, vigorous debate about theory control of hadronic uncertainties

3.) Branching fraction ratios: theoretically pristine, all hadronic effects cancel (see Christoph Langenbruch's talk)

 R_K LHCb LHCb: 1.5 Phys. Rev. Lett. 122, 191801 (2019) 1.0 Belle: PRL103(2009)171801 BaBar BaBar: 0.5 Belle PRD86(2012)032012 LHCb Run 1 LHCb Run 1 + 2015 + 2016 0.0 15 20 5 10 0 q^{2} [GeV²/c⁴]

JHEP 06 (2014) 133

Felix Kress

Beauty 2019

Branching fractions: $b \rightarrow s \ell^+ \ell^-$

LHCb measurements tend to lie below the SM predictions for low q²

Imperial College

london

Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

- LHCD Imperial College London
- Angular distribution is a function of \mathbf{q}^2 , the invariant mass squared of the dimuon system and $\overrightarrow{\Omega} = (\cos(\theta_l), \cos(\theta_K), \phi)$

• In order to extract the angular observables a fit to the three angles, $m_{K\pi\mu\mu}$ and $m_{K\pi}$ is performed in bins of q²

Felix Kress

 $B^0 \to K^{*0} \mu^+ \mu^-$: Acceptance

- LHCD Imperial College
- Acceptance effects: Angular distribution is distorted due to detector effects, reconstruction and selection

$$\frac{\mathrm{d}^{4}\bar{\Gamma}[B^{0}\to K^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}\mathrm{d}\vec{\Omega}}(\mathrm{observed}) = \varepsilon \frac{\mathrm{d}^{4}\bar{\Gamma}[B^{0}\to K^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}\mathrm{d}\vec{\Omega}}(\mathrm{physical})$$

- Use simulation to model efficiency properly:
 - 1.) Simulation needs to model data correctly
 - 2.) Parameterise efficiency to implement in fit

$B^0 \to K^{*0} \mu^+ \mu^-$: Results

In general very good agreement with the Standard Model

 $B^0 \to K^{*0} \mu^+ \mu^-$: Results

LHCb: JHEP 02 (2016) 104 Atlas-Conf-2017-023 Belle: PRL 118 2017 CMS: PLB 781 (2018) 517541

Optimised observable: form factor uncertainties cancel to first order

$\operatorname{Re}(C_9)$ The best fit point is found to be 3.23, while the SM prediction is at 4.27

3.5

JHEP 02 (2016) 104

LHCb result:

• Local tensions of 2.8 σ and 3.0 σ observed in the 4th and 5th bin of P'₅ respectively

15

10

0L

Performing a global fit to all the angular observables results in a value of Re(C₉) of 3.23, which is 3.4σ from the Standard Model

SM

LHCb

4.5

$$B_s^0 \to \phi(\to K^+K^-)\mu^+\mu^-$$

LHCb London

11

- Equivalent process of $B^0 \to K^{*0} \mu^+ \mu^-$ for ${\rm B_s}^0$ mesons
- Not as powerful a channel because the process is not self tagging
- Angular observables are consistent with the Standard Model

 $ightarrow \Lambda \mu^+ \mu^-$

- $b\!
 ightarrow s\ell^+\ell^-$ transition in the baryon sector
- First full angular analysis performed by LHCb in August last year using 2011-2016 data corresponding to 5 fb⁻¹ of data
- Angular observables were determined using a method of moment analysis in the range 15 < q² < 20 GeV²/c⁴
- Results were found to be consistent with the Standard Model predictions

Felix Kress

Theoretical interpretation of $b \to s \ell^+ \ell^-$ London

$$H_{eff} \propto \sum_{i} \left(C_{i}^{SM} + C_{i}^{NP}
ight) \cdot O_{i}$$

- Wilson coefficients (C_i) are extracted from global fits to data
- Any deviations from SM calculations would point to New Physics effects

Hadronic uncertainties in angular observables of $b \rightarrow s \ell^+ \ell^-$ decays

Long distance SM effects or Short distance NP effects?

Felix Kress

Data driven measurements of short and long distance interference

- LHCb London
- Usually the charmonium resonances J/ψ and $\psi(2S)$ are removed from data
- However, the resonances could still contribute by interfering with the penguin decay
- If this happened destructively, it could explain the muon deficiency in the branching fraction measurements, as well as the P₅['] anomaly
- Can study interference by including the resonances

Unbinned q² fit for $B^+ \to K^+ \mu^+ \mu^-$

Resonances are modelled by Breit-Wigners with individual phases and widths

Felix Kress

Results of unbinned q² fit to $B^+ \rightarrow K^+ \mu^+ \mu^-$

LHCb Imperial College London

- Model fits data very well
- Four-fold ambiguity due to unknown sign of the J/ψ and $\psi(2S)$ phases
- The phases that are measured suggest a small contribution to the short-distance component in the dimuon mass regions far from J/ψ and $\psi(2S)$ masses, given the assumptions in the model

Felix Kress

Conclusion and Outlook

- $b \rightarrow s \ell^+ \ell^-$ decays hint at discrepancies with predictions of the SM
- Observations can be interpreted in a coherent way in New Physics models by introducing a new (axial-)vector particle
- It is extremely important to update experimental results such as the Angular Analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ in order to establish clarity
- Stay tuned for new results!

Backup

LHCb Data on tape and upgrades I & II

2018-2021	Run 3 (2021-2023)	2023-2025	Run 4 (2025-2028)	2028-2030	Run 5 (2030-2035+)
Shutdown	~23fb ⁻¹	Shutdown	~50fb ⁻¹	Shutdown	~300fb ⁻¹
	LHCb upgr	LHCb upgrade Phasell			

https://arxiv.org/pdf/1808.08865v4.pdf

LHCb Data on tape and upgrades I & II

Figure 7.3: Experimental sensitivity to the P'_5 angular observable in the SM, Scenarios I and II for (left) the Runs 1–3 and (right) the Upgrade II data sets. The sensitivity is computed assuming that the charm-loop contribution is determined from the data.

-	scenario	$C_9^{ m NP}$	$C_{10}^{ m NP}$	C'_9	C'_{10}
	Ι	-1.4	0	0	0
https://arxiv.org/pdf/1808.08865v4.pdf	II	-0.7	0.7	0	0
	III	0	0	0.3	0.3
	\mathbf{IV}	0	0	0.3	-0.3
-					

Felix Kress

LHCb Detector

The LHCb detector is a single arm spectrometer which covers the forward region at LHC.

 $\Delta p/p \sim 0.4\%$ at 5 GeV, $\sigma_{IP} = 20 \ \mu m$ for high p_T tracks. π/K separation: $\epsilon_K \sim 90\%$, 5% $\pi \rightarrow K$ mis-id. π/μ separation: $\epsilon_\mu \sim 97\%$, 1-3% $\pi \rightarrow K$ mis-id. Felix Kress Beauty 2019

Angular distribution of $\Lambda_b^0 \rightarrow \Lambda \mu^+ \mu^-$

Described by five angles and dimuon invariant mass squared (q^2) . [Adapted from Phys. Rev. D97 (2018) 072010]

