

TCPV in Radiative decays: $B \rightarrow Ks \pi^0 \gamma$, $\rho \gamma$

Luigi Li Gioi Max-Planck-Institut für Physik, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Flavour Physics with High-Luminosity Experiments MIAPP, Garching – October 26th 2016

Photon polarization

Radiative B decays, with $b \rightarrow s \gamma$ transitions, dominated by loop (penguin) diagrams New physics could enter at same order (1-loop) as Standard Model

Standard Model makes definite prediction of photon helicity

(D. Atwood et al., Phys. Rev. Lea. 79, 185 (1997)).

- $B^0 \rightarrow X_s \gamma_R$
- $\overline{B}^0 \rightarrow X_s \gamma_L$

If a helicity flip occurs, the photon will also flip its helicity, producing $B^0 \rightarrow X_s \gamma_L$

- Rate ~ m_s/m_b at the leading contribution (P. Ball and R. Zwicky, Phys. Lea. B 642, 478 (2006))
- Corrections can increase this value

No common final state for B^0 and \overline{B}^0

 Suppression of asymmetry S due to interference between B^o mixing and decay diagrams (TD CP asymmetry)

$$\mathcal{S}^{\mathrm{SM}} = -\sin 2\phi_1 \frac{m_s}{m_b} \left[2 + \mathcal{O}(\alpha_s)\right] + \mathcal{S}^{\mathrm{SM}, s\gamma g}$$

C < 0.01 (direct CP violation) (Greub at al., Nucl. Phys B 434, 39 (1995))

TD CP asymmetry measurements give an indirect measurement of photon polarization

MIAPP

Time dependent measurements

 $B^0 \rightarrow Ks \pi^0 \gamma$: Belle

Phys. Rev. D 74, 111104(R) (2006)

Three M(Ks π^{0}) regions

- 0.8 GeV/c² < M(Ks π⁰) < 1.0 GeV/c²
- 1.3 GeV/c² < M(Ks π⁰) < 1.55 GeV/c²
- 1.55 GeV/c² < M(Ks π⁰) < 1.8 GeV/c²

$N = 112.5 \pm 12.0$	S/N =1.91
$N = 28.7 \pm 7.1$	S/N =0.81
N = 35.2 ± 10.0	S/N =0.35

MIAPP

Selection

Continuum supression:

Likelihood constructed from

- Modified Fox-Wolfram moments (Event Shape)
- $\cos(\theta_{B})$
- Helicity in Ksπ^o system for three different M(Ks π^o) regions

Flavor tag quality

Likelihood cuts

Time dependent analysis

Phys. Rev. D 74, 111104(R) (2006)

MIAPP

K* region

 339 ± 24 (stat) signal events

 $S = -0.03 \pm 0.29(stat) \pm 0.03(syst)$ C = -0.14 ± 0.16(stat) ± 0.03(syst)

Non K* region

 133 ± 20 (stat) signal events

 $S = -0.78 \pm 0.59(stat) \pm 0.09(syst)$ C = -0.36 ± 0.33(stat) ± 0.04(syst)

MIAPP

Luigi Li Gioi

HFAG averages

We need more data

$B^0 \rightarrow Ks \eta \gamma$: BaBar

Phys. Rev. D 79, 011102 (2009)

82 ± 23 (stat) signal events (Br = $(7.1^{+2.1}_{-2.0}(stat) \pm 0.4(syst)) \times 10^{-6})$

$B^0 \rightarrow Ks \phi \gamma$: Belle

Phys. Rev. D 84 071101 (2011)

 $B^0 \rightarrow Ks \rho^0 \gamma$: Belle

PRL 101, 251601 (2008)

212 ± 17 (stat) signal events

S (Ks $\rho^{0} \gamma$) = 0.11 ± 0.33(stat) $^{+0.005}_{-0.09}$ (syst) A (Ks $\pi^{+} \pi^{-} \gamma$) = 0.05 ± 0.18(stat) ± 0.06(syst)

FIG. 3 (color online). $m_{\pi\pi}$ distributions for (a) $B^+ \to K^+ \pi^- \pi^+ \gamma$ and (b) $B^0 \to K_S^0 \pi^+ \pi^- \gamma$. The curves follow the convention in Fig. 1. The thin dashed curve is the correctly reconstructed $B \to K_1(1270)\gamma$ signal component.

FIG. 2 (color online). (a) q = +1 yield, (b) q = -1 yield, and (c) raw asymmetry as a function of Δt for events with r > 0.5. The raw asymmetry is defined as $(N_+ - N_-)/(N_+ + N_-)$ where N_+ (N_-) is the event yield with q = +1(-1). The solid curves are the fits while the dashed curves show the background contributions.

$B^0 \rightarrow \rho^0 \gamma$: Belle

Phys. Rev. Lett. 100, 021602 (2008)

First measurement of CP asymmetry parameters in a b \rightarrow d γ process

$$S_{\rho^0\gamma} = -0.83 \pm 0.65(\text{stat}) \pm 0.18(\text{syst})$$

 $\mathcal{A}_{\rho^0\gamma} = -0.44 \pm 0.49(\text{stat}) \pm 0.14(\text{syst})$

Consistent with no CP violation

Summary

	BABAR	Belle	Average
$\mathcal{S}(K^{*0}\gamma)$	$-0.03 \pm 0.29 \pm 0.03$	$-0.32 \pm 0.35 \pm 0.05$	-0.17 ± 0.20
$\mathcal{C}(K^{*0}\gamma)$	$-0.14 \pm 0.16 \pm 0.03$	$0.20 \pm 0.24 \pm 0.05$	0.00 ± 0.13
${\cal S}(K^0_S\pi^0\gamma)$	$-0.78 \pm 0.59 \pm 0.09$	$-0.10 \pm 0.31 \pm 0.07$	-0.40 ± 0.25
${\cal C}(K^0_S\pi^0\gamma)$	$-0.36 \pm 0.33 \pm 0.04$	$0.20 \pm 0.20 \pm 0.06$	0.00 ± 0.16
${\cal S}(K^0_S\eta\gamma)$	$-0.18 \pm 0.48 \pm 0.12$		-0.18 ± 0.50
${\cal C}(K^0_S\eta\gamma)$	$-0.32 \pm 0.40 \pm 0.07$		-0.32 ± 0.41
${\cal S}(K^0_S\phi\gamma)$		$0.74 \pm 0.90 \pm 0.20$	0.74 ± 0.91
${\cal C}(K^0_S\phi\gamma)$		$-0.35 \pm 0.58 \pm 0.20$	-0.35 ± 0.61
${\cal S}(K^0_S ho^0\gamma)$		$0.11 \pm 0.33 \pm 0.07$	0.11 ± 0.35
$\mathcal{C}(K^0_S\pi^+\pi^-$	$(\gamma)^{\dagger}$	$0.05 \pm 0.18 \pm 0.06$	0.05 ± 0.20
${\cal S}(ho^0\gamma)$		$-0.83 \pm 0.65 \pm 0.18$	-0.83 ± 0.68
${\cal C}(ho^0\gamma)$		$0.44 \pm 0.49 \pm 0.14$	0.44 ± 0.53

[†]For $m_{K\pi\pi} < 1.8 \,\text{GeV}/c^2$ and $m_{\pi\pi} \in [0.6, 0.9] \,\text{GeV}/c^2$.

We need more data

Belle II

MIAPP

Time dependent measurements

Belle II Pixel Vertex Detector

Pixel detector needed

- 40 times increase of luminosity \rightarrow higher background
- Lower boost \rightarrow smaller separation between the B mesons

Most suited technology : DEPFET

- Innermost detector system as close as possible to IP
- Highly granular pixel sensors provide most accurate 2D position information
- Reconstruction of primary and secondary vertices of short-lived particles
- Decay of particles is typical in the order of 100µm from the IP

The impact parameter

The impact parameters: d_0 and z_0

- defined as the projections of distance from the point of closest approach to the origin
- good measure of the overall performance of the tracking system
- used to find the optimal tracker configuration

Vertex fit: Breco side

Two vertex fitters used in Belle II for kinematic vertex fits

Kfit : used in Belle

J/ψ → μ μ

RAVE: a CMS tool, see https://rave.hepforge.org/)

Rave: Adaptive Vertex Fitter

Down-weights outliers dynamically, instead of using hard cutoffs (important for 3+ track vertices).

Tag side vertex resolution

Important improvement in the tag side vertex resolution

$B^0 \rightarrow Ks \pi^0 \gamma$: Δt resolution

MIAPP

Luigi Li Gioi

Belle II

Flavour tagging

Based on multivariate methods

Categories and variables

MIAPP

MIAPP

Luigi Li Gioi

Belle Data – MC comparison

Ks reconstruction

- Larger vertex detector acceptance
- New algorithm

$B^0 \rightarrow K^* \gamma$: converted γ

 $B \rightarrow K^* \gamma (\rightarrow ee)$ event in LHCb

Martino Borsato CERN-THESIS-2015-219 Marie-Hélène Shune @ 4th B2TIP

For M(ee) < 10 MeV measurement dominated by multiple scattering</p>

Measurement very difficult with the LHCb detector

MIAPP

Belle II: converted γ

- Study of converted photons is at the beginning
- For $B^0 \rightarrow \pi^0 \pi^0 \sim 3\%$ of converted photons

MIAPP

Summary

- Radiative B decays, with $b \rightarrow s \gamma$ transitions are sensitive to New Physics
 - TD CP asymmetry measurements give an indirect measurement of photon polarization
- Present measurements dominated by the statistical errors. Scaling with luminosity:
 - → B⁰ → Ks π^0 γ: σ (S)~0.04, σ (C)~0.02
 - → B⁰ → ρ γ: σ (S)~0.08, σ (C)~0.06
- With the upgrade of KEKB to SuperKEKB a new vertex detector is required for Belle II
 - Increase of background
 - Boost reduced
 - Maintenance of the same Belle vertex separation capability
- Expected better hardware/software performance then Belle considering the same integrated luminosity
 - → Better Δt resolution
 - Higher flavour tagging efficiency
 - Higher Ks efficiency
- Feasibility of photon polarisation measurement using converted photons should be investigated at Belle II

MIAPP