

Radiative and EW Penguin Decays at Belle and Belle II

Akimasa Ishikawa (Tohoku University) Flavour Physics with High-Luminosity Experiments at MIAPP

MIAPP 20161109

Radiative and EW Penguin Decays

- Proceed via one loop diagrams in the SM
- New physics can enter in the loop or can contribute even at tree level.
- These decays are theoretically and experimentally clean due to final states having color singlet leptons or photon
- Very sensitive to new physics

Wilson Coefficients

- These decays are expressed by real Wilson Coefficients in the SM
 - $b \rightarrow s\gamma : C_7$
 - − b→sll : C_7 , C_9 and C_{10}
- In the new physics models,
 - coefficients deviated from the SM values
 - scalar coefficients (C_s and C_p)
 - right handed counter parts (C_i')
 - All could have imaginary parts
- Observables of radiative and EW penguin decays in and beyond the SM can be parameterized by the Wilson coefficients.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

$$\mathcal{O}_{1} = (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})(\bar{c}_{\beta}\gamma^{\mu}Lb_{\alpha}),$$

$$\mathcal{O}_{2} = (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\alpha})(\bar{c}_{\beta}\gamma^{\mu}Lb_{\beta}),$$

$$\mathcal{O}_{3} = (\bar{s}_{\alpha}\gamma_{\mu}Lb_{\alpha})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Lq_{\beta}),$$

$$\mathcal{O}_{4} = (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\beta}),$$

$$\mathcal{O}_{5} = (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}),$$

$$\mathcal{O}_{6} = (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}),$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}}\bar{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L + m_{b}R)b_{\alpha}F^{\mu\nu},$$

$$\mathcal{O}_{8} = \frac{g}{16\pi^{2}}\bar{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\bar{\ell}\gamma_{\mu}\ell,$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi}\bar{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\bar{\ell}\gamma_{\mu}\gamma_{5}\ell,$$

$$3$$

Contents

- Radiative Decays
 - BF and Asymmetries in Inclusive $b \rightarrow s\gamma$ ($b \rightarrow s+d\gamma$)
 - TCPV in $B^0 \rightarrow K^{*0} \gamma$
- EW Penguin Decays
 - BF and A_{FB} in Inclusive b \rightarrow sll
 - Lepton Flavor Universality (LFU) in $b \rightarrow sll$

Radiative Decays

Reconstruction of $B \rightarrow Xs \gamma$

- Two methods to reconstruct $B \rightarrow Xs\gamma$
 - Sum of exclusive method
 - Xs is reconstructed from many exclusive decays, $Kn\pi$, $3Km\pi$, $K\eta m\pi$ etc (*n*>1, *m*>=1).

Purity

- can single out $b \rightarrow s (b \rightarrow d)$
- Flavor and isospin known
- Fully inclusive photon method
 - Measure sum of $b \rightarrow s$ and $b \rightarrow d$
 - To know the flavor and/or isospin, tagging with the other B is needed
- Three tagging methods for inclusive analysis Efficiency
 - Lepton tagging \rightarrow flavor
 - Semileptonic B tagging \rightarrow flavor and isospin
 - Hadronic B tagging → momentum, flavor and isospin

$\mathsf{BF}(\mathsf{B} \rightarrow \mathsf{Xs} \gamma)$

- Sensitive to $|C_7|$ (or $C_7^2 + C_7'^2$)
- In the new physics model
 - Charged higgs in 2HDM type-II
 - Constructive to SM amplitude
 - Almost no $tan\beta$ dependence
 - SUSY
 - Constructive or destructive to SM
 - Depending on SUSY parameters
- Very precise prediction is available.
 - 6.8% precision

$$\mathcal{B}_{s\gamma}^{\rm SM} = (3.36 \pm 0.23) \times 10^{-4}$$

M. Misiak et al, Phys. Rev. Lett. 114, 221801 (2015)

Measurement of BF(B \rightarrow Xs γ)

- Exp. and theory are consistent.
 - Strong limit on NP.
- The newest Belle result with fully inclusive method is only 7.3% uncertainty.
 - Charged Higgs mass > 580 GeV at 95% CL
 - Based on CKM fitter
 - moderate tan β (~7) region can be excluded
 - LHC is very hard to set the limit.
 - Already systematic dominant.

BF(B \rightarrow Xs γ) at Belle II

- Mission at Belle II is to reduce the systematic uncertainty with huge data.
- Large uncertainties for inclusive analysis for E_{γ} >1.8GeV are
 - Other backgrounds (hadron, radiative meson decays, electron, etc) 3.7%
 - Hadronic interaction to Caloriemeter will be able to be calibrated and modeled in MC.
 - Stat. error 3.2%
 - Efficiency modeling with HQE parameters 2.5%
 - Now, conservatively taken. Precision of HQE parameters, m_b and μ_{π}^2 , will be better.
 - Eta background 2.2%
 - eta spectrum can be measured precisely.
- Conservatively estimated, 3.9% total error will be reachable with 50/ab which is comparable to uncertainty due to nonpertubartive effect (which is very hard to reduce) in theory.

Individual contributions to the total uncertainty are of nonperturbative ($\pm 5\%$), higher-order ($\pm 3\%$), interpolation ($\pm 3\%$), and parametric ($\pm 2\%$) origin. They are combined

M. Misiak et al, Phys. Rev. Lett. 114, 221801 (2015)

• We can also measure the BF with E_{γ} >1.6GeV (w/o extrapolation).

$A_{CP}(B \rightarrow X_{s+d} \gamma) \text{ and } \Delta A_{CP}(B \rightarrow X_s \gamma)$

- Prediction of $A_{CP}(B \rightarrow X_s \gamma)$ in SM has larger uncertainty than previously expected due to resolved photon.
- However, A_{CP} for sum of b→sγ and b→dγ is predicted as negligibly small thanks to Unitarity of CKM matrix.

Channel	$A_{\rm CP}({\rm SM})$
$B \rightarrow X_s \gamma$	[-0.6% , +2.8%]
$B \rightarrow X_d \gamma$	[-62%, +14%]
$B \rightarrow X_{s+d} \gamma$	0

- Further, difference of $A_{CP}(B \rightarrow X_s \gamma)$ btw charged and neutral B mesons $(\Delta A_{CP}(B \rightarrow X_s \gamma))$ is sensitive to phase in C_7 or C_8 .
 - − In the SM , phases in C₇ and C₈ are zero $\rightarrow \Delta A_{CP} = 0$.

$$\Delta \mathcal{A}_{X_s \gamma} \equiv \mathcal{A}_{X_s^- \gamma} - \mathcal{A}_{X_s^0 \gamma} \approx 4\pi^2 \alpha_s \frac{\tilde{\Lambda}_{78}}{m_b} \operatorname{Im} \frac{C_{8g}}{C_{7\gamma}}$$
$$\approx 12\% \times \frac{\tilde{\Lambda}_{78}}{100 \,\mathrm{MeV}} \frac{r_8}{r_7} \sin(\theta_8 - \theta_7)$$

• If either is deviated from null, clear NP signal!

M. Benzke et al, PRL 106, 141801 (2011)

Akimasa Ishikawa

MIAPP 20161109 T. Hurth, E. Lunghi and W. Porod, Nucl. Phys. B 704, 56 (2005). L. Pesantez et al (Belle Collaboration) PRL 114, 151601 (2015)

Measurement of $A_{CP}(B \rightarrow X_{s+d}\gamma)$ at Belle

- If deviated from 0, clear new physics signal.
- Inclusively reconstruct photon with $1.7 < E_{\gamma} < 2.8 \text{GeV}$
- High momentum lepton to tag flavor of the other B
 - Correction of mixing applied
- Belle performed world best measurement
 - Even better than PDG 2015!

Measurement of $\Delta A_{CP}(B \rightarrow X_s \gamma)$ at Babar

- Only measured by Babar.
 - Belle analysis is on-going.
- Sum-of-exclusive with 38 decay modes.
 - Only self-tagged modes were used.

 $\Delta A_{X_s\gamma} = +(5.0 \pm 3.9 \pm 1.5)\%$

- Quoted systematic error is conservative.
 - According to the paper and corresponding PhD thesis, very conservatively took quadratic sum of uncertainties of A_{CP} for charged and neutral B even part of the systematic errors cancel out.

Ex. Detector asymmetry

$A_{CP}(B \rightarrow X_{s+d}\gamma)$ and $\Delta A_{CP}(B \rightarrow X_s\gamma)$ at Belle II

- In asymmetry (difference) measurements, most of systematic error cancel out, so both are still statistically dominated at Belle II with 50/ab.
 - Uncertainty in A_{CP} to be $\pm 0.61\% \rightarrow 3.4\sigma$ if the central value not change
 - − Uncertainty in ΔA_{CP} to be ±0.37% → 13.5 σ if the central value not change

Photon Polarization in $b \rightarrow s\gamma$

- In the SM, photon is predominantly left-handed $b \rightarrow s_{L}\gamma_{L}$.
 - Right-handed is suppressed by $O(m_s/m_b)$

$$\mathcal{O}_{7\gamma} = \frac{e}{16\pi^2} m_b \overline{s}_{\alpha L} \sigma^{\mu\nu} b_{\alpha R} F_{\mu\nu}$$
$$\mathcal{O}_{7\gamma}' = \frac{e}{16\pi^2} m_b \overline{s}_{\alpha R} \sigma^{\mu\nu} b_{\alpha L} F_{\mu\nu}$$

- If new physics has right-handed current, fraction of right-handed polarized photon could be larger than SM.
 - Ex. LRSM, SUSY
- There are four methods to measure photon polarization
 - Time dependent CPV in $B \rightarrow f_{CP} \gamma \leftarrow$ Golden modes
 - − A_{UD} in $B \rightarrow K_1(K\pi\pi)\gamma$
 - Very low q^2 analysis in $B \rightarrow K^*ee$
 - Photon conversion

This topic was already given by Luigi, but I would repeat this since this measurement is really important **Time Dependent CPV in B^0 \rightarrow K^{*0}\gamma**

• Time dependent CPV in $B^0 \rightarrow K^{*0}\gamma$ is small in the <u>SM</u>.

$$\left|S_{CP}\right| \approx \frac{2m_s}{m_b} \sin 2\phi_1 \,\, \sim \text{a few \%}$$

In the B2TiP program, prediction of S is converged to be small (not as large as 0.1). How about $B^0 \rightarrow Ks\pi^0\gamma$ case (not from K*)?

• If right-handed new physics contributes to the decay, larger CPV is possible

$$\mathcal{S} \approx \xi \frac{2\mathcal{I}m[e^{-i\phi_q} \, \mathcal{C}_{_{7}}\mathcal{C}_{_{7}}'|}{|\mathcal{C}_{_{7}}|^2 + |\mathcal{C}_{_{7}}'|^2}$$

- LHCb can also measure photon polarization in $B_s \rightarrow \phi \gamma$ from $A^{\Delta\Gamma}$
 - − Recently paper was published but it seems vertexing with ϕ →KK is hard due to collinear kaons and the sensitivity is not good.

Akimasa Ishikawa

dotted : helicity flip MIAPP 20161109

red : helicity flip + NP

Measurement of $S(B^0 \rightarrow K^{*0}\gamma)$

• Both Belle and Babar performed the analysis with 535M and 467M BB pairs.

 $S_{K^{*0}\gamma} = -0.32^{+0.36}_{-0.33} \pm 0.05$ (Belle) $S_{K^{*}\gamma} = -0.03 \pm 0.29 \text{ (stat)} \pm 0.03 \text{ (syst) (Babar)}$

 Belle result is slightly worse than Babar's since # of Ks with vertex hits which can be used for TCPV analysis are smaller due to smaller vertex detector.

$S(B^0 \rightarrow K^{*0}\gamma)$ at Belle II

- Belle II vertex detector becomes larger
 - R of second outmost layer is 11.5cm (was 6cm)
 - 30% more Ks with vertex hits available.
- Effective tagging efficiency is 13% better
 - This is old estimation. Current one is much better!
- We can reach 0.03 uncertainty on S.
 - Still statistically dominated

◄

EW Penguin Decays

b→sl+l-

- $b \rightarrow sl+l-$ decay is sensitive to Wilson coefficients C₇, \mathcal{R}_{K}^{-1} C₉ and C₁₀
- LHCb reported two anomalies in this process
 - − LFU violation in $B^+ \rightarrow K^+ I + I : 2.6\sigma$
 - − P5' in $B^0 \rightarrow K^{*0}$ + l : ~4 σ (adding Belle result)
 - Charm loop????
- Global fit to $b \rightarrow$ s processes shows deviation of C₉

What Belle can do for $b \rightarrow sl+l-?$

- LHCb dominates measurements with exclusive dimuon final states
- Belle can do better for
 - Inclusive analysis
 - Reconstruction of neutrals Ks and π^0 needed for sum-of-exclusive analysis.
 - Fully inclusive dilepton analysis????
 - LFU test
 - Electron modes
 - Radiative photon correctly included at LHCb?
 - (Search for tau modes)
 - BF ~< O(10⁻⁵) at 95%CL at Belle II

Measurement of $BF(B \rightarrow XsI+I-)$

- Clean prediction is available
 - NNLO in QCD, NLO in QED
 - Experimental cut on M_{xs}<2.0GeV introduce only 5% additional theory error due to subleading shape function (T. Hurth@Barcelona2016)
- Babar with full data while Belle with 140/fb (1/5 of full data)
 - With sum-of-exclusive method
 - M_{Xs} < 2.0GeV
 - Still statistically dominated.
 - Belle analysis for final result is on-going
- Belle and Babar results on BF at high q² region is slightly larger.

T. Huber, T. Hurth and E. Lunghi JHEP 1506 (2015) 176 Akimasa Ishikawa MIAPP 20161109

 $\mathcal{B}(\bar{B} \to X_s \ell^+ \ell^-)^{\text{exp}}_{\text{low}}$ [1,6]GeV²

 $(1.493 \pm 0.504^{+0.411}_{-0.321}) \times 10^{-6}$ (Belle, $\ell\ell$)

- $(1.93^{+0.47+0.21}_{-0.45-0.16} \pm 0.18) \times 10^{-6}$ (BaBar, ee)
- $(0.66^{+0.82+0.30}_{-0.76-0.24} \pm 0.18) \times 10^{-6}$ (BaBar, $\mu\mu$)

$$(1.6^{+0.41+0.17}_{-0.39-0.13} \pm 0.18) \times 10^{-6}$$
 (BaBar, $\ell\ell$)

$$(1.67 \pm 0.10) \cdot 10^{-6}$$
 ee
 $(1.62 \pm 0.09) \cdot 10^{-6} \mu\mu$ (HHL prediction)

 $\mathcal{B}(\bar{B} \to X_{s}\ell^{+}\ell^{-})^{\exp}_{\text{high}} \qquad [14.4,]\text{GeV}^{2}$ $(0.418 \pm 0.117^{+0.061}_{-0.068}) \times 10^{-6} \quad (\text{Belle}, \ell\ell)$ $(0.56^{+0.19+0.03}_{-0.18-0.03} \pm 0.00) \times 10^{-6} \quad (\text{BaBar}, ee)$ $(0.60^{+0.31+0.05}_{-0.29-0.04} \pm 0.00) \times 10^{-6} \quad (\text{BaBar}, \mu\mu)$ $(0.57^{+0.16+0.03}_{-0.15-0.02} \pm 0.00) \times 10^{-6} \quad (\text{BaBar}, \ell\ell).$ $(2.20 \pm 0.70) \cdot 10^{-7} \text{ ee}$ $(2.53 \pm 0.70) \cdot 10^{-7} \text{ }\mu\mu \qquad (\text{HHL prediction})$

Hurth, Mahmoudi, Neshatpour JHEP 1412 (2014) 053

Prospects for $BF(B \rightarrow XsI+I-)$

Observables $B(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 6 \text{ GeV}^2)$ $B(B \to X_s \ell^+ \ell^-) \ (q^2 > 14.4 \text{ GeV}^2)$

- Systematic error dominated with 50/ab for both low and high q²
 - Stat error <2%
- Experimental uncertainty is slightly worse than extrapolation by HML while better than theoretical uncertainty.
 - \rightarrow we can extend M_{χ_s}

Akimasa Ishikawa

Measurement of Normalized $A_{FB}(B \rightarrow Xsl^+l^-)$

- A_{FB} (and other angular observables) in exclusive B→K*l⁺l⁻ decays were measured by many experiments while A_{FB} in inclusive decays was only done by Belle
- Different systematic uncertainties in inclusive decays from those in exclusive decays.
 - Important tool for independent check of C₉ deviation

- Helicity decomposition is also important but not measured yet
 - H_{T}, H_{L}, H_{A} $A_{FB} = 3H_{A} / 4(H_{T} + H_{L})$

K. S. M. Lee et al., PRD 75, 034016 (2007)

Y. Sato, A. Ishikawa, et al. (Belle Collaboration) PRD 93 032008 (2016)

711fb⁻¹

Measurement of $A_{FB}(B \rightarrow X_s l^+ l^-)$

- With Sum-of-exclusive
 - Reconstruct 36 decay modes
 - MXs<2.0GeV
- 20 self-tag decay modes used to measure normalized A_{FB}

$$\mathcal{A}_{\rm FB}(q_{\rm min}^2, q_{\rm max}^2) = \frac{\int_{q_{\rm max}^2}^{q_{\rm max}^2} dq^2 \int_{-1}^1 d\cos\theta \, \mathrm{sgn}(\cos\theta) \frac{d^2\Gamma}{dq^2d\cos\theta}}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} dq^2 \int_{-1}^1 d\cos\theta \frac{d^2\Gamma}{dq^2d\cos\theta}}$$

• The result is consistent with a SM prediction within large error.

$A_{FB}(B \rightarrow X_{s}I^{+}I^{-})$ at Belle II

- Naïve estimation.
 - Systematic error (<1%) is smaller than statistical error with 50/ab
 - 3.1% for bin1 [1, 3.5]GeV²
 - 2.9% for bin2 [3.5, 6]GeV²
 - I would compare the results again with HMN but they gave unnormalized A_{FB}
 - Since a part of experimental systematic error cancels out, prediction of normalized A_{FB} would be also preferable.
 - The results at Belle II are still larger than theoretical uncertainties.

Hurth, Mahmoudi, Neshatpour JHEP 1412 (2014) 053

Wilson Coefficients from inclusive $b \rightarrow$ sll

- This includes measurement of helicity decomposition
 - Belle II projections : Yellow
 - We should make the plot and compare with exclusive one

Inclusive dilepton with Hadronic B tagging

- To avoid the uncertainty due to subleading shape function, theorists prefer not to apply M_{xs} selection
- One possible way is that the other B meson is tagged with hadronic decays, and then looking at only dilepton
 - With this method, we expect a few 100 signal events with 50/ab.
 - While we need to suppress b→cl⁻v, c→sl⁺v background whose BF is about 1% (2500 times larger than signal)
 - Vertexing of dilepton might help
 - Lepton from c→sl⁺v is soft so high q² region might have better S/N (while low q2 region is much more interesting.)
- Anyway we need the simulation study.

$R_{\rm K},\,R_{\rm K^*}$ and $R_{\rm Xs}$

• R_{κ} is very clean observable in the SM

$$R_K = \frac{\mathcal{B}(\bar{B} \to \bar{K}\mu\mu)}{\mathcal{B}(\bar{B} \to \bar{K}ee)} = 1.0003 \pm 0.0001$$
C. Bob

C. Bobeth, G. Hiller and G. Piranishvili, JHEP 0712, 040 (2007)

- At Belle, efficiencies for muon and electron modes are almost same, and both can be extracted Mbc distributions which are very similar.
- By taking the ratio, almost all errors cancel out
 - Except lepton ID systematics

$R_{K},\,R_{K^{\ast}}$ and R_{Xs} at Belle

- $R_{K(*)}$ Reported with 605fb⁻¹ for full q² range <u>PRL 103, 171801 (2009)</u> $R_{K^*} = 0.83 \pm 0.17 \pm 0.08,$ $R_{K^*}^{SM} = 0.75$ $R_K = 1.03 \pm 0.19 \pm 0.06.$ $R_K^{SM} = 1$
- No measurement on R_{Xs} yet but can be obtained from BF analysis with 140fb⁻¹
 PRD 72, 092005 (2005)

$$- R_{\chi_s} = 1.0 \pm 0.4$$

Mode	$N_{ m sig}$	Significance	ϵ (%)	\mathcal{B} ($ imes$ 10 ⁻⁶)
$X_s e^+ e^-$	$31.8 \pm 10.2 \pm 3.1$	3.2	$2.59 \pm 0.20^{+0.45}_{-0.42}$	$4.04 \pm 1.30^{+0.87}_{-0.83}$
$X_s \mu^+ \mu^-$	$36.3 \pm 9.3 \pm 2.1$	4.4	$2.89 \pm 0.24^{+0.52}_{-0.49}$	$4.13 \pm 1.05^{+0.85}_{-0.81}$
$X_s \ell^+ \ell^-$	$68.4 \pm 13.8 \pm 5.0$	5.4	$2.74 \pm 0.22 \substack{+0.48 \\ -0.45}$	$4.11 \pm 0.83 \substack{+0.85 \\ -0.81}$

- We can measure both low (1-6GeV²) and high q² (>14.4GeV²)region
- Ultimately, almost all systematics cancel except lepton ID systematics

Prospects for R_K , R_{K^*} and R_{Xs}

• Even with 50ab⁻¹, still statistically dominated.

δ 7×

Lepton ID systematics is about $\pm 0.4\%$ at Belle II.

- If P_5' is deviated from the SM, next will be LFU Violation of P_5' , defined as $Q_5 = P_5'^{\mu} - P_5'^{e}$
- No experiments measure this observable yet
- Now we are estimating the uncertainty at Belle II.
 - Hope this will be included to B2TiP
- My naïve estimation is
 - 0.04 for [4,8]GeV²
 - We can observe the NP with $C_{9\mu}^{NP}$ = -1.11

B. Capdevila et al, JHEP 10 (2016) 075

MIAPP 20161109

Summary

- With the better detector Belle II and higher luminosity machine SuperKEKB, we can deeply search for NP with Radiative and EW Penguin decays
- But there are many observables which are still statistically dominated.
- LHCb upgrade is planned in HL-LHC era (not approved yet).
 22/fb → 50/fb
- Hope Belle II/SuperKEKB also upgrade
 - Crab waist scheme planed at Italian SuperB, which is not adopted by SuperKEKB, can increase the luminosity about 3 time???
 - 50/ab → 150/ab???

backup

Search for $B \rightarrow hvv$

- If C₉ is deviated from the SM value, vector current in b→svv could be also affected in some BSM models?
- Proceeds via penguin or box diagrams
- Theoretically very clean.
 - − No charm loop as in $b \rightarrow sl^+l^-$
- Experimentally, need to tag the other B meson due to final states having multiple neutrinos.
- Hadronic B decays are used for tag side.

A. Buras, et al. JHEP 02 184 (2015)

Mode	$\mathcal{B}~[10^{-6}]$
$B^+ o K^+ u ar{ u}$	$3.98 \pm 0.43 \pm 0.19$
$B^0 o K^0_{ m S} u ar{ u}$	$1.85 \pm 0.20 \pm 0.09$
$B^+ \to K^{*+} \nu \bar{\nu}$	$9.91 \pm 0.93 \pm 0.54$
$B^0 o K^{*0} u ar{ u}$	$9.19 \pm 0.86 \pm 0.50$

MIAPP 20161109

Current Situation

- Babar : upper limit on $B \rightarrow K^+ vv$: 3 times larger
- Belle : upper limit on $B \rightarrow K^* vv$: 5 times larger
- At Belle II, we can observe the decays
 - Now we are estimating the sensitivities.

