INTRO: BELLE 2

BOŠTJAN GOLOB University of Ljubljana/JoŽef Stefan Institute

& Belle/Belle II Collaboration

UNIVERSITY OF LJUBLJANA "JoŽef Stefan" Institute

INTRODUCTION

MISSING ENERGY

(SEMI)INCLUSIVE DECAYS

NEUTRALS

BELLE II: INTRODUCTION

SUMMARY & FUTURE (Belle perspective)

MIAPP, FLAVOUR PHYSICS WITH HIGH-LUMINOSITY EXPERIMENTS

INTRODUCTION

ACCELERATOR "SUPERKEK**B**"

SUPERKEKB:

e⁻ (HER): 7.0 GEV e⁺ (LER): 4.0 GEV

 $E_{CMS} = M(Y(4S))C^2$

 $dN_F/dt = \sigma(e^+e^- \rightarrow f) \mathcal{L}$ $\mathcal{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ Introduction

Inclusive Neutrals Summary

SUPER KEKB LUMINOSITY PLANNING

 ${\tt http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC\%20schedule\%20Beyond\%20LS1\%20MTP\%202015_Freddy_June2015.pdf$

Belle 2 planning

P. KRIŽAN, NOV 11 AFTERNOON

BEAST PHASE I: SIMPLE BACKGROUND

(DIODES, TPCS, CRYSTALS). NO FINAL FOCUS (I.E. NO LUMINOSITY, SINGLE BEAM BACKGROUND STUDIES POSSIBLE).

BEAST PHASE II: MORE ELABORATE INNER BACKGROUND COMMISSIONING DETECTOR & FULL BELLE II OUTER DETECTOR. SUPERCONDUCTING FINAL FOCUS, NO VERTEX DETECTORS.

OCT 2017 -Jan 2018

FEB - JUN 2016

PHYSICS RUNNING

Oct 2018 \rightarrow

INTRODUCTION

Belle 2: IMPROVED K_s reconstr.;

IMPROVED HADR. B TAGGING;

LHCB: $\sigma \propto \sqrt{s}$;

RUN 2 50% LESS EFF. FOR HADRONIC TRIGGERS THAN RUN 1;

RUN 3 INCREASE EFF. FOR HADR. TRIGGERS BY

2x w.r.t. run 1;

LHCB EPJC 73, 2373

RELATIVE YIELD INCREASE

5/19

INTRODUCTION

Belle 2: IMPROVED K_s reconstr.;

IMPROVED HADR. B TAGGING;

LHCB: $\sigma \propto \sqrt{s}$;

RUN 2 50% LESS EFF. FOR HADRONIC TRIGGERS THAN RUN 1;

RUN 3 INCREASE EFF. FOR HADR. TRIGGERS BY

2x w.r.t. run 1;

LHCB EPJC 73, 2373

RELATIVE YIELD INCREASE

Em

EARLY RUNNING

EARLY RUNNING

- NEED TIME FOR CALIBRATION OF DETECTORS AT Y(4S);
- MEASUREMENTS NOT REQUIRING SOPHISTICATED
 PID AND/OR VERTEX DETERMINATION;
- MAXIMIZE IMPACT ON EXISTING DATA SAMPLES (E.G. Y(**3S**));

DARK MATTER

 $e^+e^- \rightarrow \gamma A' \rightarrow \gamma \chi \chi$ (M_{χ} < M_A/2)

SINGLE γ TRIGGER REQUIRED; SIMPLIFIED: SINGLE γ , $E_{\gamma} > E_{CUT}$;

P. URQUIJO, NOV 1 MORNING

A. BONDAR ET AL., BELLE2-NOTE-PH-2015-003

B. GOLOB, BELLE II 7/19

Introduction	Inclusive Neutrals	SUBJECTS
E _{miss} Methods and pro	Summary OCESSES WHERE BELLE 2	CAN PROVIDE
IMPORTANT INSIGH	IT INTO NP COMPLEMENTA	RY TO OTHER EXPERIMENTS:

 $E_{MISS}:$ $\mathcal{B}(B \to \tau \nu), \mathcal{B}(B \to X_c \tau \nu), \mathcal{B}(B \to h \nu \nu), \dots$ (SEMI)INCLUSIVE: $\mathcal{B}(B \to s\gamma), A_{CP}(B \to s\gamma), \mathcal{B}(B \to s\ell\ell), \dots$ NEUTRALS: $S(B \to K_S \pi^0 \gamma), S(B \to \eta' K_S), S(B \to K_S K_S K_S), \mathcal{B}(\tau \to \mu \gamma), \mathcal{B}(B_s \to \gamma \gamma), \dots$ DETAILED DESCRIPTION OF PHYSICS PROGRAM AT BELLE 2 IN:

A.G. Akeroyd et al., arXiv: 1002.5012

 ${
m Super}B$

B. O'LEARY ET AL., ARXIV: 1008.1541

Progress Reports

Physics

Physics at Super B Factory

Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Eur. Phys. J. C74 (2014) 3026

B.G.,, K, TRABELSI, P. URQUIJO, BE LLE2-NOTE- PH-2015-002

IMPACT OF BELLE II ON FLAVOR PHYSICS

P. URQUIJO, BE LLE2-NOTE- PH-2015-002

BELLE II - LHCB MEASUREMENT EXTRAPOLATION COMPARISONS

ALSO: B2TIP REPORT TO BE PREPARED Emi

MISSING ENERGY

 $B \rightarrow \tau v, Hvv, X_c \tau v, ...$

POSSIBLE TO RECONSTRUCT EVENTS WITH V'S;

```
FULLY (PARTIALLY) RECONSTRUCT

B_{TAG};

RECONSTRUCT H<sup>±</sup> FROM B_{SIG};

NO ADDITIONAL ENERGY IN

EM CALORIM.;

SIGNAL AT E_{ECL} \sim 0;
```


PARTIAL RECONSTRUCTION (SEMILEPTONIC TAGGING):

$$\cos \theta_{B-D^*\ell} \equiv \frac{2E_{\text{beam}} E_{D^*\ell} - m_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B| \cdot |\vec{p}_{D^*\ell}|}$$

 $\epsilon_{\text{tag}} \sim 1 \%$

Emi

Inclusive Neutrals Summary

MISSING ENERGY

$B \rightarrow K(*)_{VV}$ Br's expected to be "measured" to 30%

A. ISHIKAWA, NOV 9 AFTERNOON T. HURTH, NOV 14 MORNING

B. GOLOB, BELLE II 14/19

INCLUSIVE

 $B \rightarrow S\gamma$ DIRECT CPV

SEMI-INCLUSIVE, SUM OF MANY EXCLUSIVE STATES: ALL FLAVOR SPECIFIC FINAL STATES;

<D>: AVERAGE DILUTION DUE TO FLAVOUR MISTAG, ~1

- ΔD : DIFFERENCE BETWEEN FLAVOUR MISTAG FOR B AND \overline{B} , << 1
- A_{DET}: DETECTOR INDUCED ASYMMETRY

 $A_{CP} = (-0.8 \pm 2.9)\% \text{ HFAG, 2014}$ SM: $A_{CP} \sim (0.44 \pm 0.24_{0.14})\%$ T. Hurth et al., Nucl.Phys. B704, 56 (2005)

- L. LIGIOI, OCT 26 AFTERNOON
- T. HURTH, NOV 14 MORNING

1

10

Integrated Luminosity [ab⁻¹]

0.03

Inclusive Neutrals Summary

NEUTRALS

ĝ η \bar{B}^0 \mathbf{Ks} 41 new phases in MSSM $\Delta S = SIN2\phi_1^{eff} - SIN2\phi_1$ 0.5 0.4 S(K⁰K⁰_cK⁰) S(o Kº) 0.3 S(n Ks) 0.2 sin 2B 0.1 0.045 0.02 0.020 0.01 **Belle II** Projection 0.005 10 1 Integrated Luminosity [ab⁻¹] B. GOLOB, K. TRABELSI, P. URQUIJO, Belle2-Note-ph-2015-002

$\mathsf{CPV} \text{ in } B \to SQQ$

SOME UNCERTAINTIES CANCEL IN ΔS (VTX RECONSTR., FLAVOR TAG, LIKELIHOOD FIT); BETTER K_{S} EFF. WITH VTX HITS - LARGER VTX RADIUS, 30%);

VTX RECONSTR. IMPROVED WITH BETTER TRACKING;

Projection (July 2015)

Belle II

Introduction E _{miss}		Inclusive Neutrals Summary	. 5	ыл	MA	RY	(Be	LLE PERSPECTIVE)
	Observables	Belle or LHCb*	В	elle II		LHC	Cb	
		(2014)	5 ab-	¹ 50 ab ⁻	¹ 8 fb ⁻	(2018) 50 fb ^{-1}	
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^{\rm o})$	0.4°	0.3°	0.6°	~	0.3°	PERSUNAL STATEMENTS
	α [°]	85 ± 4 (Belle+BaBar)	2	1				ON IMPORTANCE OF IND.
	γ [°] $(B \rightarrow D^{(*)}K^{(*)})$	68 ± 14	6	1.5	4	I	1	PROCESSES;
	$2\beta_s(B_s \rightarrow J/\psi\phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	Į	0.009	
Gluonic penguins	$S(B \rightarrow \phi K^0)$	$0.90^{+0.09}_{-0.19}$	0.053	0.018	0.2	?	0.04	- ? PROBABLY NOT SO
	$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011				INTERESTING BECAUSE
	$S(B \rightarrow K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033				
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$	Conversion of		0.12	I	0.03	SM VALUE GAN BE
	$\beta^{\rm eff}_s(B_s \to K^{*0} \bar{K}^{*0})$ [rad]	. .			0.13	•	0.03	REACHED/TESTED
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		?		\sim medium interesting,
UT sides	V _{cb} incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%			-		MAY DEPEND ON
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		~		OTHER MEASUREMENTS
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$	3.4%	3.0%		I		
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$	4.7%	2.4%		I		
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 26\%)$	10%	5%		~		-
	$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	< 1.7	20%	7%				
	$R(B \rightarrow D \tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$	5.6%	3.4%		~		
	$R(B \rightarrow D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%		I		
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		•		5
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2\pm4.0\pm0.8$	1	0.5				
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035				
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$	si :			0.13	I	0.03	
	$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07	-3-86-55	•		
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3					
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%				-
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%				
	$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%				
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$		< 2	77.4				
	$\mathcal{B}(B_s \to \mu \mu) [10^{-9}]$	$2.9^{+1.1}_{-1.0}$			0.5	1	0.2	

B. GOLOB, BELLE II 19/19

Introduction <i>E_{miss}</i>		Inclusive Neutrals Summary	Ξ	бим	МА	RY	(B	ELLE PERSPECTIVE)
	Observables	Belle or LHCb*	В	elle II		LHC	Ċb	=
		(2014)	5 ab-	¹ 50 ab ⁻	¹ 8 fb ⁻	¹ (2018) 50 fb ⁻	-1
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^{\rm o})$	0.4°	0.3°	0.6°	~	0.3°	Depending on V _{ub}
	α [°]	85 ± 4 (Belle+BaBar)	2	1				
	γ [°] $(B \rightarrow D^{(*)}K^{(*)})$	68 ± 14	6	1.5	4	!	1	"STANDARD CANDLE"
	$2\beta_s(B_s \rightarrow J/\psi \phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	2 I	0.009	
Gluonic penguins	$S(B \rightarrow \phi K^0)$	0.90+0.09	0.053	0.018	0.2	?	0.04	SM EXPECTATION REACHED
	$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011				
	$S(B \rightarrow K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033				
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$	Connection of the second		0.12	I	0.03	REACHING SM PREDICTION (≤0.02)
	$\beta^{\rm eff}_s(B_s \to K^{*0} \bar{K}^{*0})$ [rad]				0.13	· ·	0.03	
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		?		$\sigma(I_{\kappa\pi}) \sim \sigma(A_{K \Box \pi \Box}), I_{\kappa\pi} = -D.27 \pm D.14$
UT sides	Veb incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%					
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		~		EXCEEDING SM PRECISION
	$ V_{ub} $ incl.	$4.47\cdot 10^{-3} (1\pm 6.0\%_{ex.}\pm 2.5\%_{th.}$	3.4%	3.0%		I		TO REACH SM PRECISION
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$	4.7%	2.4%		i i		PROBABLY MOST PRECISE DETERMINATION
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶]	$96(1 \pm 26\%)$	10%	5%		~		Depending on $ V_{ub} $, current SM ±13%
	$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	< 1.7	20%	7%				
	$R(B \rightarrow D \tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$	5.6%	3.4%		~		CURRENT SM PRECISION (~5%) WILL PROBABLY BE
	$R(B \rightarrow D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%		I		IMPROVED
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%				
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2\pm4.0\pm0.8$	1	0.5				
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035				
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$	2			0.13	I	0.03	
	$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07	-0-000-011-	ľ		
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	-				24
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%				_
	$\mathcal{B}(B \to K^+ \nu \overline{\nu})$ [10 ⁻⁶]	< 55	< 21	30%				
	$C_7/C_9 \ (B \to X_s \ell \ell)$	~20%	10%	5%				
	$\mathcal{B}(B_s \to \tau \tau)$ [10 ⁻³]		< 2	70				
	$\mathcal{B}(B_s \to \mu\mu) [10^{-9}]$	$2.9^{+1.1*}_{-1.0*}$			0.5	1.	0.2	TO REACH SM PRECISION

RATIO BELLE II / LHCB PROJECTED INT. LUMINOSITY

Year