

Lifetime and mass measurements at LHCb

Beauty 2019 Ljubljana, Sept 30 - Oct 4 2019

Michel De Cian, on behalf of the LHCb collaboration

Lifetime measurements at LHCb

- LHCb can perform very precise relative lifetime measurements of mesons and baryons.
- Common technique: Fit the decay time spectrum of particle *H* with a template function to extract the lifetime. *e.g.*

•
$$S(t_{\rm rec}) = f(t_{\rm rec}) \cdot g(t_{\rm rec}) \cdot \beta(t_{\rm rec})$$

- $f(t_{
 m rec})$: Signal template from simulation with full selection applied
- $g(t_{\rm rec})\equiv rac{e^{-t_{\rm rec}/ au_{\rm fit}}}{e^{-t_{\rm rec}/ au_{\rm fit}}}$, where $au_{\rm fit}$ is fitted for.
- $\beta(t_{\rm rec})$: To account for difference between data and simulation in track reconstruction for tracks far from the beam line.
- And then use a well-measured decay-time of an abundant resonance to normalize to.

Charm hadron lifetimes (I)

- Lifetime measurements are an important to the Heavy Quark Expansion (HQE), as sub-leading terms are sensitive to spectator quark masses.
- $\Lambda_c^+, \, \Xi_c^+$ and Ξ_c^0 lifetimes last measured almost 20 years ago with limited statistics.
- Use semileptonic decays of Λ^0_b, Ξ^+_b and Ξ^0_b baryons:
 - Large number of events and relatively low background due to displacement.

Charm hadron lifetimes (II)

- Measure $r_{H_c}\equiv rac{ au_{H_c}}{ au_{D^+}}$ with as simultaneous fit to r_{H_c} and D^+ lifetime, to cancel systematic effects
- Use template from simulation, and fit for the lifetime difference between simulation and data.
- Using the known D^+ lifetime:

•
$$\tau_{A_c^+} = (203.5 \pm 1.0 \pm 1.3 \pm 1.4) \, \text{fs}$$

•
$$\tau_{\Xi_c^+} = (456.8 \pm 3.5 \pm 2.9 \pm 3.1) \, \text{fs}$$

- $\tau_{\Xi_c^0} = (154.5 \pm 1.7 \pm 1.6 \pm 1.0)$ fs
- Most precise measurements to date. 3 fb⁻¹@ 7,8 TeV

Ω_c lifetime (I)

- Use the same strategy with $\Omega_c(\to pK^-K^-\pi^+)$ from $\Omega_b\to\Omega_c\mu\nu X$ decays

•
$$\tau_{\Omega_c} = (268 \pm 24 \pm 10 \pm 2) \, \text{fs}$$

 $3 \, \text{fb}^{-1} @ 7, 8 \, \text{TeV}$

Ω_c lifetime (II)

- World average value: (69 ± 12) fs,
- *i.e.* ≈ 4x smaller....

 $3 \, \text{fb}^{-1} @ 7, 8 \, \text{TeV}$

.

Charm hadron lifetimes (III)

- Good agreement for A_c^+ and Ξ_c^+ values, 3.3 σ discrepancy for Ξ_c^0 , 4x larger value for Ω_c .
 - Expect: $\tau_{\Xi_{c}^{+}} > \tau_{\Lambda_{c}^{+}} > \tau_{\Xi_{c}^{0}} > \tau_{\Omega_{c}^{0}}$
 - Measured: $\tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0},$
- Could be due to smaller interference effect between spectator s and s from $c\to sW^+,$ or a larger effect of additional higher-order contributions.

Ξ_{cc}^{++} lifetime

see Matt Needham's talk on spectroscopy

- Measure lifetime of $\Xi_{cc}^{++}(\to \Lambda_c^+ K^- \pi^+ \pi)$ with respect to $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$

•
$$\tau_{\Xi_{cc}^{++}} = (0.256^{+0.024}_{-0.022} \pm 0.014) \,\mathrm{ps}$$

• $\tau_{\Xi_{cc}^+}$ is predicted to be shorter by a factor $3 \sim 4$ (additional W exchange between c and s), can help in searching for the state.

Mass measurements in LHCb

- LHCb has performed world's best mass measurements of many hadrons.
- Need to correct for non-unity momentum scale α : Fix scale at abundant resonance with well-measured mass (*e.g.* J/ψ), derive scale factor, check with other resonances.
 - About 0.03% uncertainty on scale factor for LHCb measurements.
- Find balance between decays with large number of events (e.g. $B^+ \to J\!/\!\psi\,K^+$) and decays with small Q-value.

Mass measurements in $B^0/B^0_s \rightarrow J/\psi p\overline{p}$ (I)

- First observation of the decays $B^0_{(s)} \rightarrow J/\psi \, p\overline{p}$.
- $\mathcal{B}(B^0 \to J/\psi \, p\overline{p}) = (4.51 \pm 0.40 \pm 0.44) \cdot 10^{-7}$
- $\mathcal{B}(B^0_s\to J/\psi\,p\overline{p})$ = $(3.58\pm0.19\pm0.39)\cdot10^{-6}$: much higher than expected $\mathcal{O}(10^{-9})$
 - Resonant contribution?
- Very small Q value: Can do precise mass measurements.

Mass measurements in $B^0 \rightarrow J/\psi \, p\overline{p}$ (II)

- Most precise single B^0 mass measurement (from LHCb and worldwide).

 $5.2\,{\rm fb}^{-1}@\,7,8,13\,{
m TeV}$

Mass measurements in $B_s^0 \rightarrow J/\psi \, p\overline{p}$ (III)

• Most precise single B_s^0 mass measurement (from LHCb and worldwide).

 $5.2\,{
m fb}^{-1}$ @ $7,8,13\,{
m TeV}$

17

Ξ_b^- mass measurement

see Marcello Rotondo's talk for the production measurements

- Measure the mass difference between Λ_b^0 and Ξ_b^- baryons, using the $\Lambda_b^0 \to J/\psi \Lambda$ and $\Xi_b^- \to J/\psi \Xi$ decays.
 - $\delta m = (177.30 \pm 0.39 \pm 0.15) \,\mathrm{MeV}/c^2$
 - $m(\Xi_b^-) = (5796.70 \pm 0.39 \pm 0.15 \pm 0.17) \, \text{MeV}/c^2$
 - Most precise measurement of $m(\Xi_b^-)$ to date, in agreement with previous measurements.
- $4.6\,{\rm fb}^{-1}@\,7,8,13\,{
 m TeV}$

$J\!/\psi\,$ and η_c mass difference

- Use non-prompt $\eta_c \to p\overline{p}$ and $J\!/\psi \to p\overline{p}$ decays to determine the mass difference.
 - Separate prompt and non-prompt with pseudo-proper lifetime $t_z=rac{\Delta z M_{p\overline{p}}}{p_z}>80\,{\rm fs}$ and PV displacement of protons.
- $\Delta M = (113.0 \pm 0.7) \,\text{MeV}/c^2$, uncertainty completely dominated by statistical uncertainty. Most precise single measurement so far.
- Value is in good agreement with all previous measurements.

[magnolia]

- LHCb performed several world's best measurements of hadron lifetimes and masses.
- Most of them are compatible with the world averages, notable exception: Ω_c lifetime is $4 \times$ larger than the previously measured value.
- Several measurements are still statistically limited.

Conclusion

 $B^+ \rightarrow J/\psi \,\rho^+$

- Measure branching ratio and $C\!P$ asymmetry of $B^+\to J\!/\psi\,\rho^+,$ with respect to $B^+\to J\!/\psi\,K^+$
- 2D fit to $m(J\!/\!\psi\,\pi^+\pi^0)$ and $m(\pi^+\gamma\gamma)$ mass to separate P-wave, S-wave and background.
 - $\mathcal{B}(B^+ \to J/\psi \,\rho^+) = 3.81^{+0.25}_{-0.24} \pm 0.35) \cdot 10^{-5}$
 - $\mathcal{A}^{CP}(B^+ \to J/\psi \,\rho^+) = -0.045^{+0.056}_{-0.057} \pm 0.008$

Charm hadron lifetimes suppl.

•

Source	$r_{\Lambda_c^+}$	$r_{\Xi_c^+}$	$r_{\Xi_c^0}$
Decay-time acceptance	6	13	4
H_c lifetime	4	4	12
H_b lifetime	1	3	0
H_b production spectra	2	4	1
Background subtraction	8	17	7
$H_c(\tau^-, D, \text{random } \mu^-)$	5	11	3
Simulated sample size	4	13	5
Total systematic	13	28	16
Statistical uncertainty	10	34	17

Source	r_{0}_{c} (10 ⁻⁴)
Decay-time acceptance	13
\bar{b}_{b} prod. spectrum	3
$\frac{1}{b}$ lifetime	4
Decay-time resolution	3
Background subtraction	18
$H_c(\tau^-, D)$, random μ^-	8
Simulated sample size	98
Total systematic	101
Statistical uncertainty	230