

CL

ERN

Mark Whitehead on behalf of LHCb Flavour Physics with High-Luminosity Experiments Workshop

MIAPP, Germany

Introduction

- Why are we still measuring $\gamma?$
 - Least well known angle of the CKM unitarity triangle
 - Tree-level determination and extremely clean (theoretically)
 - Loop-level access to look for NP

$$\gamma = (73.2^{+6.3}_{-7.0})^\circ$$
 [CKM fitter] $\gamma = (68.3 \pm 7.5)^\circ$ [UT fit]

- Whats new from LHCb?
 - New decay modes
 - Updates to our full Run I sample
 - New combination

Detector

- Its all in the name beauty at the LHC
 - During Run I we collected $3fb^{-1}$
 - Run II at 13TeV more events per fb^{-1}

Excellent tracking and vertex resolution

Particle ID for $K\pi$ separation

Exploit B and D meson flight distance to ^{10m} uppress backgrounds

How to measure γ

New results from LHCb

- Several new or updated inputs into the combination
 - Two body GLW/ADS [M. Gronau, D. Wyler, Phys. Lett. B265 (1991) 172] [M. Gronau, D. London, Phys. Lett. B253 (1991) 483]

$$B^{\pm} \to DK^{\pm}, D \to h^{+}h^{'-}$$

• Four body GLW/ADS [D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78 (1997) 3257, Phys. Rev. D63 (2001) 036005]

$$B^{\pm} \to DK^{\pm}, D \to h^+ \pi^- \pi^+ \pi^-$$

• GGSZ [A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D68 (2003) 054018]

$$B^0 \to DK^{*0}, D \to K^0_S \pi^+ \pi^-$$

• GLW-Dalitz [T. Gershon, Phys. Rev. D79 (2009) 051301] [T. Gershon, M. Williams, Phys. Rev. D80 (20

T. Gershon, M. Williams, Phys. Rev. D80 (2009) 092002]

$$D \to T + - T \to h +$$

$$B^0 \to DK^+\pi^-, D \to h^+h^-$$

New results from LHCb

Several new or updated inputs into the combination
Two body GLW/ADS

Update of LHCb Combination Four body GLW/ADS of B o DK like decays $\pi^+\pi^-\pi^+\pi^$ and all B o Dh decays

 Several new or updated inputs into the combination Two body GLW/ADS $B^{\pm} \to DK^{\pm}, D \to h^{+}h^{'-}$ Four body GLW/ADS $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-}$ GGSZ $B^0
ightarrow DK^{*0}, D
ightarrow K^0_S \pi^+ \pi^-$ GLW-Dalitz $B^0 \to DK^+\pi^-, D \to h^+h^-$

Two and four body GLW/ADS

- Look at $B \to Dh$ decays
 - GLW: $D \to K^+ K^-, \pi^+ \pi^-, 2\pi^+ 2\pi^-$
 - ADS: $D \to K^+\pi^-, \pi^+K^-, K^+\pi^-\pi^+\pi^-, \pi^+K^-\pi^+\pi^-$

- Share signal shape parameters between 2(4) body modes
- Constrain crossfeed between DK and $D\pi$ modes (PID)
- Use $D\pi$ as a control mode; charmless background etc

ADS favoured signals

Mass fits for the favoured modes

Low combinatorial background and tiny cross-feed contributions

2 body ADS suppressed signals

Visible CP violation

$$B^{\pm} \to [\pi^{\pm} K^{\mp}]_D K^{\pm} \qquad 553 \pm 34 \\ B^{\pm} \to [\pi^{\pm} K^{\mp}]_D \pi^{\pm} \qquad 1360 \pm 44$$

Around 8 sigma!

10/11/2016

 $A_{\text{ADS}(K)}^{\pi K} = -0.403 \pm 0.056 \pm 0.011 \quad A_{\text{ADS}(\pi)}^{\pi K} = 0.100 \pm 0.031 \pm 0.009$

Phys. Lett. B760 (2016) 117 10

4 body ADS suppressed signals

• Visible CP asymmetry

10/11/2016

$$B^{\pm} \to [\pi^{\pm} K^{\mp} \pi^{+} \pi^{-}]_{D} K^{\pm} \qquad 159 \pm 17$$

$$B^{\pm} \to [\pi^{\pm} K^{\mp} \pi^{+} \pi^{-}]_{\pi^{\pm}} \qquad 530 \pm 26$$

Close to 3 sigma evidence

 $A_{\text{ADS}(K)}^{\pi K \pi \pi} = -0.313 \pm 0.102 \pm 0.038 \quad A_{\text{ADS}(\pi)}^{\pi K \pi \pi} = 0.023 \pm 0.048 \pm 0.005$

Phys. Lett. B760 (2016) 117 11

2 body GLW modes

Small asymmetries seen

 $B^{\pm} \rightarrow [K^+ K^-]_D K^{\pm}$ 3816 ± 92 $B^{\pm} \to [\pi^+\pi^-]_D K^{\pm}$ 1162 ± 48 About 5 sigma combined!

400vents / (10 MeV/e²) LHCD LHCb 300 $B \rightarrow K K K$ 200100150Events / (10 MeV/r² LHCb LHCb 100 ->[π π]₀K $B \rightarrow [\pi \pi], K$ 50 5400 5300 5400 \$500 5100 5200 5300 5500 5100 5200 $m(Dh^{\pm})$ [MeV/ c^{2}] $A_{\kappa}^{KK} = 0.087 \pm 0.020 \pm 0.008$ $A_{K}^{\pi\pi} = 0.128 \pm 0.037 \pm 0.012$

4 body GLW mode

• First use of this mode! $B^{\pm} \to [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D} K^{\pm}$ 1497 ± 60 • Decay ~75% CP even $B^{\pm} \to [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D} \pi^{\pm}$ 19,360 ± 150

10/11/2016

Phys. Lett. B760 (2016) 117 13

 Several new or updated inputs into the combination Two body GLW/ADS $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}h^{'-}$ Four body GLW/ADS $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-}$ GGSZ $B^0 \to DK^{*0}, D \to K^0_S \pi^+ \pi^-$ GLW-Dalitz $B^0 \to DK^+\pi^-, D \to h^+h^-$

- Can also consider the neutral B channels
 - Decay chain $B^0 \to DK^{*0}, D \to K^0_S \pi^+ \pi^-$
 - Yields lower than $B^{\pm} \to DK^{\pm}$ but $r_{B^0} \approx 3r_B$
 - Model dependent uses model from BaBar (focus of this talk)
 - Model independent takes input from CLEO
 - Totally consistent results with comparable uncertainties

- Analysis strategy (model dependent)
 - First perform a fit to the B mass
 - Candidates within the black lines used in the CP fit
 - Fit the D Dalitz plot with the BaBar model
 - Note we couldn't use the Belle model

 B^0 plots

 \geq^{+1}

- Model dependent results
 - Extract cartesian parameters from CP fit
 - No CPV at 2 sigma
 - 3rd uncertainty from DP model
 - Stat uncertainties dominate

$$x_{-} = -0.15 \pm 0.14 \pm 0.03 \pm 0.01$$

$$y_{-} = 0.25 \pm 0.15 \pm 0.06 \pm 0.01$$

$$x_+ = 0.05 \pm 0.24 \pm 0.04 \pm 0.01$$

 $y_+ = -0.65 \begin{array}{c} +0.24 \\ -0.23 \end{array} \pm 0.08 \pm 0.01,$

 $x_{\pm} = r_B \cos(\delta_B \pm \gamma) \quad y_{\pm} = r_B \sin(\delta_B \pm \gamma)$

 Several new or updated inputs into the combination Two body GLW/ADS $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}h^{'-}$ Four body GLW/ADS $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-}$ GGSZ $B^0
ightarrow DK^{*0}, D
ightarrow K^0_S \pi^+ \pi^-$ GLW-Dalitz $B^0 \to DK^+\pi^-, D \to h^+h^-$

GLW-Dalitz analysis

- Measure γ using $B^0
 ightarrow DK^+\pi^-$ decays
 - Use CP even modes $D \to K^+ K^-, \pi^+ \pi^-$
 - Bin in output of the neural network
 - Simultaneous DP fit

10/11/2016

• Purity of the GLW modes hurt by $B_s^0 \rightarrow D^{(*)} K^- \pi^+ \text{contributions}$

Data

Total fit

 $B^0_{(s)} \rightarrow DK^{\pm}\pi^{\mp}$

 $B^{0}_{(s)} \to D^{\star} K^{\pm} \pi^{\mp}$ $B^{0} \to D^{(\star)} \pi^{+} \pi^{-}$

 $\overline{\Lambda}_{\rm b}^{0} \to D^{(\star)} \pi^{+} \overline{p}$ $\overline{\Lambda}_{\rm b}^{0} \to D^{(\star)} K^{+} \overline{p}$

Combinatorial background Part. comb. background

GLW-Dalitz analysis

- Amplitude fit based on previous results (see backups)
 - First time this method has been used
 - Use to $D \to K^+\pi^-$ help guide the fit no CPV allowed
 - Include CPV for K*(892) amplitude

$$\mathcal{A}\left(m^{2}(D\pi^{-}), m^{2}(K^{+}\pi^{-})\right) = \sum_{j=1}^{N} c_{j} F_{j}\left(m^{2}(D\pi^{-}), m^{2}(K^{+}\pi^{-})\right) \quad c_{j} \longrightarrow \begin{cases} c_{j} & \text{for a } D\pi^{-} \text{ resonance }, \\ c_{j}\left[1 + x_{\pm,j} + iy_{\pm,j}\right] & \text{for a } K^{+}\pi^{-} \text{ resonance }, \end{cases}$$

GLW-Dalitz analysis

- Cartesian parameters reported
 ⁺
 - Consistent with no CPV
 - Statistics the biggest factor

 $x_{+} = 0.04 \pm 0.16 \pm 0.11$ $x_{-} = -0.02 \pm 0.13 \pm 0.14$ $y_{+} = -0.47 \pm 0.28 \pm 0.22$ $y_{-} = -0.35 \pm 0.26 \pm 0.41$

- Report quasi-two-body values
 - Help combine with $B^0 \to DK^{*0}$ results
 - Coherence factor, relative magnitudes and strong phases

 $\kappa = 0.958 \,{}^{+0.005}_{-0.010} \,{}^{+0.002}_{-0.045} \,, \quad \bar{R}_B = 1.02 \,{}^{+0.03}_{-0.01} \pm 0.06 \,, \quad \Delta \bar{\delta}_B = 0.02 \,{}^{+0.03}_{-0.02} \pm 0.11$

Phys. Rev. D93 (2016) 112018 22

Several new or updated inputs into the combination Two body GLW/ADS $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}h^{'-}$ • Four Update of LHCb γ combination $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-}$ ${\scriptstyle \bullet}\,{\scriptstyle \mathsf{GGSZ}}$ of B ightarrow DK like decays $B^0 ightarrow DK^{*0}, D ightarrow K^0_S \pi^+ \pi^-$ GLW-Dalitz $B^0 ightarrow DK^+\pi^-, D ightarrow h^+h^-$

- Best knowledge from combining all LHCb analyses
 - Previous result from 2014
 - Only $B \to DK$ like decays
 - $B^+ \to DK^+, D \to h^+h^-, \text{GLW/ADS}, 3 \text{ fb}^{-1}$
 - $B^+ \to DK^+$, $D \to h^+ \pi^- \pi^+ \pi^-$, quasi-GLW/ADS, $3 \, \text{fb}^{-1}$
 - $B^+ \to DK^+$, $D \to h^+ h^- \pi^0$, quasi-GLW/ADS, $3 \, \text{fb}^{-1}$
 - $B^+ \to DK^+, \ D \to K^0_{\rm s} h^+ h^-$, model-independent GGSZ, $3 \, {\rm fb}^{-1}$
 - $B^+ \rightarrow DK^+$, $D \rightarrow K^0_{\scriptscriptstyle \rm S} K^+ \pi^-$, GLS, $3\,{\rm fb}^{-1}$
 - $B^0 \rightarrow DK^+\pi^-, D \rightarrow h^+h^-, \text{GLW-Dalitz}, 3 \text{ fb}^{-1}$
 - $B^0 \rightarrow DK^{*0}$, $D \rightarrow K^+\pi^-$, ADS, $3 \,\mathrm{fb}^{-1}$
 - $B^0 \to DK^{*0}, D \to K^0_{\rm s} \pi^+ \pi^-$, model-dependent GGSZ, 3 fb⁻¹
 - $B^+ \to DK^+\pi^+\pi^-, D \to h^+h^-, \text{GLW/ADS}, 3 \text{ fb}^{-1}$
 - $B_s^0 \to D_s^{\mp} K^{\pm}$, time-dependent, 1 fb⁻¹

New or updated since the above result

Work in progress: $3fb^{-1}$

New - arXiv 1611.03076, old - LHCb-CONF-2014-004

- New DK combination
 - Frequentist results here
 - Bayesian results agree well
 - Coverage is good

$$\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$$

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	72.2	[64.9, 79.0]	[55.9, 85.2]	[43.7, 90.9]
r_B^{DK}	0.1019	$\left[0.0963, 0.1075 ight]$	[0.0907, 0.1128]	[0.0849, 0.1182]
$\delta_B^{DK}(^\circ)$	142.6	[136.0, 148.3]	[127.8, 153.6]	[116.2, 158.7]
$r_B^{DK^{*0}}$	0.218	[0.171, 0.263]	[0.118, 0.305]	[0.000, 0.348]
$\delta_B^{DK^{st 0}}(^\circ)$	189	[169, 212]	[148, 241]	[123, 283]

Improvement on 2014 result

Around 2 or 3 degrees more precise

 $\gamma \in [64.9, 79.0]^{\circ}$ at 68.3% CL $\gamma \in [55.9, 85.2]^{\circ}$ at 95.5% CL

$$\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$$

Still more from Run I?

$$B_s^0 \to D_s^{\mp} K^{\pm}$$
$$B^{\pm} \to D^* K^{\pm}$$
$$B^{\pm} \to D K^{*\pm}$$

Several new or updated inputs into the combination Update of LHCb γ combination of B o Dh like decays

- Try to squeeze sensitivity from $B \to D\pi$ like decays
 - Previous result from 2014
 - Several additional inputs w.r.t. the DK only combination

$$B^+ \to D\pi, \ D \to h^+ h^-$$

$$B^+ \to D\pi, \ D \to h^+ \pi^- \pi^+ \pi^-$$

- $B^+ \to D\pi, \ D \to h^+ h^- \pi^0$
- $B^+ \to D\pi\pi\pi, \ D \to h^+h^-$
 - Observables: 71 \rightarrow 89 and parameters 32 \rightarrow 38

New - arXiv 1611.03076, old - LHCb-CONF-2014-004

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	73.5	[70.5, 76.8]	[56.7, 83.4]	[40.1, 90.8]
r_B^{DK}	0.1017	$\left[0.0970, 0.1064 ight]$	[0.0914, 0.1110]	$\left[0.0844, 0.1163 ight]$
$\delta^{DK}_B(^\circ)$	141.6	[136.6, 146.3]	[127.2, 151.1]	[114.6, 155.7]
$r_B^{DK^{st 0}}$	0.220	[0.173, 0.264]	[0.121, 0.307]	[0.000, 0.355]
$\delta_B^{DK^{st 0}}(^{\circ})$	188	[168, 211]	[148, 239]	[120, 280]
$r_B^{D\pi}$	0.027	[0.0207, 0.0318]	[0.0020, 0.0365]	[0.0008, 0.0425]
$\delta_B^{D\pi}(^\circ)$	348.3	[343.2, 352.9]	[220.5, 356.4]	[192.9, 359.8]

Bayesian combination favours low $r_B^{D\pi}$ solution instead, but everything is consistent at the 2 sigma level

31

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	73.5	[70.5, 76.8]	[56.7, 83.4]	[40.1, 90.8]
r_B^{DK}	0.1017	$\left[0.0970, 0.1064 ight]$	[0.0914, 0.1110]	$\left[0.0844, 0.1163 ight]$
$\delta_B^{DK}(^\circ)$	141.6	[136.6, 146.3]	[127.2, 151.1]	[114.6, 155.7]
$r_B^{DK^{st 0}}$	0.220	[0.173, 0.264]	$\left[0.121, 0.307\right]$	[0.000, 0.355]
cDK^{*0}	100	[100 011]		

Such differences are not uncommon in the presence of a highly non-Gaussian likelihood function

Note that both frameworks find the same χ^2 minima

Summary

- New inputs to the combinations
 - New decay modes and methods used for the first time
 - Both DK only and Dh combinations performed
 - Reached the expected Run I sensitivity

$$\gamma = (72.2 \, {}^{+6.8}_{-7.3})^{\circ}$$

- Time for a rest?
 - Plenty still to do!
 - New decay modes and updates from Run I
 - Should more than double the data sample with Run II

Outlook

- What comes next?
 - More channels for both B and D decays from Run I and II

$$B^{+} \rightarrow D^{*0}K^{+}$$
$$B^{+} \rightarrow D^{0}K^{*+}$$
$$B^{0} \rightarrow D^{\mp}\pi^{\pm}$$
$$B^{0} \rightarrow D^{\mp}\pi^{\pm}$$
$$B^{0} \rightarrow D^{\mp}sK^{\pm}$$
$$B^{0} \rightarrow D^{s\mp}sK^{\pm}$$
$$D \rightarrow KK\pi\pi$$
$$D \rightarrow KK\pi\pi^{0}$$

All are being investigated, some in preparation for CKM 2016

Outlook

Looking deeper into the crystal ball

Sample	$\mathcal{L} (\mathrm{fb}^{-1})$	Units of Run I
Run I	3	1
Run II	5	3
Upgrade	≈ 50	≈ 60
Future upgrade	≈ 300	≈ 360

- Beauty cross section up by more than a factor 2 and small increases in trigger and selection efficiencies
- Hadronic trigger efficiency should roughly double

Outlook

- Target sub-degree precision
 - Indirect measurements give γ to $(^{+1.0}_{-3.7})^\circ$
 - Lattice improvements will decrease the uncertainties
 - Expect statistical uncertainties to scale with data samples
 - Systematic uncertainties should also decrease

Sample	$\sigma_{ m stat}(^{\circ})$
Run I	8
Run II	4
Upgrade	≈ 1
Future upgrade	< 0.5

• Anticipate similar precision to Belle II in upgrade era

Conclusion

- LHCb has made a big impact measuring γ
 - Hope to halve our uncertainties in Run II
 - Things should get exciting in the upgrade era (2021 ->)
 - We look forward to healthy competition with Belle II
 - Many areas where we can complement each other

CKM picture

Gammacombo

- Framework available for anyone to use
 - See HEP Forge for more details
 - <u>http://gammacombo.hepforge.org/web/HTML/index.html</u>
- Used for the combinations in this talk
 - Frequentist treatment

Reading x and y

2 body GLW modes

• Not much to see...

10/11/2016

$B^{\pm} \to [K^+ K^-]_D \pi^{\pm}$	$50,140 \pm 270$
$B^{\pm} \to \left[\pi^{+}\pi^{-}\right]_{D}\pi^{\pm}$	$14,\!680\pm130$

 $A_{\pi}^{KK} = -0.0145 \pm 0.0050 \pm 0.0017 A_{\pi}^{\pi\pi} = 0.0043 \pm 0.0086 \pm 0.0031$

GLW-Dalitz

Table 8: Results for the complex coefficients c_j from the fit to data. Uncertainties are statistical only. All reported quantities are free to vary in the fit, except that the $D_2^*(2460)^-$ component is fixed as a reference amplitude, and the magnitude of the $D_{s1}^*(2700)^+$ component is constrained. The $K^+\pi^-$ S-wave is the coherent sum of the $K_0^*(1430)^0$ and the nonresonant $K\pi$ S-wave component [45].

Resonance	Real part	Imaginary part
$K^{*}(892)^{0}$	-0.07 ± 0.10	-1.19 ± 0.04
$K^*(1410)^0$	0.16 ± 0.04	0.21 ± 0.06
$K_0^*(1430)^0$	0.40 ± 0.08	0.67 ± 0.06
Nonresonant $K\pi$ S-wave	0.37 ± 0.07	0.69 ± 0.07
$K_2^*(1430)^0$	-0.01 ± 0.06	-0.48 ± 0.04
$D_0^*(2400)^-$	-1.10 ± 0.05	-0.18 ± 0.07
$D_2^*(2460)^-$	1.00	0.00
Nonresonant $D\pi$ S-wave	-0.44 ± 0.06	0.02 ± 0.07
Nonresonant $D\pi$ P-wave	-0.61 ± 0.05	-0.08 ± 0.06
$D_{s1}^*(2700)^+$	0.57 ± 0.05	-0.09 ± 0.19

GLW-Dalitz

DK combination (frequentist)

DK combination (Bayesian)

10/11/2016

arXiv 1611.03076 46

DK combination 2D (frequentist)

DK combination 2D (Bayesian)

10/11/2016

arXiv 1611.03076 48

DK results summary

Table 3: Confidence intervals and central values for the parameters of interest in the frequentist DK combination.

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
$\gamma(^{\circ})$	72.2	[64.9, 79.0]	[55.9, 85.2]	[43.7, 90.9]
r_B^{DK}	0.1019	$\left[0.0963, 0.1075 ight]$	[0.0907, 0.1128]	[0.0849, 0.1182]
$\delta_B^{DK}(^\circ)$	142.6	[136.0, 148.3]	[127.8, 153.6]	[116.2, 158.7]
$r_B^{DK^{st 0}}$	0.218	$\left[0.171, 0.263\right]$	$\left[0.118, 0.305\right]$	[0.000, 0.348]
$\delta_B^{DK^{*0}}(^{\circ})$	189	[169, 212]	[148, 241]	[123, 283]

Table 6: Credibile intervals and most probable values for the hadronic parameters extracted from the DK Bayesian combination.

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
$\gamma(^{\circ})$	70.3	[62.4, 77.4]	[52.6, 83.5]	[42.1, 88.4]
r_B^{DK}	0.1012	$\left[0.0954, 0.1064 ight]$	[0.0900, 0.1120]	[0.0846, 0.1171]
$\delta_B^{\overline{D}K}(^{\circ})$	142.2	[134.7, 148.1]	[125.3, 153.7]	[113.2, 157.9]
$r_B^{DK^{st 0}}$	0.204	[0.149, 0.253]	$\left[0.073, 0.299\right]$	$\left[0.000, 0.322\right]$
$\delta_B^{DK^{st 0}}(^\circ)$	190.3	[165.8, 218.4]	[139.5, 263.4]	$\left[117.8, 292.4\right]$

Bayesian

Dh combination (frequentist)

Dh combination (Bayesian)

Dh combination (frequentist)

Dh combination (Bayesian)

10/11/2016

arXiv 1611.03076 53

Dh combination 2D (frequentist)

10/11/2016

arXiv 1611.03076

Dh combination 2D (Bayesian)

arXiv 1611.03076

Dh results summary

Table 4: Confidence intervals and central values for the parameters of interest in the frequentist Dh combination.

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
$\gamma(^{\circ})$	73.5	[70.5, 76.8]	[56.7, 83.4]	[40.1, 90.8]
r_B^{DK}	0.1017	$\left[0.0970, 0.1064 ight]$	[0.0914, 0.1110]	[0.0844, 0.1163]
$\delta_B^{\overline{D}K}(^{\circ})$	141.6	[136.6, 146.3]	[127.2, 151.1]	[114.6, 155.7]
$r_B^{DK^{st 0}}$	0.220	$\left[0.173, 0.264\right]$	$\left[0.121, 0.307\right]$	[0.000, 0.355]
$\delta_B^{DK^{st 0}}(^{\circ})$	188	[168, 211]	[148, 239]	[120, 280]
$r_B^{D\pi}$	0.027	$\left[0.0207, 0.0318 ight]$	$\left[0.0020, 0.0365 ight]$	$\left[0.0008, 0.0425 ight]$
$\delta^{D\pi}_B(^\circ)$	348.3	$\left[343.2, 352.9\right]$	[220.5, 356.4]	[192.9, 359.8]

Table 7: Credibile intervals and most probable values for the hadronic parameters extracted from the Dh Bayesian combination.

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
$\gamma(^{\circ})$	72.4	[63.9, 79.0]	[52.1, 84.6]	[40.1, 89.5]
r_B^{DK}	0.1003	$\left[0.0948, 0.1057 ight]$	$\left[0.0893, 0.1109 ight]$	$\left[0.0838, 0.1159 ight]$
$\delta_B^{DK}(^\circ)$	141.0	[133.3, 147.5]	[122.1, 153.1]	[108.6, 157.5]
$r_B^{DK^{st 0}}$	0.2072	$\left[0.1514, 0.2555 ight]$	$\left[0.0788, 0.3007 ight]$	$\left[0.0031, 0.3291 ight]$
$\delta_B^{DK^{st 0}}(^{\circ})$	189.8	[166.3, 216.5]	[143.9, 255.2]	[120.2, 286.0]
$r_B^{D\pi}$	0.0043	$\left[0.0027, 0.0063 ight]$	$\left[0.0011, 0.0281 ight]$	$\left[0.0008, 0.0329 ight]$
$\delta^{D\pi}_B(^\circ)$	303.7	[264.7, 332.7]	$\left[231.5, 355.2\right]$	$\left[202.7, 359.0 ight]$

Bayesian

10/11/2016

arXiv 1611.03076

Systematic limitations

Limiting factors in the high-statistics era

Where will we become limited, as things stand:

- Most¹ $B \rightarrow DK$ modes rely on CLEO strong phase measurements at the $\psi(3770)$
- Allows for model independence; crucial in the high-statistics era
- Current systematic due to CLEO inputs $\sim 2^\circ$
- Some D modes not analysed by CLEO; some would benefit from D-phasespace-binned analysis

Available now:

- Quadruplication of the CLEO dataset at BES III (ightarrow systematic $\sim 1^\circ)$
 - Measurement in $D \rightarrow K\pi$ (Int.J.Mod.Phys.Conf.Ser. 31 1460305)
 - Preliminary results in $D \to K_{\rm S}^0 \pi \pi$
- Supplement (but not match) with strong phase measurements in charm mixing

To avoid systematic limitation in the upgrade era:

• Full spectrum of strong phase measurements with full 15-20 fb $^{-1}$ at BES III

$^{-1}$ not, e.g., $B^0_s o D^+_s K$		•	Þ	<∂>	<.≣	× ≣ >	Ę.	~) Q (?~
D. Johnson (CERN)	γ/ϕ_3 at LHCb				13 O	ctober 201	6	31 / 32