Charmonia and charmonium-like states in e^+e^-

Wolfgang Gradl

JGU Mainz

MIAPP Workshop on flavour physics with high-luminosity experiments 1st November 2016

QCD exotics

States beyond the conventional $q\overline{q}$, qqq valence quark configuration

Identify by

- Exotic quantum numbers (e.g. $\pi_1(1600)$: $J^{PC} = 1^{-+}$)
- Exotic quark contents (such as $X(5568) \sim b\overline{s}u\overline{d}$, if it exists)
- Comparison with predictions of hadron spectrum (?)

Totalitarian principle of quantum mechanics:

Everything not forbidden is compulsory

State	M /MeV	Γ /MeV	J^{PC}	Process (decay mode)	Experiment
X (3872)	3871.68 ± 0.17	< 1.2	1++	$B \rightarrow K + (J/\psi \pi^+ \pi^-)$	Belle [95, 102], BaBar [98], LHCb [103]
				$p\bar{p} \rightarrow (J/\psi \pi^+\pi^-) +$	CDF [96, 104, 105, 160], D0 [97]
				$B \rightarrow K + (J/\psi \pi^+ \pi^- \pi^0)$	Belle [107], BaBar [72, 73]
				$B \rightarrow K + (D^0 \overline{D}{}^0 \pi^0)$	Belle [108, 109], BaBar [110]
				$B \rightarrow K + (J/\psi \gamma)$	BaBar [137], Belle [138], LHCb [141]
				$B \rightarrow K + (\psi' \gamma)$	BaBar [137], Belle [138], LHCb [141]
				$pp \rightarrow (J/\psi \pi^+\pi^-) +$	LHCb [99], CMS [100]
X (3915)	3917.4 ± 2.7	28^{+10}_{-9}	0++	$B \rightarrow K + (J/\psi \omega)$	Belle [71], BaBar [72, 73]
				$e^+e^- \rightarrow e^+e^- + (J/\psi \omega)$	Belle [74], BaBar [75]
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2++	$e^+e^- \rightarrow e^+e^- + (D\bar{D})$	Belle [78], BaBar [79]
X (3940)	3942^{+9}_{-8}	37^{+27}_{-17}	0(?)-(7)+	$e^+e^- \rightarrow J/\psi + (D^*D)$	Belle [32]
				$e^+e^- \rightarrow J/\psi + ()$	Belle [31]
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \rightarrow \gamma + (D\bar{D})$	BaBar [163], Belle [164]
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \rightarrow \gamma + (J/\psi \pi^+\pi^-)$	Belle [39]
Y(4140)	4144 ± 3	17 ± 9	??+	$B \rightarrow K + (J/\psi \phi)$	CDF [87, 88], CMS [90]
X (4160)	4156^{+29}_{-25}	139^{+113}_{-65}	0(?)-(?)+	$e^+e^- \rightarrow J/\psi + (D^*D)$	Belle [32]
Y(4260)	4263 + 8	95±14	1	$e^+e^- \rightarrow \gamma + (J/\psi \pi^+\pi^-)$	BaBar [37, 165], CLEO [166], Belle [39]
				$e^+e^- \rightarrow (J/\psi \pi^+\pi^-)$	CLEO [167]
				$e^+e^- \rightarrow (J/\psi \pi^0 \pi^0)$	CLEO [167]
Y(4274)	4292 ± 6	34 ± 16	??+	$B \rightarrow K + (J/\psi \phi)$	CDF [88], CMS [90]
X (4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0/2^{++}$	$e^+e^- \rightarrow e^+e^- (J/\psi \phi)$	Belle [94]
Y(4360)	4361 ± 13	74±18	1	$e^+e^- \rightarrow \gamma + (\psi' \pi^+\pi^-)$	BaBar [38], Belle [40]
X (4630)	4634+9	92^{+41}_{-32}	1	$e^+e^- \rightarrow \gamma (\Lambda_c^+\Lambda_c^-)$	Belle [168]
Y (4660)	4664 ± 12	48 ± 15	1	$e^+e^- \rightarrow \gamma + (\psi' \pi^+\pi^-)$	Belle [40]
$Z_{e}^{+}(3900)$	3890 ± 3	33 ± 10	1+-	$Y(4260) \rightarrow \pi^- + (J/\psi \pi^+)$	BESIII [49], Belle [50]
				$Y(4260) \rightarrow \pi^- + (DD^*)^+$	BESIII [69]
$Z_{c}^{+}(4020)$	4024 ± 2	10 ± 3	1(?)+(?)-	$Y(4260) \rightarrow \pi^- + (h_e \pi^+)$	BESIII [51]
				$Y(4260) \rightarrow \pi^- + (D^*D^*)^+$	BESIII [52]
$Z_1^+(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$B \rightarrow K + (\chi_{c1} \pi^+)$	Belle [53], BaBar [66]
$Z^{+}(4200)$	4196^{+35}_{-32}	370^{+99}_{-149}	1+	$B \rightarrow K + (J/\psi \pi^+)$	Belle [62]
$Z_{2}^{+}(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	?*+	$B \rightarrow K + (\chi_{c1} \pi^+)$	Belle [53], BaBar [66]
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1+	$B \rightarrow K + (\psi' \pi^+)$	Belle [54, 56, 57], LHCb [58]
				$B \rightarrow K + (J\psi \pi^+)$	Belle [62]
Y _b (10890)	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\Upsilon(nS) \pi^+\pi^-)$	Belle [152]
$Z_{b}^{+}(10610)$	10607.2±2.0	18.4 ± 2.4	1+-	$^{\circ}\Upsilon(5S)'' \rightarrow \pi^{-} + (\Upsilon(nS) \pi^{+}), n = 1, 2, 3$	Belle [155, 158, 159]
				${}^{a}\Upsilon(5S)'' \rightarrow \pi^{-} + (h_{b}(nP) \pi^{+}), n = 1, 2$	Belle [155]
				$T(5S)'' \rightarrow \pi^- + (B\bar{B}^*)^+, n = 1, 2$	Belle [160]
$Z_{b}^{0}(10610)$	10609 ± 6		1+	" $\Upsilon(5S)'' \rightarrow \pi^0 + (\Upsilon(nS) \pi^0), n = 1, 2, 3$	Belle [157]
$Z_b^+(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\Upsilon(5S)'' \rightarrow \pi^- + (\Upsilon(nS) \pi^+), n = 1, 2, 3$	Belle [155]
				$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Belle [155]
				$^{\circ}\Upsilon(5S)'' \rightarrow \pi^- + (B^{\star}\bar{B}^{\star})^+, n = 1, 2$	Belle [160]

- More than 20 quarkonium-like states identified
- Only a few seen in more than one production process, or by more than one experiment
- Are we at the dawn of a new spectroscopy?

In this seminar: personal selection of experimental results; in light of Bellell

Production mechanisms

decays of higher charmonia

- pp pp̄ inclusive
- photo- / electroproduction

Charmonium Spectroscopy

Charmonium spectrum

Charmonium: cc

Example potential

$$V_0^{c\overline{c}} = -\frac{4}{3} \frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2} \delta(r) \vec{S}_c \vec{S}_{\overline{c}}$$
$$V_{\text{spin-dep.}} = \frac{1}{m_c^2} \left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r} \right) \vec{L} \cdot \vec{S} + \frac{4\alpha_s}{r^3} T \right]$$

+ relativistic corrections!

Godfrey & Isgur, PRD 32, 189 (1985); Barnes, Godfrey & Swanson, PRD 72, 054026 (2005)

Use well-established states to fix parameters, then predict remainder of spectrum, and transitions

➡ Remarkably good description above DD threshold: some mass shifts

Spectroscopy | W. Gradl | 6

Charmonium spectrum

Charmonium: cc

Example potential

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_{\rm s}}{r} + br + \frac{32\pi\alpha_{\rm s}}{9m_c^2}\delta(r)\vec{\rm S}_c\vec{\rm S}_{\overline{c}}\\ V_{\rm spin-dep.} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_{\rm s}}{r^3} - \frac{b}{2r}\right)\vec{\rm L}\cdot\vec{\rm S} + \frac{4\alpha_{\rm s}}{r^3}T\right] \end{split}$$

+ relativistic corrections!

Godfrey & Isgur, PRD 32, 189 (1985); Barnes, Godfrey & Swanson, PRD 72, 054026 (2005)

Use well-established states to fix parameters, then predict remainder of spectrum, and transitions

➡ Remarkably good description above DD threshold: some mass shifts

Conventional cc states

Higher charmonium states

Spectroscopy | W. Gradl | 8

$\gamma\gamma ightarrow D\bar{D}$

Similar datasets, similar analyses:

- reconstruct $D^0 \overline{D}^0$ and $D^+ D^-$ events in a number of exclusive hadronic final states
- select $\gamma\gamma$ events by requiring small $p_T(D\overline{D})$, large m_{miss}^2

PRD 81, 092003 (2010); 384 fb^{-1}

$$\begin{split} \mathcal{M} &= 3926.7 \pm 2.7 (\text{stat}) \pm 1.1 (\text{syst}) \, \text{MeV}/c^2 \\ \Gamma &= 21.3 \pm 6.8 (\text{stat}) \pm 3.6 (\text{syst}) \, \text{MeV} \end{split}$$

 $\gamma\gamma \rightarrow \chi_{c2}(2P) \rightarrow D\overline{D}$

Angular distribution of signal yield:

Supports hypothesis J = 2, helicity 2, over J = 0Preferred assignment $J^{PC} = 2^{++}$

Good candidate for $\chi'_{c2} \equiv \chi_{c2}(2^3P_2)$

More statistics: precise measurement of mass and width, other decay channels

The X(3823) at Belle

PRL **111**, 032001 (2013)

Using full Belle data set of $772 \times 10^6 B\bar{B}$

 $B \to K \gamma \chi_{c1}$ simultaneous fit to B^+ and B^0

 3.8σ evidence

 $M = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV}$ very narrow

Limited statistics: no angular analysis possible

Mass (and width) compatible with $\psi_2(1^3D_2)$ state

see \approx 35 events for the decay chain

$$B \to KX(3823) \to K\gamma\chi_{c1}$$
$$\to K\gamma\gamma J/\psi$$
$$\to K\gamma\gamma \ell^+ \ell^-$$

$e^+e^- ightarrow \pi^+\pi^- X(3823) ightarrow \pi^+\pi^-\gamma \chi_{\rm C1~PRL~115,~011803~(2015)}$ besime

reconstruct $\chi_{c1,2} \rightarrow \gamma J/\psi \rightarrow \gamma \ell^+ \ell^-$

look in mass recoiling against $\pi^+\pi^-$ system, $M_{\text{recoil}}(\pi^+\pi^-)$

Use 5 large data sets (total luminosity $\sim 4.1 \text{ fb}^{-1}$)

Spectroscopy | W. Gradl | 12

 $M = 3821.7 \pm 1.3 \pm 0.7$ MeV, significance 6.7σ

 $\Gamma < 16 \, \text{MeV}$ at 90% C.L.

 $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma \chi_{c1}$

Energy-dependent cross section for

$$e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma \chi_{c1}$$

Mass and width \sim in agreement with potential model prediction for $1^{3}D_{2}$ predicted to be narrow!

Production ratio

$$R_{21} \equiv \frac{\mathcal{B}(X(3823) \rightarrow \gamma \chi_{c2})}{\mathcal{B}(X(3823) \rightarrow \gamma \chi_{c1})}$$

~ 0.2 prediction
< 0.43 at 90% C.L.

Y(4360) and $\psi(4415)$ line shapes to guide the eye

 $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma \chi_{c1}$

Angular distribution $\theta \equiv \angle (\pi \pi, \psi_2)$ assuming $\pi \pi$ system in *S*-wave: $1 + \cos^2 \theta$ for spin 2

Mass and width \sim in agreement with potential model prediction for $1^{3}D_{2}$ predicted to be narrow!

 $\begin{array}{l} J^{P} \text{ by exclusion:} \\ 1^{1}D_{2} \rightarrow \gamma \chi_{c1} \text{ forbidden} \\ 1^{3}D_{3} \rightarrow \gamma \chi_{c1} \text{ has zero amplitude} \end{array}$

Good candidate for $\psi_2(1^3D_2)$

Not enough statistics to distinguish *S* and *D* wave from data

Higher charmonium states

Spectroscopy | W. Gradl | 15

The X(3872)

Extremely narrow, sits at or just below the *DD** threshold

 $M = 3871.69 \pm 0.17 \text{ MeV/}c^2$ $\Gamma < 1.2 \text{ MeV}$

The X(3872)

Seen by Belle, BABAR, CDF, D0, CMS, LHCb, BESIII

Decays into $J/\psi \pi^+\pi^-$, $J/\psi \omega$, $D^0 \overline{D}^0 \pi^0$, $\gamma J/\psi$, $\gamma \psi(2S)$

no obvious place in spectrum $\sim 50 \,\mathrm{MeV}$ too light to be $\chi_{c1}(2P)$

What is known about the X(3872)?

Mass

$$\begin{split} m_{X(3872)} &= 3871.69 \ \pm 0.17 \, \text{MeV}/c^2 \\ m_{D^0} + m_{D^{*0}} &= 3871.693 \pm 0.090 \, \text{MeV}/c^2 \end{split}$$

Near equality of $m_{X(3872)}$ and $m_{D^0} + m_{D^{*0}}$: accident, or dynamics?

"Binding energy" = $3 \pm 192 \text{ keV}$ if molecule, then very loosely bound!

(drives ever more precise measurements of m_D and m_D^*)

Width

Width < 1.2 MeV at 90% C.L. (detector resolution!) Belle, PRD **84**, 052004 (2011)

Spin and parity Unambiguously $J^{PC} = 1^{++}$ LHCb, Phys. Rev. Lett. **110**, 222001 (2013)

Problem: $(c\overline{c}) \rightarrow J/\psi \rho$ violates isospin and should be heavily suppressed.

Additionally: BABAR observes $X(3872) \rightarrow \omega J/\psi$ Phys. Rev. D 82 011101 strong kinematic suppression (low-mass tail from ω), but \mathcal{B} approx. equal! Isospin of X(3872) not well defined?

X(3872) production

Production

CDF: $\approx 85\%$ of $p\bar{p} \rightarrow X(3872) + \cdots$ is prompt

D0: $p\bar{p} \rightarrow X(3872)X \approx p\bar{p} \rightarrow \psi'X$ PRL 93, 162002

 e^+e^- collisions near Y(4S)

in ISR production $e^+e^- \rightarrow \gamma_{\rm ISR} J/\psi \pi^+\pi^ \Rightarrow J^{PC} = 1^{--}$

- ... $Y(4008) \rightarrow J/\psi \pi^+ \pi^-?$
- ... $Y(4260) \rightarrow J/\psi \pi^+ \pi^-$
- ... $Y(4360) \rightarrow \psi(2S)\pi^+\pi^-$
- ... $Y(4630) \rightarrow \psi(2S)\pi^+\pi^-$
- ... $Y(4660) \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$
- supernumerary states: all 1⁻⁻ slots already taken
- → do not correspond to peaks in $\sigma(e^+e^- \rightarrow \text{hadrons})$

$e^+e^- ightarrow \gamma X(3872) ightarrow \gamma J/\psi \, \pi^+\pi^-$

BESIII, PRL 112, 092001 (2014)

Spectroscopy | W. Gradl | 22

$e^+e^- ightarrow \gamma X(3872) ightarrow \gamma J/\psi \, \pi^+\pi^-$

BESIII, PRL 112, 092001 (2014)

Suggestive of radiative transition $Y(4260) \rightarrow \gamma X(3872)$

Direct connection between the two states?

Data at 4.6 GeV to be analysed

√s (GeV)

220 E vs = 4.230 GeV **BES**III 200 Events/(0.01GeV/c²) *u* Mode 180 otal fit 160 Background fit 140 Sideband 120 100 80 60 40 20 8.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $M(\gamma\gamma)(GeV/c^2)$

Compare to $e^+e^- \rightarrow \gamma_{\rm ISR} \eta J/\psi$ from Belle, PRD **87**, 051101(R) (2013)

Good agreement, significantly better precision

Cross section peaks around 4.2 GeV

Also searched for $e^+e^-
ightarrow \pi^0 J/\psi$: no significant signal found

 $e^+e^- \rightarrow \eta J/\psi$ vs $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

BESIII, PRD 91, 112005 (2015)

Compare to $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-J/\psi$ from Belle, PRL **110**, 252002 (2013)

Very different line shape

→ Different dynamics at work in $e^+e^- \rightarrow \eta J/\psi$ compared to $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

A closer look at $e^+e^- \rightarrow J/\psi \, \pi^+\pi^-$

BESIII preliminary, to be submitted to PRL

Use full available dataset above 3.8 GeV, measure dressed cross section σ^{dress} :

Not just one BW-like structure.

Simultaneous fit to energy-dependent cross section for two sets of datasets:

Parameter	Fit 1 / MeV	Fit 2 / MeV
$M(R_1)$	3812.6 ^{+61.9}	
$\Gamma_{\rm tot}(R_1)$	$476.9^{+78.4}_{-64.8}$	
$M(R_2)$	4222.0 ± 3.1	4220.9 ± 2.9
$\Gamma_{\rm tot}(R_2)$	44.1 ± 4.3	44.1 ± 3.8
$M(R_3)$	4320.0 ± 10.4	4326.8 ± 10.0
$\Gamma_{\rm tot}(R_3)$	$101.4\substack{+25.3\\-19.7}$	$98.2\substack{+25.4\\-19.6}$
		stat, errors only

Fit 1: 3 interfering BW resonances (à la Belle)

Fit 2: smooth shape for continuum, 2 BW (à la BABAR)

A closer look at $e^+e^- \rightarrow J/\psi \, \pi^+\pi^-$

BESIII preliminary, to be submitted to PRL

Use full available dataset above 3.8 GeV, measure dressed cross section $\sigma^{\rm dress}$:

Not just one BW-like structure.

Simultaneous fit to energy-dependent cross section for two sets of datasets:

Parameter	Fit 1 / MeV	Fit 2 / MeV
$M(R_1)$	3812.6 ^{+61.9}	
$\Gamma_{\rm tot}(R_1)$	$476.9^{+78.4}_{-64.8}$	
$M(R_2)$	4222.0 ± 3.1	4220.9 ± 2.9
$\Gamma_{\rm tot}(R_2)$	44.1 ± 4.3	44.1 ± 3.8
$M(R_3)$	4320.0 ± 10.4	4326.8 ± 10.0
$\Gamma_{\rm tot}(R_3)$	$101.4\substack{+25.3\\-19.7}$	98.2 ^{+25.4} -19.6
		stat. errors only

- Lineshape more complicated than just a single resonance / structure
- Y(4008) not needed to describe data
- Significances for R_2 and $R_3 > 7\sigma$
- $Y(4360) \rightarrow J/\psi \pi^+\pi^-$ seen?

Cross section of $e^+e^- \rightarrow h_c \pi^+\pi^-$

BESIII preliminary, 1610.07044

 $h_c \rightarrow \gamma \eta_c, \eta_c \rightarrow$ 16 exclusive hadronic final states E.g. at $\sqrt{s} = 4.42 \text{ GeV}$:

Cross section of $e^+e^- \rightarrow h_c \pi^+\pi^-$

BESIII preliminary, 1610.07044

"Y(4260)" in different channels?

Channel	Mass $M[MeV/c^2]$	Width $\Gamma[MeV]$		
PDG	4251 ± 9	120 ± 12		
J/ψη	narrow struc	cture seen		
$J/\psi \pi^0$	not seen (UL on σ)			
$J/\psi \pi^+ \pi^-$	$4220.9 \pm 2.9 \pm 1.4$	$44.1 \pm 3.8 \pm 2.0$		
$h_c \pi^+ \pi^-$	$4218.4 \pm 4.0 \pm 0.9$	$66.0 \pm 9.0 \pm 0.4$		
$\chi_{c0}\omega$ $^{(*)}$	$4230\pm8\pm6$	$38\pm12\pm2$		

PDG value from $e^+e^- \rightarrow \gamma J/\psi \pi^+\pi^-$ at Belle, *BABAR*, CLEO ^(*): BESIII, PRL **114**, 092003 (2015), called X (4230) by PDG

Spectroscopy | W. Gradl | 28

Search for $Y(4140) \rightarrow J/\psi\phi$

CDF first reported evidence for $Y(4140) \rightarrow J/\psi \phi$ in $B^+ \rightarrow J/\psi \phi K^+$, also claimed by D0 and CMS

Not seen by LHCb (0.37 fb⁻¹), Belle (*B* decays and $\gamma\gamma$ events), CDF, PRL **102**, 242002, (2009) or BABAR Belle sees X (4350) in $\gamma\gamma \rightarrow J/\psi\phi$ PRL **104**, 112004 (2010)

 $J/\psi\phi$ system has C = +1: search in radiative transitions of charmonium or Y(4260)

If both Y(4260) and Y(4140) are *charmonium hybrids*: partial width of Y(4260) $\rightarrow \gamma Y(4140)$ may be up to several tens of keV N. Mahajan, PLB **679**, 228 (2009)

Search for $Y(4140) \rightarrow J/\psi\phi$

Use BESIII's large data samples from 4.23 – 4.36 GeV (2.47 fb⁻¹ in total)

 $M(\phi J/\psi) (GeV/c^2)$

$$e^{+}e^{-} \rightarrow \gamma J/\psi \phi$$

$$J/\psi \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-},$$

$$\phi \rightarrow K^{+}K^{-}, K_{S}^{0}K_{L}^{0}, \pi^{+}\pi^{-}\pi^{0}$$

$$\stackrel{4.5}{\longrightarrow} \frac{1}{9} \xrightarrow{6} \xrightarrow{6} \frac{1}{9} \xrightarrow{6} \frac{1}{9} \xrightarrow{6} \frac{1}{9} \xrightarrow$$

 $M(\phi J/\psi) (GeV/c^2)$

Search for $Y(4140) \rightarrow J/\psi \phi$

No significant signal found; place upper limits on $\sigma(e^+e^- \rightarrow \gamma Y(4140)) \times \mathcal{B}(Y(4140) \rightarrow J/\psi\phi)$

Compare sensitivity to $e^+e^- \rightarrow \gamma X(3872) \times \mathcal{B}(X(3872) \rightarrow J/\psi \pi^+\pi^-)$

\sqrt{s} / GeV	4.23	4.26	4.36
$\sigma \times \mathcal{B}(X(3872))/\text{pb}$	0.27 ± 0.09	0.33 ± 0.12	0.11 ± 0.09
$\sigma imes \mathcal{B}(Y(4140))/pb$	< 0.35	< 0.28	< 0.33

Assuming $\mathcal{B}(Y(4140) \rightarrow J/\psi\phi) \sim 30\%$ and $\mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-) \sim 5\%$:

 $\frac{\sigma[e^+e^- \to \gamma Y(4140)]}{\sigma[e^+e^- \to \gamma X(3872)]} < 0.1 \quad \text{at 4.23, 4.26 GeV}$

$B^+ ightarrow J/\psi \phi K^+$ amplitude analysis at LHCb

1606.07895, 1606.07898

- In 3 fb⁻¹, see 4289 ± 151 $B^+ \rightarrow J/\psi \phi K^+$ candidates
- 7 K* resonances, non-res. φK amplitude
- 4 exotic $J/\psi\phi$ resonances
- No $J/\psi K$ resonance needed

$B^+ \rightarrow J/\psi \phi K^+$ amplitude analysis at LHCb

Results of	amplitude	analysis:
------------	-----------	-----------

State	σ	$M_0[\text{MeV}/c^2]$	$\Gamma_0[\text{MeV}]$		
X(4140) X(4274)	8.4σ 6.0σ	$\begin{array}{r} 4146.5{\pm}4.5{}^{+4.6}_{-2.8} \\ 4273.3{\pm}8.3{}^{+17.2}_{-3.6} \end{array}$	$\begin{array}{r} 83{\pm}21{}^{+21}_{-14} \\ 56{\pm}11{}^{+8}_{-11} \end{array}$		
X(4500) X(4700)	6.1σ 5.6σ	$\begin{array}{r} 4506 {\pm} 11 {}^{+12}_{-15} \\ 4704 {\pm} 10 {}^{+14}_{-24} \end{array}$	$92{\pm}21{}^{+21}_{-20}\\120{\pm}31{}^{+42}_{-33}$		

 $X(4140), X(4274): J^{P} = 1^{+}$ $X(4500), X(4700): J^{P} = 0^{+}$

- X(4140) and X(4274) confirmed
- much larger width than previous analyses
- two new states: X(4500), X(4700)

The family of $Z_{\rm C}$ states

Charged charmonium-like states: aZ^+ family?

Belle observes broad, **charged** charmonium-like states in $(c\overline{c})K\pi$ Dalitz plots

- $Z(4430)^+$ in $B \rightarrow \psi(2S)\pi^+K$
- $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B \to \chi_{c1} \pi^+ K$

Phys. Rev. Lett. 100, 142001 (2008)

Phys. Rev. D 78, 072004 (2008)

Quark content at least $|c\overline{c}u\overline{d}\rangle \Rightarrow$ No simple $q\overline{q}$ meson!

2-Z⁺ favoured over 1-Z⁺

• most clearly seen in $1.0 < m_{K\pi}^2 < 1.75 \, {\rm GeV}^2$

Charged charmonium-like states: aZ^+ family?

BABAR:

Phys. Rev. D 79, 112001 (2009)

- No significant evidence for Z(4430) found in $B \rightarrow \psi(2S)\pi^+K$
- No resonant behaviour in $J/\psi \pi^+$ seen in $B \rightarrow J/\psi \pi^+ K$

Phys. Rev. D 85 052003 (2011)

- No significant need for Z_1 or Z_2 in $B \to K \pi \chi_{c1}$
- but not fully incompatible with Belle result

$Z_c(4430)^-$ in $B ightarrow K \pi^- \psi'$ at LHCb

 $\approx 25\,000$ candidates for $B \to K \pi^- \psi'$ in 3 fb^{-1}

Two analysis methods

 4D amplitude analysis à la Belle extract phase motion establish J^P = 1⁺ PRL 112 222002 (2014)

 Moments analysis à la BABAR reflections from K* not enough; confirms existence of Z_c (4430) PRD 92 112009 (2015)

Z_c family at BESIII

Nature of these states? Isospin triplets? Different decay channels of the same states observed? Other decay modes? Other similar states (e.g. isospin singlets; with strangeness contents ...)?

$Z_c(3900)$ in *B* decays?

- See $Z_c(4430)^+ \to J/\psi \pi^+$
- No $Z_c(3900)^+$ needed
- Instead: Z_c(4200)⁺

$$\begin{split} \mathcal{M} &= 4196^{+31+17}_{-29-13} \ \text{MeV}/c^2, \\ \Gamma &= 370^{+70+70}_{-70-132} \ \text{MeV}. \end{split}$$

 $Z_c(4055)^+ \rightarrow \psi' \pi^+$

- Yet another charged, charmonium-like resonance
- Not seen in *B* decays, either by Belle or LHCb
- Don't see Z_c from B decays here ...

Open questions

- More such states to be found, with other charmonia?
- Dependence on production mechanism?
- Can we observe more connections between these states such as possibly $Y(4260) \rightarrow \gamma X(3872)$?
- Are these all resonances? Or threshold effects? 'true nature'? How can we distinguish?

• • • •

Future: **BESIII**

- \blacksquare Set to run for $\gtrsim 8$ more years
- If running near 'sweet spot' of accelerator $(\sqrt{s} = 3.77 \text{ GeV})$: collect ~ 5 fb⁻¹ / year
- Accelerator upgrades:
 - ► Increase beam energy currently, √s < 4.6 GeV</p>
 - Top-up injection
 - Major luminosity upgrade? (crabbed waist)
- Plan for 2016/17:
 add 6–8 points of 500 pb⁻¹ around 4.3 GeV
- Further plans under discussion

Spectroscopy | W. Gradl | 42

Luminosity expectation BelleII (ISR) vs BESIII (direct)

Luminosity expectation BelleII (ISR) vs BESIII (direct)

Typical mass resolution for charged states in ISR physics: $\lesssim 5 \text{ MeV}/c^2$ Spacing of BESIII R-scan points: 5 MeV (beam-energy spread ~ 1.3 MeV)

Belle-II ISR vs BESIII

Direct scan

- (very) high luminosity at a few selected \sqrt{s}
- better resolution in √s relevant for direct production of 1⁻⁻ states

ISR

- ISR: many \sqrt{s} simultaneously
- reduced point-to-point systematics
- mass resolution limited by detector res.
- boost of hadronic system vs. γ_{ISR} may actually help efficiency

...with apologies to Bill Watterson

