Discussion Session @ MIAPP, 26 October 2016

Rare B Decays: Standard Model vs. New Physics

David M. Straub Universe Cluster/TUM, Munich

Status of $b \rightarrow s\mu^+\mu^$ anomalies

David Straub (Universe Cluster)

・ロト (四) (日) (日) (日)

Current tensions in $b \rightarrow s\mu^+\mu^-$ transitions

Mode	Observable	Bin	Pull
$B^0 ightarrow K^* \mu^+ \mu^-$	P_5'	4-6	-2.6σ
$B_{ m s} o arphi \mu^+ \mu^-$	BR	1-6	-3.3σ
$B^+ ightarrow K^+ \mu^+ \mu^-$	BR	1-6	-2.0σ
$B^+ ightarrow K^+ \mu^+ \mu^-$	BR	15-22	-2.6σ

Suspects: New physics? Form factors? Charm loop?

(flavio v0.13.1 using combined LCSR+LQCD FFs for $B \rightarrow V$ FFs Bharucha et al. 1503.05534 and FNAL/MILC $B \rightarrow K$ FFs Bailey 1509.06235; hadronic unc. estimated as in Altmannshofer and Straub 1411.3161)

David Straub (Universe Cluster) < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

New physics: effective field theory

David Straub (Universe Cluster)

▲□▶▲圖▶▲≣▶▲≣▶ = 亘 - のへ⊙

Global constraints on C₉ & C₁₀

- including 3 fb⁻¹ LHCb measurements
- ► Updated B → V FFs from v2 of Bharucha et al. 1503.05534
- Best fit point: 4.5σ pull from SM

What does it mean?

see also Altmannshofer and Straub 1411.3161, Descotes-Genon et al. 1510.04239, Hurth et al. 1603.00865

David Straub (Universe Cluster)

▲ロト ▲屈 ト ▲ 臣 ト ▲ 臣 ト ● ④ ● ● ●

A closer look

Pulls for individual modes:

- ► $B \rightarrow K^* \mu^+ \mu^-$: 2.7 σ
 - ▶ famous P'₅ anomaly
- ► $B_s \rightarrow \varphi \mu^+ \mu^-$: **3.4** σ
 - BR @ low & high q²
 cf. Bharucha et al. 1503.05534,
 Ronald R. Horgan et al. 1310.3887
- ► $B \rightarrow K\mu^+\mu^-$: **2**.6 σ
 - ▶ BR @ low $q^2 \rightarrow R_K!$
 - First pointed out in:

Khodjamirian et al. 1211.0234

Key question

Given new physics can account for the tensions, are we sure there is no SM effect that can explain them?

 \equiv Do we have our theory uncertainties under control?

Scrutinizing theory uncertainties: form factors

David Straub (Universe Cluster)

▲ロト ▲屈 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

$B \rightarrow K^*$ form factors

Complementarity and agreement between LCSR & LQCD form

factors Bharucha et al. 1503.05534, R. R. Horgan et al. 1501.00367

David Straub (Universe Cluster)

$B \rightarrow K^*$ form factors

Complementarity and agreement between LCSR & LQCD form

factors Bharucha et al. 1503.05534, R. R. Horgan et al. 1501.00367

David Straub (Universe Cluster)

$B \rightarrow K^*$ form factors

Complementarity and agreement between LCSR & LQCD form factors Bharucha et al. 1503.05534, R. R. Horgan et al. 1501.00367

David Straub (Universe Cluster)

Discussion points

- Can we trust LCSR FFs to 10% (and their ratios to 5%)?
- ► Issue of K* instability in LQCD and LCSR?
- ▶ LCSR with K* LCDAs vs. B LCDAs

Scrutinizing theory uncertainties: non-factorisable effects

David Straub (Universe Cluster)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 - つく()

Non-factorisable effects: "charm loop"

Culprit: matrix element of O_{1,2}

 $\langle \bar{K}^* | T\{j^{\mu}_{em}(x)C_{1,2}O_{1,2}(0)\} | \bar{B} \rangle$

- Since O₉ ∝ ℓ̄γ^μℓ, h_λ could mimic a new phyiscs effect in C₉
- Without loss of generality, can be parametrised as complex-valued (CP-even) helicity-dependent shift in C₉:

$$C_9^{\rm SM} + \Delta C_9^{+,-,0}(q^2)$$

$$O_2 = (\bar{s}_L \gamma_\mu c_L)(\bar{c}_L \gamma^\mu b_L)$$

DS @ Moriond EW 2015; Altmannshofer and Straub 1503.06199 (1σ boxes)

David Straub (Universe Cluster)

 q^2 dependence of $\Delta C_{\rm o}^{\lambda}$

Ciuchini et al. 1512.07157

- Bayesian fit assuming a polynomial form for h_{λ}
- roughly: $\tilde{g}_1 \propto \Delta C_9^-$, $\tilde{g}_3 \propto \Delta C_9^0$

David Straub (Universe Cluster)

q^2 dependence of ΔC_9^{λ}

Ciuchini et al. 1512.07157

- Bayesian fit assuming a polynomial form for h_{λ}
- roughly: $\tilde{g}_1 \propto \Delta C_9^-$, $\tilde{g}_3 \propto \Delta C_9^0$
- **assuming** small ΔC_9^{λ} for small q^2 (expected for SM, but not NP!)

 q^2 dependence of $\Delta C_{\rm o}^{\lambda}$

- Bin-by-bin fit of ΔC_9^0 vs. ΔC_9^-
- New physics: expect ΔC₉⁰ = ΔC₉[−] equal for all bins

Current data **not precise enough** to exclude new physics hypothesis!

Plot based on discussion with C. Bobeth

Dispersion relation

 Charm contribution obeys a dispersion relation Khodjamirian et al. 1006.4945

Schematically:

$$h_{-}(q^{2}) = h_{-}(0) + q^{2}h'_{-}(0) + q^{4} \left[\underbrace{\mathsf{BW}_{J/\psi} + \mathsf{BW}_{\psi(2S)}}_{\substack{\mathsf{Measured from } B \to \psi K^{*} \\ \mathsf{up to overall phase}}} + \underbrace{h_{-}^{\mathsf{higher}}(q^{2})}_{\substack{\mathsf{small impact} \\ \mathsf{below } m_{J/\psi}^{2}(?)}} \right]$$

etc.

David Straub (Universe Cluster)

Charmonium interference

The q^2 dependence of the differential rate between the J/ψ and $\psi(2S)$ resonances can be used to infer the sign of the interference

Khodjamirian et al. 1006.4945, Lyon and Zwicky 1406.0566

* this is only a cartoon - not actual numerics

Meanwhile at LHCb

Measuring phase differences

- Measure relative phase between narrow resonances and penguin amplitudes
 Model resonances as relativistic BWs multiplied by relative scale and phase Lyon et al. [1406.0566], Hiller et al. [1606.00775]
 - ightarrow Use this model to replace $Y(q^2)$ in $C_9^{eff}=Y(q^2)+C_9$
 - \rightarrow B \rightarrow K form factors constrained to LCSR+Lattice predictions
 - \rightarrow Fit for phases and C_{9} and C_{10}

Discussion points

- Exploiting the dispersion relation (and B → ψK* data), can we put an upper (lower) bound on the charm loop effect in the critical 4−6 GeV² region?
- Any other way to get a handle on the size (and sign) of the effect?

Outlook

- Which measurements at Belle-II could help reducing theory uncertainties?
- Which measurements at Belle-II could help probing a possible NP effect?
- ▶ Which cleaner observables will be accessible at Belle-II?
 - inclusive $B \to X_{s} \ell^{+} \ell^{-}$
 - ▶ ...