

## *all-out* Fighting Systematics in Charm CPV at Belle II





Beauty2019, Sep.30-Oct.4, Ljubljana, Slovenia

## Outline

- Introduction & Belle II Improvements  $\bigcirc$ 
  - vertexing, hadron ID, *D*-tagging
- for CPV, time-integrated
  - $A_{\rm CP}(D^0 \to V\gamma)$
  - $A_{CP}(D \rightarrow PP')$
- for CPV, time-dependent
  - Mixing & CPV parameters for  $D^0 \to K_s^0 \pi^+ \pi^-$

Summary

## The Belle II Physics Book

E. Kou<sup>74,¶,†</sup>, P. Urquijo<sup>143,§,†</sup>, W. Altmannshofer<sup>133,¶</sup>, F. Beaujean<sup>78,¶</sup>, G. Bell<sup>120,¶</sup>, M. Beneke<sup>112,¶</sup>, I. I. Bigi<sup>146,¶</sup>, F. Bishara<sup>148,16,¶</sup>, M. Blanke<sup>49,50,¶</sup>, C. Bobeth<sup>111,112,¶</sup>, M. Bona<sup>150,¶</sup>, N. Brambilla<sup>112,¶</sup>, V. M. Braun<sup>43,¶</sup>, J. Brod<sup>110,133,¶</sup>, A. J. Buras<sup>113,¶</sup>, H. Y. Cheng<sup>44,¶</sup>, C. W. Chiang<sup>91,¶</sup>, M. Ciuchini<sup>58,¶</sup>, G. Colangelo<sup>126,¶</sup>, H. Czyz<sup>154,29,¶</sup>, A. Datta<sup>144,¶</sup>, F. De Fazio<sup>52,¶</sup>, T. Deppisch<sup>50,¶</sup>, M. J. Dolan<sup>143,¶</sup>, J. Evans<sup>133,¶</sup>, S. Fajfer<sup>107,139,¶</sup>, T. Feldmann<sup>120,¶</sup>, S. Godfrey<sup>7,¶</sup>, M. Gronau<sup>61,¶</sup>, Y. Grossman<sup>15,¶</sup>, F. K. Guo<sup>41,132,¶</sup>, U. Haisch<sup>148,11,¶</sup>, C. Hanhart<sup>21,¶</sup>, S. Hashimoto<sup>30,26,¶</sup> S. Hirose<sup>88,¶</sup> I. Hisano<sup>88,89,¶</sup> I. Hofer<sup>125,¶</sup> M. Hoferichter<sup>166,¶</sup>

Many figures and tables are taken from "**The Belle II Physics Book**" (arXiv:1808.10567) which is *accepted for publication* in PTEP. It is indicated, in this talk, with a symbol **B2TiP** 

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

## SuperKEKB Interaction Belle II detector Region electron ring positron ring injector to Linac positron damping ring $e^{-} \xrightarrow{7 \text{ GeV}} (\star) \xleftarrow{4 \text{ GeV}} e^{+}$

## Belle II



 $\mathcal{L}_{\text{peak}} = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$  $\int^{\text{goal}} \mathcal{L} \, dt = 50 \text{ ab}^{-1}$ 

## **Belle II improvements**

- vertex resolution
- $K_{\rm S}^0$  and  $\pi^0$  reconstruction efficiency
- $K/\pi$  separation
- hadron & muon ID in the endcaps
- flavor tagging
  - (Belle) D\* tagging only
  - (Belle II) D\* & ROE tagging



5

## **Time & Vertex resolution in Belle II**



factor ~2 better than Belle and BaBar

- $\delta r_{xy} \sim 40 \ \mu m$
- $\delta t \sim 0.15$  ps







 $\begin{array}{c} \text{Experiment} & t \text{ resolution} \\ \text{Mean} & \text{RMS} \\ \hline \text{Belle II} & 6.5 \text{ fs} & 135 \text{ fs} \\ \hline \text{BaBar} & -0.48 \text{ fs} & 271 \text{ fs} \end{array}$ 

# $D^0$ lifetime in Belle II (Phase 3)

 $D^{*+}$ -tagged  $D^0 \rightarrow K\pi$  decays (using 1/15 sample of Phase 3)





 $\tau_{D^0} = 370 \pm 40$  fs

# Belle II $K/\pi$ separation (Phase 3)

## *K*, $\pi$ from $D^{*+}$ -tagged $D^0 \to K\pi$ decays



▲ ▼ ideal MC, not including background, etc.

## $M(D^0)$ plots (Belle II)



## Flavor tagging for charm at Belle II

- To tag the flavor of the CP eigenstate modes and/or clean up the signal candidates
- D\* tagging ("golden method")
  - $D^{*+} \rightarrow D^0 \pi_{\rm c}^+$
  - observables:  $M(D^0)$ ,  $\Delta M \equiv M(D^*) M(D)$
  - $\Delta M$  resolution at Belle II ~ 180 keV/ $c^2$ ; factor ~2 better than Belle
- Rest-of-event (ROE) tagging



# Flavor tagging -

to increase tagged sample size by adding  $D^0$  mesons not reconstructed  $\bigcirc$ in  $D^*$  decays



only one  $K^{\pm}$  in the ROE; tag the flavor of  $D^0$  with the charge of  $K^{\pm}$ 



| Flavor t                          | aggin                           | <b>g</b> —                           | RO           | $\mathbf{E}$ $D^0$             | mother in $c\bar{c}$ events    |
|-----------------------------------|---------------------------------|--------------------------------------|--------------|--------------------------------|--------------------------------|
| Iower tagging e<br>~x3 higher pro | efficiency (~1<br>duction of no | /4) is com<br>on-D <sup>*</sup> sour | pensat<br>ce | ed by                          | harged D*<br>25% prompt<br>40% |
| B2TiP CC                          | mparison of ta                  | igging metho                         | ods          |                                | 35%                            |
| Flavour-tagging                   | Produced $D^0$                  | Mistagging                           |              | Efficiency                     |                                |
| Method                            | $N_{D^0}$                       | $\omega$                             | $\epsilon$   | $Q = \epsilon (1 - 2\omega)^2$ |                                |
| $D^*$                             | 1                               | 0.2%                                 | 80%          | 79.7%                          | _                              |
| ROE - criteria A                  | 3                               | 13.3%                                | 26.7%        | 20.1%                          | _                              |
| ROE - criteria B                  | 3                               | 9.8%                                 | 16.8%        | 13.7%                          |                                |
| ROE - criteria C                  | 3                               | 4.9%                                 | 15.9%        | 15.7%                          |                                |

nearly double the sample; but with higher mistagging and lower purity  $\bigcirc$ 

## **Acp improvement with ROE**

Let  $\alpha$  be the ratio of  $\sigma_{A_{CP}}$  (stat.) with ROE-tagging  $\bigcirc$ to *D*\*-tagging

$$\alpha = \frac{\sigma_{A_{\rm CP}}^{\rm ROE}}{\sigma_{A_{\rm CP}}^{D^*}} = \sqrt{\frac{1}{3}} \frac{Q^{D^*}}{Q^{\rm ROE}} \frac{\rho^{D^*}}{\rho^{\rm ROE}}$$

where 1/3 =production ratio, Q =effective efficiency,  $\rho$  = tagged sample purity.  $(\rho \text{ ratio } \approx 1.4, \text{ BaBar, PRD 87, 012004 (2013)})$ 

Combining both methods:  $\sigma_{A_{CP}}^{c} = (\alpha/\sqrt{1+\alpha^2}) \sigma_{A_{CP}}^{D^*}$ 





## **'Prospects' for Acp in Belle II**

- Extrapolating Belle results to 50 ab<sup>-1</sup>
- Systematic uncertainties
  - reducible sys. err.  $\sigma_{\rm red}$  scale with luminosity
  - irreducible sys. err.  $\sigma_{\rm irred}$  asym.  $K^0/\overline{K}^0$  interactions in matter (  $\approx 0.02\%$  ),  $K^0$  CPV, etc.

$$\sigma_{\text{Belle II}} = \sqrt{\left(\sigma_{\text{stat}}^2 + \sigma_{\text{red}}^2\right)^2 \frac{\mathscr{L}_{\text{Belle}}}{50 \text{ ab}^{-1}} + \sigma_{\text{irred}}^2}$$

In this talk, improvements in detector performance as well as ROE tagging are not included in the extrapolation.

# Time-integrated CPV

# • $A_{\rm CP}(D^0 \to V\gamma)$ • $A_{\rm CP}(D \to PP')$

• A<sub>CP</sub> vs. A<sub>raw</sub>  

$$A_{raw} = \frac{N(D^{0} \rightarrow f) - N(\overline{D}^{0} \rightarrow \overline{f})}{N(D^{0} \rightarrow f) + N(\overline{D}^{0} \rightarrow \overline{f})}$$

$$= A_{D} + A_{\epsilon} + A_{CP}$$

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(D^{0} \rightarrow f) - \mathcal{B}(\overline{D}^{0} \rightarrow \overline{f})}{\mathcal{B}(D^{0} \rightarrow f) + \mathcal{B}(\overline{D}^{0} \rightarrow \overline{f})}$$

$$\mathcal{A}_{F}$$

$$\mathcal{A}_{CP}^{sig} = A_{raw}^{sig} - A_{raw}^{norm} + \mathcal{A}_{CP}^{norm}$$
• tagged (D\*, ROE) or self-tagged

# p (in Belle II)

A<sub>D</sub> = production asymmetry

 $=A_{\rm FB}(\cos\theta^*)$ 

an odd function in  $\cos\theta^*$  can be easily disentangled by

 $CP = \frac{1}{2} \left[ A_{raw}^{cor} (\cos \theta^*) + A_{raw}^{cor} (-\cos \theta^*) \right]$ 

 $FB = \frac{1}{2} \left[ A_{\text{raw}}^{\text{cor}}(\cos\theta^*) - A_{\text{raw}}^{\text{cor}}(-\cos\theta^*) \right]$ 

•  $A_c$  = efficiency asymmetry measured with enough precision using CF decays





### PRL 118, 051801 (2017)



[1]Isidori & Kamenik, PRL(2012); de Boer & Hiller, JHEP 1708:91 (2017)

[2] Burdman et al., PRD(1995); Khodjamirian et al., PLB(1995); Fajfer et al., EPJC (1999)
[3] de Bore & Hiller, EPJC 78, 188 (2018)

$$\bullet A_{\rm CP}^{\rm SM}(D^0 \to V\gamma) \sim O(10^{-3})$$

NP can enhance it to  $O(10^{-2})$ <sup>[1]</sup>

- SM: dominated by long-range effect  $\rightarrow$  test of QCD<sup>[2]</sup>
- measure  $\gamma$  pol. with time-dep. analysis to test SM<sup>[3]</sup>
- use normalization modes to reduce systematic errors

 $\mathcal{A}_{CP}^{\text{sig}} = A_{\text{raw}}^{\text{sig}} - A_{\text{raw}}^{\text{norm}} + \mathcal{A}_{CP}^{\text{norm}}$ 





### PRL 118, 051801 (2017)





## • $A_{\rm CP}^{\rm SM}(D^0 \to V\gamma) \sim O(10^{-3})$

NP can enhance it to  $O(10^{-2})$ 

- SM: dominated by long-range effect  $\rightarrow$  test of QCD
- ACP measured by Belle w/ ~1 ab<sup>-1</sup>

 $\rightarrow$  dominated by stat. error<sup>[1]</sup>

$$\begin{aligned} \mathcal{A}_{CP}(D^0 \to \rho^0 \gamma) &= +0.056 \pm 0.152 \pm 0.006 \\ \mathcal{A}_{CP}(D^0 \to \phi \gamma) &= -0.094 \pm 0.066 \pm 0.001 \\ \mathcal{A}_{CP}(D^0 \to \bar{K}^{*0} \gamma) &= -0.003 \pm 0.020 \pm 0.000 \end{aligned}$$

## [1] For BF, stat error is slightly larger than or similar to syst error





 $D^0 \rightarrow V\gamma$  prospects

| δA <sub>CP</sub> on               | Belle        |        |
|-----------------------------------|--------------|--------|
|                                   | 1 ab-1       | 5 ab-1 |
| $D^0 	o  ho \gamma$               | ±0.152±0.006 | ±0.07  |
| $D^0 	o \phi \gamma$              | ±0.006±0.001 | ±0.03  |
| $D^0 	o \overline{K}^{*0} \gamma$ | ±0.020±0.000 | ±0.01  |

- O(%) precision is expected for  $A_{\rm CP}(D^0 \to V\gamma)$  at Belle II
- Statistical error will still dominate



| Belle II (stat. err.) |         |  |  |  |  |
|-----------------------|---------|--|--|--|--|
| 15 ab-1               | 50 ab-1 |  |  |  |  |
| ±0.04                 | ±0.02   |  |  |  |  |
| ±0.02                 | ±0.01   |  |  |  |  |
| ±0.005                | ±0.003  |  |  |  |  |

 $A_{CP}(D \rightarrow PP')$ 

## • $A_{CP}^{SM}(D \rightarrow PP') \sim O(10^{-3})$

- ✓ not an automatic NP probe, ∵ uncertainties in hadronic matrix elements  $\checkmark$  symmetry (e.g. SU(3)<sub>F</sub>) can predict patterns among different modes
- existing most precise measurements

| Mode                    | $A_{CP}$ [%]              |
|-------------------------|---------------------------|
| $D^0 \to K^+ K^-$       | $0.04 \pm 0.12 \pm 0.10$  |
| $D^0 \to \pi^+ \pi^-$   | $0.07 \pm 0.14 \pm 0.11$  |
| $D^0 \to K^0_S  K^0_S$  | $-0.02 \pm 1.53 \pm 0.17$ |
| $D^0 \to \pi^0 \pi^0$   | $-0.03 \pm 0.64 \pm 0.10$ |
| $D^+ \to K^0_S K^+$     | $0.03\pm0.17\pm0.14$      |
| $D^+ \to K^{0}_S \pi^+$ | $-0.36 \pm 0.09 \pm 0.07$ |



# → Sum Rule test!

- LHCb, 2017
- LHCb, 2017
- **Belle, 2017**
- **Belle**, 2014
- LHCb, 2014
- **Belle**, 2012

 $A_{CP}(D \rightarrow PP')$ 

## • $A_{CP}^{SM}(D \rightarrow PP') \sim O(10^{-3})$

✓ not an automatic NP probe, ∵ uncertainties in hadronic matrix elements  $\checkmark$  symmetry (e.g. SU(3)<sub>F</sub>) can predict patterns among different modes → Sum Rule test!

### key expectations

- $\checkmark A_{CP}(D^+ \rightarrow \pi^+ \pi^0) = 0$  in the isospin limit
- $\checkmark A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$  enhanced to O(%) level due to large exchange diagram contribution (hence a nice place for early discovery)

 $|A_{CP}| \le 1.1 \%$  (95% CL) Nierste & Schacht (PRD, 2015)

✓ Belle II can do well with neutral particles ( $\pi^0$ ,  $\eta$ ,  $\eta'$ ,  $\rho^+$ ) in the final state



- $\bullet A_{\rm CP}^{\rm SM}(D^0 \to K_{\rm S}^0 K_{\rm S}^0) \sim {\cal O}(1\%)$ 
  - ✓ promising for discovery
- Belle with 921 fb<sup>-1</sup>
  - $\checkmark A_{\rm CP} = (-0.02 \pm 1.53 \pm 0.17)\%$
  - ✓ normalize to  $K_{\rm S}^0 \pi^0$
  - ✓ CPV in  $K^0$  is subtracted
  - $\checkmark \sigma_{\rm irred} \approx 0.02 \%$
- Belle II expectation  $\checkmark \sigma_{A_{\rm CP}} = 0.23 \ \%$  at 50 ab<sup>-1</sup>





- $A_{\rm CP}^{\rm SM}(D^+ \to \pi^+ \pi^0) = 0$ 
  - $\checkmark$  a smoking gun for NP
- Belle with 921 fb<sup>-1</sup>

 $\checkmark A_{\rm CP} = (2.31 \pm 1.24 \pm 0.23)\%$ 

 $\checkmark$  normalize to  $D^+ \rightarrow K_{\rm S}^0 \pi^+$ 

- Belle II MC study (50 ab<sup>-1</sup>)

   ✓ using D<sup>\*+</sup> tag for background suppression
   ✓ efficiency, background rejection, similar to Belle, using earlier recon S/W
   ✓ can expect further improvement with updated S/W
  - $\checkmark \sigma_{A_{\rm CP}} \approx 0.17 \%$

# $\rightarrow \pi^{+}\pi^{0}$ $Q \equiv M(D^{+}\pi^{0}) - M(D^{+}) - M(\pi^{0})$



# Time-dependent CPV

$$\left| \begin{array}{c} \overline{A} \\ \overline{A} \\ \overline{A} \end{array} \right| \neq 1$$

## **Direct CPV** (decay) time-integrated

$$\left| \begin{array}{c} q \\ p \\ p \end{array} \right| \neq 1$$

## **Indirect CPV** (mixing)

$$Im(\lambda_f) \neq 0$$
  
$$\lambda_f = -\eta_{\rm CP} \left| \frac{q}{p} \right| \left| \frac{\overline{A}_f}{\overline{A}_f} \right| e^{i\phi} \neq 0$$

Interference of mixing and decay

need time-dependent measurement

# **CPV** and Mixing — a quick reminder $|M_{1,2}\rangle = p |M^0\rangle \pm q |\overline{M}^0\rangle$

$$\begin{split} |M_{\rm phys}^{0}(t)\rangle &= (g_{\pm}(t) + z \, g_{-}(t)) \, |M^{0}\rangle - \sqrt{1 - z^{2}} \, \frac{q}{p} \, g_{-}(t) |\overline{M}^{0}\rangle \\ |\overline{M}_{\rm phys}^{0}(t)\rangle &= (g_{\pm}(t) - z \, g_{-}(t)) \, |\overline{M}^{0}\rangle - \sqrt{1 - z^{2}} \, \frac{p}{q} \, g_{-}(t) |M^{0}\rangle \\ g_{\pm}(t) &\equiv \frac{1}{2} \left( e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} \pm e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t} \right) \end{split}$$

$$\frac{d\Gamma[M_{\rm phys}^0(t) \to f]/dt}{e^{-\Gamma t} \mathcal{N}_f} = \frac{\left(|A_f|^2 + |(q/p)\overline{A}_f|^2\right)\cosh(q)}{+2\,\mathcal{R}e((q/p)A_f^*\overline{A}_f)\sinh(q)}$$

mixing parameters  $x = \frac{\Delta m}{\Gamma}$   $y = \frac{\Delta \Gamma}{2\Gamma}$ 

- **CPT** is conserved

- $(y\Gamma t) + \left(|A_f|^2 |(q/p)\overline{A}_f|^2\right)\cos(x\Gamma t)$  $\Gamma t) - 2\mathcal{I}m((q/p)A_f^*\overline{A}_f)\sin(x\Gamma t) ,$

## Mixing & CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ (Dalitz)



- Systematic error will be dominated by  $D^0$  decay modeling (irreducible)
- ✓ currently using info. from CLEO-c, PRD 82, 112006 (2010)
- $\checkmark$  should improve with strong phase difference to be measured at **BESIII BEAUTY** (talk by Lei Li)

$$D^{0} \to K_{s}^{0} \pi^{+} \pi^{-}$$
(Belle 921 fb<sup>-1</sup>)

Phys. Rev. D 89, 091103(R) (2014)

$$x = (+0.56 \pm 0.19^{+})$$
$$y = (+0.30 \pm 0.15^{+})$$
$$|q/p| = 0.90^{+0.16}_{-0.15} + 0.00^{+}$$
$$\arg(q/p) = (-6 \pm 1)$$



## Mixing & CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ (Dalitz)



- Systematic error will be dominated by  $D^0$  decay modeling (irreducible)
- ✓ currently using info. from CLEO-c, PRD 82, 112006 (2010)
- $\checkmark$  should improve with strong phase difference to be measured at **BESIII BEAUTY** (talk by Lei Li)

| DOT:D        |                      |       |                      |             |          |       |                        |           |           |  |  |
|--------------|----------------------|-------|----------------------|-------------|----------|-------|------------------------|-----------|-----------|--|--|
| <b>BZIIP</b> | Data                 | stat. | . syst.              |             | Total    | stat. | syst.                  |           | Total     |  |  |
|              |                      |       | red.                 | irred.      |          |       | red.                   | irred.    |           |  |  |
| -            |                      |       | $\sigma_x (10^{-2})$ |             |          |       | $\sigma_y \ (10^{-2})$ |           |           |  |  |
|              | $976 {\rm ~fb^{-1}}$ | 0.19  | 0.06                 | 0.11        | 0.20     | 0.15  | 0.06                   | 0.04      | 0.16      |  |  |
|              | $5 \text{ ab}^{-1}$  | 0.08  | 0.03                 | 0.11        | 0.14     | 0.06  | 0.03                   | 0.04      | 0.08      |  |  |
|              | $50 \text{ ab}^{-1}$ | 0.03  | 0.01                 | 0.11        | 0.11     | 0.02  | 0.01                   | 0.04      | 0.05      |  |  |
| -            |                      |       | q/p                  | $(10^{-2})$ |          |       | $\phi$                 | (°)       |           |  |  |
|              | $976 {\rm ~fb^{-1}}$ | 15.5  | 5.2 - 5.6            | 7.0-6.7     | 17.8     | 10.7  | 4.4 - 4.5              | 3.8 - 3.7 | 12.2      |  |  |
|              | $5 \text{ ab}^{-1}$  | 6.9   | 2.3 - 2.5            | 7.0-6.7     | 9.9-10.1 | 4.7   | 1.9-2.0                | 3.8 - 3.7 | 6.3 - 6.4 |  |  |
|              | $50 \text{ ab}^{-1}$ | 2.2   | 0.7 - 0.8            | 7.0-6.7     | 7.0-7.4  | 1.5   | 0.6                    | 3.8 - 3.7 | 4.0-4.2   |  |  |

## Summary

- CP violation in the charm sector is a great place to probe new physics beyond the SM.
- Belle II is making all-out efforts to fight for systematic uncertainties as well as effectively increase the sample size (improved tagging, etc.).
- With the design luminosity of 50  $ab^{-1}$ , interesting results will come one by one.

# Thank you!

Extra slides

## Charm machines, old & new

| Experiment | Year      | $\sqrt{s}$       | $\sigma_{acc}(D^0)$ | L                     | $n(D^0)$            |
|------------|-----------|------------------|---------------------|-----------------------|---------------------|
| CLEO-c     | 2003-2008 | 3.77 GeV         | 8 nb                | $0.5  {\rm fb}^{-1}$  | $4.0 	imes 10^6$    |
| BESIII     | 2010-2011 | 3.77 GeV         | 8 nb                | $3\mathrm{fb}^{-1}$   | $2.4 	imes 10^7$    |
| BaBar      | 1999-2008 | 10.6 GeV         | 1.45 nb             | $500\mathrm{fb}^{-1}$ | $7.3 	imes 10^8$    |
| Belle      | 1999-2010 | 10.6 - 10.9  GeV | 1.45 nb             | $1000{\rm fb}^{-1}$   | $1.5 	imes 10^9$    |
| CDF        | 2001-2011 | 2 TeV            | 13 µb               | $10{\rm fb}^{-1}$     | $1.3 	imes 10^{11}$ |
| LHCb       | 2011      | 7 TeV            | 1.4 mb              | $1  \mathrm{fb}^{-1}$ | $1.4 	imes 10^{12}$ |
| LHCb       | 2012      | 8 TeV            | 1.6 mb*             | $2\mathrm{fb}^{-1}$   | $3.2 	imes 10^{12}$ |
|            |           |                  |                     |                       |                     |

Belle II 2019-202\*

**50** ab<sup>-1</sup>

# $A_{\rm CP}(D \rightarrow PP')$ Belle II prospects

| Mode                            | $\mathcal{L}$ (fb <sup>-1</sup> ) | $A_{\rm CP}(\%)$ (Belle)           | Belle II 50 $ab^{-1}$ | _                         |
|---------------------------------|-----------------------------------|------------------------------------|-----------------------|---------------------------|
| $D^0 \to K^+ K^-$               | 976                               | $-0.32 \pm 0.21 \pm 0.09$          | $\pm 0.03$            |                           |
| $D^0 \to \pi^+ \pi^-$           | 976                               | $+0.55\ \pm 0.36\ \pm 0.09$        | $\pm 0.05$            |                           |
| $D^0 \to \pi^0 \pi^0$           | 966                               | $-0.03\ \pm 0.64\ \pm 0.10$        | $\pm 0.09$            |                           |
| $D^0 \to K^0_S  \pi^0$          | 966                               | $-0.21~\pm 0.16~\pm 0.07$          | $\pm 0.02$            |                           |
| $D^0 	o K^0_S  K^0_S$           | 921                               | $-0.02 \pm 1.53 \pm 0.02 \pm 0.17$ | $\pm 0.23$            | $A_{CP}^{SM} \sim 1\%$    |
| $D^0 \to K^0_S  \eta$           | 791                               | $+0.54 \pm 0.51 \pm 0.16$          | $\pm 0.07$            |                           |
| $D^0 \to K^0_S  \eta'$          | 791                               | $+0.98 \pm 0.67 \pm 0.14$          | $\pm 0.09$            |                           |
| $D^0 \to \pi^+ \pi^- \pi^0$     | 532                               | $+0.43 \pm 1.30$                   | $\pm 0.13$            |                           |
| $D^0 \to K^+ \pi^- \pi^0$       | 281                               | $-0.60 \pm 5.30$                   | $\pm 0.40$            |                           |
| $D^0 \to K^+ \pi^- \pi^+ \pi^-$ | 281                               | $-1.80 \pm 4.40$                   | $\pm 0.33$            |                           |
| $D^+ \to \phi \pi^+$            | 955                               | $+0.51 \pm 0.28 \pm 0.05$          | $\pm 0.04$            | _                         |
| $D^+ \to \pi^+ \pi^0$           | 921                               | $+2.31 \pm 1.24 \pm 0.23$          | $\pm 0.17$            | $A_{\rm CD}^{\rm SM} = 0$ |
| $D^+ \to \eta \pi^+$            | 791                               | $+1.74 \pm 1.13 \pm 0.19$          | $\pm 0.14$            | CP                        |
| $D^+ \to \eta' \pi^+$           | 791                               | $-0.12~\pm 1.12~\pm 0.17$          | $\pm 0.14$            |                           |
| $D^+ \to K^0_S  \pi^+$          | 977                               | $-0.36\ \pm 0.09\ \pm 0.07$        | $\pm 0.02$            |                           |
| $D^+ \to K^0_S  K^+$            | 977                               | $-0.25\ \pm 0.28\ \pm 0.14$        | $\pm 0.04$            |                           |
| $D_s^+ \to K_S^0  \pi^+$        | 673                               | $+5.45 \pm 2.50 \pm 0.33$          | $\pm 0.29$            | _                         |
| $D_s^+ \to K_S^0 K^+$           | 673                               | $+0.12 \pm 0.36 \pm 0.22$          | $\pm 0.05$            |                           |

$$\begin{array}{l} \operatorname{Mixing} \& \operatorname{CPV} \operatorname{in} D^{0} \to K^{+} \pi^{-} (\operatorname{WS}) \\ & \frac{N(D^{0} \to f)}{dt} \propto e^{-\overline{\Gamma} t} \left\{ R_{D} + \left| \frac{q}{p} \right| \sqrt{R_{D}} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ & \frac{N(\overline{D}^{0} \to \overline{f})}{dt} \propto e^{-\overline{\Gamma} t} \left\{ \overline{R}_{D} + \left| \frac{p}{q} \right| \sqrt{\overline{R}_{D}} (y' \cos \phi + x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{p}{q} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ & x' = x \cos \delta + y \sin \delta \qquad y' = y \cos \delta - x \sin \delta
\end{array}$$



$$\delta \quad y' = y\cos\delta - x\sin\delta$$

|   |                    | h9993f           |                 |
|---|--------------------|------------------|-----------------|
|   | Entries            |                  | 87735           |
|   | Mean               | $0.494 \pm 0$    | .001687         |
|   | Std Dev            | 0.4986 ± 0       | .001193         |
|   | χ² / ndf           | 147              | 7.7 / 149       |
|   | Prob               |                  | 0.5136          |
|   | p0                 | $0.003345 \pm 0$ | .000022         |
|   | p1                 | $0.000154 \pm 0$ | .000069         |
|   | p2                 | $0.009691 \pm 0$ | .000758         |
|   |                    |                  |                 |
|   | cm                 | John             | 4               |
|   | 211                | ical cu          |                 |
|   |                    |                  |                 |
|   |                    | 175              | ſ               |
|   | $\sigma_{\star} =$ | = 133            | IS              |
|   | l                  |                  |                 |
|   |                    |                  |                 |
| 2 | 2.5                | 5 3              | 3.5             |
|   |                    |                  | $\Delta t/\tau$ |
|   |                    |                  |                 |

Belle II MC (20 ab<sup>-1</sup>) fit w/o CPV for  $R_D$ ,  $x'^2$ , y'

# Mixing & CPV in $D^0 \rightarrow K^+ \pi^-$ (WS)

## **B2TIP** Belle II MC fit

| Parameter                 | $5 \text{ ab}^{-1}$ | $20 \text{ ab}^{-1}$ | 50 |
|---------------------------|---------------------|----------------------|----|
| $\delta x'^2 \ (10^{-5})$ | 6.2                 | 3.2                  |    |
| $\delta y'~(\%)$          | 0.093               | 0.047                | (  |
| $\delta x' (\%)$          | 0.32                | 0.22                 |    |
| $\delta y'~(\%)$          | 0.23                | 0.15                 | (  |
| $\delta  q/p $            | 0.174               | 0.073                | (  |
| $\delta\phi$ (°)          | 13.2                | 8.4                  |    |



- $0 \text{ ab}^{-1}$
- 2.0
- 0.029
- 0.13
- 0.097
- 0.043
- 5.4

no CPV

## **CPV** allowed

 $D^0 \rightarrow V\gamma$  systematics (Belle, 2017)

### PRL 118, 051801 (2017)

|                                               | $\sigma(\mathcal{B})/\mathcal{B}~(\%)$ |              |          | $A_{C}$ | $A_{CP} (\times 10^{-3})$ |         |  |
|-----------------------------------------------|----------------------------------------|--------------|----------|---------|---------------------------|---------|--|
|                                               | $\phi$                                 | $ar{K}^{*0}$ | $\rho^0$ | $\phi$  | $ar{K}^{*0}$              | $ ho^0$ |  |
| Efficiency                                    | 2.8                                    | 3.3          | 2.8      | •••     | • • •                     | • • •   |  |
| Fit parametrization                           | 1.0                                    | 2.8          | 2.3      | 0.1     | 0.4                       | 5.3     |  |
| Background normalization                      | • • •                                  | 0.3          | 0.6      | •••     | 0.2                       | 0.5     |  |
| Normalization mode                            | 0.0                                    | 0.0          | 0.1      | 0.5     | 0.0                       | 0.3     |  |
| External $\mathcal{B}$ and $\mathcal{A}_{CP}$ | 2.0                                    | 1.0          | 1.8      | 1.2     | 0.0                       | 1.5     |  |
| Total                                         | 3.6                                    | 4.5          | 4.1      | 1.3     | 0.4                       | 5.5     |  |