MIAPP topical workshop - B2TiP Report -

to be published to PTEP (Progress of Theoretical and Experimental Physics)

Emi KOU (LAL-IN2P3)

MIAPP workshop, 27th October 2016

Outline

- What is B₂TiP and where are we?
- What is B2TiP report ?
- MIAPP topical workshop on B2TiP report
- Quick overview of the report chapters
- Conclusions

What is B2TiP?

FEB 2014 : approved at the executive board at Belle II collaboration

KEK where Belle II is hosted is the natural gathering point where flavour physics experts meet to discuss and develop topics of flavour physics for Belle II.

Deliverable: "KEK green report" (B2TiP report)

Goal of B2TiP Report

- Focus mainly on the recent developments.
- A coherent "book" providing **useful** information for new Belle II members and graduate students.
- **Roadmap** for the future measurements should be discussed. The priorities from theorists' point of view should be well stated.

• The report should be completed before the data taking starts (~ early 2017).

B2TiP report and MIAPP workshop

https://confluence.desy.de/display/BI/B2TiP+ReportStatus

Include all the contributions, edited by the conveners, agreed between theorist/ experimentalist conveners (see **checklist**)

Version 2

Include all the corrections recommended by the **soft-review**

Final Version

Include all the corrections recommended by hard-review (including MIAPP workshop)

Numbers and Figures are frozen at this point

<u>Ready-to-Submit Version</u>

Include the **final edition** by B2TiP organizers

B2TiP report and MIAPP workshop

https://confluence.desy.de/display/BI/B2TiP+ReportStatus

MIAPP topical workshop

14th - 17th November 2016

✓ local organizers : Thomas Kuhr & Christoph Bobeth

http://indico.universe-cluster.de/indico/conferenceDisplay.py?ovw=True&confld=3666

- \checkmark each WG presents the synthesis and the highlight of their chapter
- \checkmark detailed discussions to improve each chapters by all participants
- \checkmark discussions on the milestone/roadmap of Belle II
- ✓ discussions on after B2TIP Report
- ✓ IMPORTANT: all the participants must read the relevant WG chapters before arriving to MIAPP.

One session dedicated to proposals from the MIAPP workshop

MIAPP topical workshop

14th - 17th November 2016

9 working groups

WG1: Leptonic/Semi-leptonic WG2: Radiative/Electroweak WG3: φ1(β)/φ2(α)
 WG4: φ3 (γ) WG5: Charmless/hadronic B decays WG6: Charm
 WG7: Quarkonium(like) WG8: Tau & low multiplicity WG9: New Physics

WG1	G. De Nardo, A. Zupanic, M. Tanaka, F. Tackmann, A. Kronfeld, R. Watanabe
WG2	A. Ishikawa, J. Yamaoka, U. Haisch, T. Feldmann
WG3	T. Higuchi, L. Li Gioi, J. Zupan, S. Mishima
WG4	J. Libby, I. Watson, Y. Grossman, M. Blanke
WG5	P. Goldenzweig, M. Beneke, CW. Chiang, S. Sharpe
WG6	G. Casarosa, A. Schwartz, A. Kagan, A. Petrov
WG7	R.Mizuk, R.Mussa, C.Shen, B. Fulsom, Y.Kiyo, A.Polosa, S.Prelovsek. Ch.Hanhart
WG8	K. Hayasaka, T. Feber, E. Passemar, J. Hisano
WG9	R.Itoh, F.Bernlochner, Y.Sato, U.Nierste, L.Silvestrini, J.Kamenik, S. Simula, V.Lubicz

First task for WGs...

https://confluence.desy.de/display/BI/B2TiP+B2TIPGoldenModes

Group	Observables	Mode	SM or CKM Fit	Belle 2014	Babar 2014	Belle	Belle	LHCb 2014	LHCb 8/fb	50/fb		ç	D . 140 0	$0.10 \pm 0.21 \pm 0.07$		
			Expectation			/ab	ab					S	$B \rightarrow K_S^* \pi^* \gamma$ $R \rightarrow c \gamma$	$-0.82 \pm 0.65 \pm 0.18$	0.11	0.035
$\phi_1/\phi_2 \frac{WG}{Page}$	$sin(2\phi_1)$	$B \rightarrow J/\psi K_S$		$0.667 \pm 0.023 \pm 0.012 (1.4^\circ)$		0.7°	0.4°		1.6°	0.6°		0	$D \rightarrow p\gamma$	-0.05 ± 0.05 ± 0.18	0.23	0.07
												$B[10^{-6}]$	$B \rightarrow K \nu \bar{\nu}$	< 40		
	S	$B \rightarrow \phi K_S^0$		$0.90^{+0.09}_{-0.19}$		0.053	0.018		0.2	0.04		$B[10^{-6}]$	$B \to K^{\star} \nu \bar{\nu}$	< 55		
		$B \rightarrow \eta' K_S^0$		$0.68 \pm 0.07 \pm 0.03$		0.028	0.011									
		$B \rightarrow K^0_S K^0_S K^0_S$		$0.30 \pm 0.32 \pm 0.08$		0.100	0.033					\mathcal{R}_{Xs}	$B \rightarrow X_s \ell^+ \ell^-$	20%	7%	2.0%
	ϕ_2	$B \rightarrow \pi \pi$,		$(85 \pm 4)^{\circ}$ (Belle + Babar)		2°	1°									
		$\begin{array}{c} B ightarrow ho \pi, \\ B ightarrow ho ho \end{array}$									Charm WG	$B[10^{-3}]$	$D_s \to \mu \nu$	$5.31(1\pm 0.053\pm 0.038)$	2.9%	0.9%
											page	$B[10^{-3}]$	$D_r \rightarrow \tau \nu$	$570(1 \pm 0.037 \pm 0.054)$	2.5%	0.00/
$\phi_3 \operatorname{WG} page$	ϕ_3	$B \rightarrow D^{(\star)} K / \pi$		$(68 \pm 14)^{\circ}$		6°	1.5°					D[10]	$D^0 \rightarrow \infty \infty$	< 1.5	3.5%	2.3%
	<i>φ</i> 3	(total) $B \rightarrow D^{(\star)} K/\pi$										$B[10^{-6}]$			30%	25%
		(CP										$A_{CP}[10^{-4}]$	$D^0 \rightarrow K^+ K^-$	$-32 \pm 21 \pm 9$	11	6
		eigenstate)										$A_{CP}[10^{-2}]$	$D^0 \rightarrow \pi^0 \pi^0$	$0.03 \pm 0.64 \pm 0.10$	0.29	0.09
	ϕ_3	$B \rightarrow D^{(\star)}K/\pi$										$A_{CP}[10^{-2}]$	$D^0 \rightarrow K_c^0 \pi^0$	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03
		(CB/DCS decavs)										A_{Γ}	3	$-0.03 \pm 0.21 \pm 0.08$	0.1	0.03
	ϕ_3	$B \rightarrow D^{(\star)} K / \pi$													0.1	0.00
		(Self-										$x[10^{-2}]$	$D^0 \rightarrow K^0_c \pi^+ \pi^-$	$0.56 \pm 0.19^{+0.07}_{-0.12}$	0.14	0.11
		conjugate)										u[10 ⁻²]	$D^0 \rightarrow K^0_c \pi^+ \pi^-$	$0.30 \pm 0.150.05$ $0.30 \pm 0.150.05$	0.08	0.05
	φ_3	$B \rightarrow D^{(\star)}K/\pi$ (SCS decays)										abs(q/p)	$D^0 \rightarrow K^0_c \pi^+ \pi^-$	$0.90^{+0.16}_{-0.16}^{+0.08}_{-0.08}$	0.10	0.07
		(,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-										φ	$D^0 \rightarrow K^0_c \pi^+ \pi^-$	$-6 \pm 11^{+\frac{4}{5}}$	6°	4°
Hadronic B	Α	$B \rightarrow K_s^0 \pi^0$		$-0.05 \pm 0.1 \pm 0.05$		0.07	0.04						3	-3		
WG page		5									Tau WG	$B[10^{-9}]$	$\tau \rightarrow \mu \mu \mu$	< 21	< 3.0	< 0.3
		$B \to K^* \pi$									page					
		$B \rightarrow K \rho$											$\tau \rightarrow K_S \pi^0 \nu$			
		$B \to K^* \phi$											$\Upsilon(3S) \rightarrow$			
		$B \to K^* \rho$											missing energy			
		$B \rightarrow K_S K^+ K^-$									Main.Philli	pUrquijo - 2015	-05-14			
		$B \to K^+ K^- \pi^0$														
		$B \to K^+ \pi^0 \pi^0$									This topic: B	2TiP > <u>WebHor</u>	me > B2TIPGoldenModes			
		$B \to K_S \pi^+ \pi^0$									Topic revisio	on: r4 - 2015 00			_	
	2.	D. KA									Conve				tributing auth	ors.
Semileptonic & Leptonic WG page	$V_{cb}[10^{-3}]$ inclusive	$B \rightarrow X_c \ell \nu$		$41.6(1 \pm 0.024_{fit})$		1.2%										
	$V_{cb}[10^{-3}]$ exclusive	$B \rightarrow D^{\star} \ell \nu$		$37.5(1 \pm 0.030_{exp} \pm 0.027_{thy})$)	1.8%	1.4%		/	/	-					
	$V_{ub}[10^{-3}]$	$B \rightarrow \pi \ell \nu$ (Hadronic tag)		$3.52(1 \pm 0.095_{fit})$		4.4%	2.3%		/		ach	orro	nin w	as asked	to lie	
	exclusive	(_/			uun	810	up m	as asheu		
	$B[10^{-6}]$	$B \rightarrow \tau \nu$		$96(1 \pm 0.26)$		10%	5%	1								
	$B[10^{-6}]$	(Hadronic tag) $B \rightarrow \mu\nu$				20%	7%		n	12	num	of	5 C	Idan Cha	nnol	e and
	\mathcal{R}	$B \rightarrow D \tau \nu$			$0.440(1 \pm 0.165)$	5.6%	3 /0/		11	10	uun		500			lo allu
	P	(Hadronic tag)			0.222(1 + 0.000)	5.0%	3.470									
	λ	(Hadronic tag)			0.332(1 ± 0.090)	4.4%	2.3%					st	udy in	dataila		
Dedictive ⁰	ACP	$B \rightarrow X_{s+d\gamma}$		001411000		1.09/	0.5%					SU	uuy II	i uctalls.		
Electroweak WG page	0,	star		2.2 ± 4.4 ± 0.8 %		1.0%	0.5%						·			
	ΔA_{CP}	$B \to X_s \gamma$		not measured yet	$+5.0 \pm 3.9 \pm 1.5$ %	1.7%	0.7%								_	
	$B[10^{-6}]$	$B \rightarrow X_d \gamma$		not measured vet	$9.2(1 \pm 0.22 \pm 0.25)$	x x%	x x%									

WG1: Leptonic & Semi-Leptonic B decay

Section convenors: A. Kronfeld, G. De Nardo, F. Tackmann, R. Watanabe, A. Zupanc

1.1 Introduction	1
1.2 Leptonic B decays $\ldots \ldots$	1
1.3 Semitauonic decays	5
1.3.1 $B \to D^{(*)} \tau \nu \dots \dots \dots$	5
1.3.2 $B \to \pi \tau \nu$	8
1.3.3 $B \to X_c \tau \nu$	10
1.3.4 $B \to X_c \tau \nu$	11
1.3.5 $B \to \tau \nu$ and $B \to D^{(*)} \tau \nu_{\tau}$ tran-	
sitions	11
1.4 Exclusive semileptonic	16
1.4.1 $B \to D^{(*)} \ell \nu \ldots \ldots \ldots$	16
1.4.2 $B \to \pi \ell \nu$	16
1.5 Inclusive semileptonic	16
1.6 (Semi-)leptonic B_s decays	17
1.7 Conclusions	18
Bibliography	18

+ G. Ricciardi and P. Urquijo

WG2: Electroweak & Radiative B decay

1.1	Intro	oduction	1
	1.1.1	Theoretical Basics	1
	1.1.2	Inclusive $B \to X_q \gamma$ decays	3
	1.1.3	Exclusive $b \to q\gamma$ decays	6
	1.1.4	Inclusive $B \to X_q \ell^+ \ell^-$ decay	9
	1.1.5	Exclusive $b \to q \ell^+ \ell^-$ decays	9
	1.1.6	Double-radiative B decays	9
	1.1.7	$b \to q \tau^+ \tau^-$ transitions and lep-	
		ton flavour non-universality $\ . \ .$	13
	1.1.8	$B \rightarrow K^{(*)} u ar{ u}$ transitions and	
		missing energy signals	16
	1.1.9	$B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions and	
		missing energy signals	18
1.2	Con	clusions	24
Bib	liogra	phy	24

WG3: Time-dependent CPV: ϕ_1 , ϕ_2

Secti L. Li G	on au Gioi, S.	uthor(s): A. Gaz, S. Lacapr Mishima, J. Zupan	rara,
1.1	Intr	$oduction \ldots \ldots \ldots \ldots \ldots$	1
1.2	Dete	ermination of ϕ_1	1
	1.2.1	$\sin 2\phi_1 \text{ from } b \to c\bar{c}s \ldots \ldots$	1
	1.2.2	$\sin 2\phi_1 \text{ from } b \to q\bar{q}s, q = u, d, s$.	5
1.3	Dete	ermination of ϕ_2	9
	1.3.1	Current status of $B \to \pi \pi$	9
	1.3.2	Current status of $B \to \rho_L \rho_L$	10
	1.3.3	Electroweak penguin (EWP) cor-	
		rection	10
	1.3.4	Other isospin breaking effects	10
	1.3.5	Formally going beyond leading order	11
1.4	Tim tries	$e ext{dependent CP asymme-} \ in \ B_d o K_S \pi^0 \gamma \ . \ . \ . \ .$	12

$1.5 \hspace{0.1in} \sin 2 \phi_1 \hspace{0.1in} ext{expected sensitivity} \hspace{0.1in} . \hspace{0.1in} .$	14
1.5.1 $B^0 \to J/\psi K_S$	14
1.5.2 Other $b \to c\bar{c}s$ decay modes	14
1.5.3 $\sin 2\phi_1$ from $b \to q\bar{q}s, q = u, d, s$.	15
1.5.4 $B_d \to \phi K^0$	16
1.5.5 $B_d \to \eta' K_S$	20
1.5.6 $B \to K_S \pi^0 \gamma \dots \dots \dots \dots$	23
1.6 Determination of ϕ_2	23
1.6.1 $B \to \pi \pi$	24
1.6.2 $B \to \rho \pi$	24
1.6.3 $B \to \rho \rho$	24
1.7 Time dependent CP asymme-	
${ m tries} \ { m in} \ B_d o K_S \pi^0 \gamma \ \ldots \ \ldots \ .$	24
1.8 Conclusions	24
Bibliography	24

WG4: Determination of ϕ 3

WG5: Charmless hadronic B decay

Section author(s): M. Beneke, C-W. Chiang, P. Goldenzweig, S. Sharpe

1.1 Tw	vo-body decays	1
1.1.1	B meson light-cone distribution .	1
1.1.2	Flavor SU(3) Analysis in Two- Body Charmless B Decays	5
1.1.3	Weak annihilation and NP in charmless $B \to MM$ decays	9
1.1.4	Direct CP asymmetries at NLO .	11
1.1.5	CPA in $B \to K\pi$ decays	15
1.1.6	$B \to \pi K^*, \rho K \text{ and } \rho K^* \text{ systems}$	15
1.1.7	$B^0_s \to K^0 \bar{K^0}$	19
1.1.8	$B_s \to \phi \pi^0 \ \dots \ \dots \ \dots \ \dots \ \dots$	20
1.1.9	Triple product asymmetries in	
	$B \to VV$ decays $\ldots \ldots \ldots$	20
1.1.1	$0 B_s \to VV \text{ and polarization } \ldots$	23
1.2 Th	ree-body decays	27
1.2.1	Three-body decay theory	27
1.2.2	SU(3) applied to Dalitz analysis	32
1.2.3	Dalitz methods and CPA	32
1.3 Co	nclusions	33
Bibliogr	aphy	33

WG6: Charm

Section author(s): G. Casarosa, A. Petrov, A. J. Schwartz	A. Kag	an,
1.1 Overview	• • •	1
1.2 Theory	• • •	1
1.3 Experiment	• • •	1
1.3.1 Flavour Tagging Methods		1
1.3.2 Improved Proper Time Res	solution	2
1.4 Hadronic Modes	•••	5
1.5 Semileptonic Modes	•••	5
1.6 Leptonic and Radiative Mod	es .	5
1.7 Other	•••	5
1.7.1 Missing energy modes		5
1.7.2 Glueballs \ldots		5
1.7.3 $D_s^+ \to p\bar{n} \ldots \ldots \ldots$		5
Bibliography	• • •	5

Section	author(s): B. Fulsom, S. Godfrey,	
C. Hanhar	t, Y. Kiyo, R. Mizuk, R. Mussa, A.	
Polosa, S.	Prelovsek, C-P. Shen	
1.1 G	eneral Introduction 1	
1.2 G	olden Modes 3	
1.3 R	egular Quarkonia - open issues	
a	d challenges 3	
1.3	$1 \text{Charmonium} \dots \dots \dots 4$	
1.4 B	ottomonium 6	
1.5 Q	CD Exotics 7	
1.5	$1 Introduction \dots \dots \dots 7$	
1.5	2 Models 8	
1.5	3 Facing Experiment	
1.5	4 Remarks on the bottomonium	
	sector and perspectives for Belle II 14	
1.6 L	attice QCD 16	
1.6	1 Lattice methodology 16	
1.6	2 Spectrum of quarkonia below	
	open-flavor threshold 17	
1.6	3 Excited charmonia within single-	
1.0	meson approach	
1.0	4 vector and scalar resonances \dots 17	
1.0	and $Y(4140)$	
1.6	6 Charged quarkonium-like states $Z_{c,b}^+$	
1.6	7 Pentaquarks 20	
1.6	8 $qq\bar{Q}\bar{Q}$ tetraquarks	
1.6	9 Radiative transitions and lep-	
	tonic widths of quarkonia \ldots 20	
1.6	10 Outlook $\ldots \ldots \ldots \ldots \ldots \ldots 20$	

WG7: Quarkonium

Processes 1.7 $\mathbf{21}$ 1.7.1B-decays 21Initial State Radiation 1.7.221Two Photon Collisions 1.7.3251.7.4**Double Charmonium Production** 27Bottomonia below $B\bar{B}$ threshold 271.7.51.7.6Bottomonium-like states above $B\bar{B}$ threshold 29Early Physics Program at Belle II 1.8 33 Potential operating points . . . 33 1.8.11.8.2 Operating conditions 341.9 Conclusions $\mathbf{34}$ $\mathbf{34}$

WG8: Tau and low multiplicity

WG9: New Physics

Section author(s): F. Bernlochner, R. Itoh, J. Kamenik, V. Lubicz, U. Nierste, Y. Sato, L. Silvestrini

1.1	Intro	$\mathbf{oduction}$	1
1.2	Mod	lel-independent analyses of	
	new	$physics \ldots \ldots \ldots \ldots$	2
	1.2.1	Tree-level decays	2
	1.2.2	(Semi-)leptonic rare decays	2
	1.2.3	$\mathbf{B}-\overline{\mathbf{B}}$ mixing	7
1.3	Mod	lels of physics beyond the	
	Stan	dard Model	7
	1.3.1	Multi Higgs-doublet models	7
	1.3.2	(Next-to-) Minimal Supersym-	
		metric Model \ldots \ldots \ldots \ldots	7
	1.3.3	Models with extended gauge sector	10
	1.3.4	Models of Compositeness	14
	1.3.5	Models with a Dark Sector	14
	1.3.6	Models for LFV?	19

1.4 Cod	es for global analyses	19
1.4.1	UTfit	19
1.4.2	CKMfitter	19
1.4.3	SuperIso	19
1.4.4	HEPfit	19
1.4.5	SUSY_Flavour	19
1.4.6	EOS	19
1.4.7	FormFlavor	20
1.4.8	Statistical Packages	20
1.5 Con	clusions	20
Bibliogra	phy	20

Belle II Roadmap

- ✓ Belle II Roadmap: highlight at 1, 5(10), 50 / ab of data (2020, 2021, 2024)±1 year.
- ✓ Impact plot: make plots with reduced experimental error. Central value is still under discussion (but something optimistic :-)).
- ✓ IMPORTANT: the results will be used heavily by the Belle II collaborations !

*** Phone meeting going on every other Mondays. Contact Florian Bernlochner!

Current 2-3 σ deviations will be clarified: new physics effect or just statistical fluctuations?!

(#) SM prediction of CPV in B->K* γ is still under discussion in B2TiP...

What do we expect in the future? New Physics can manifest itself in the Unitarity Triangle?

What do we expect in the future? New Physics can manifest itself in the Unitarity Triangle?

What do we expect in the future? New Physics can manifest itself in the Unitarity Triangle?

Conclusions

- ✓ Topical workshop on B2TiP report : 15th --- 17th Nov.
 <u>http://indico.universe-cluster.de/indico/conferenceDisplay.py?ovw=True&confld=3666</u>
- ✓ The B2TiP report version 2 will be available during the next week (but let me know if you want it in advance).
- ✓ All the participants of the MIAPP topical workshop will receive the link to the full document by the next week to read and prepare comments for the relevant chapters before coming to MIAPP.
- ✓ If you can not come to the topical workshop, please leave your comments to the MIAPP organizers or the B2TiP organizers (P. Urquijo/E. Kou)!