Early Y(nS) running at Belle 2

Phillip Urquÿo Munich Institute for Astroand Particle Physics The Uni. of Melbourne

November 2016

Outline

- 1. Belle II & SuperKEKB in phase II
- 2. Recent results on Bottomonium-like states
- 3. Phase II considerations
- 4. Quarkonium(like) in Phase II
- 5. Dark sector and exotics
- 6. Quarkonium(like) beyond Phase II

* I consider early running to primarily focus on the 2018 partial detector run, phase II. I will briefly mention phase III topics.

Belle II & SuperKEKB

So when do we start Belle II ?

BEAST PHASE I: Feb-June 2016 (Belle II roll-in in March 2017).

PHASE II Operation: Starts in ~Jan 2018 [Begin with damping ring commissioning; First collisions; *limited physics without vertex detectors*]

Phase III: Belle II Physics Running: late 2018 [vertex detectors in]

QCSL at the IP, Aug 2016 QCSR will be at KEK, Dec 2016

Phillip URQUIJO

8 2 51

Belle II Detector

Belle II in Phase II

Oct 2016: CDC (Central Drift Chamber)

BEAST silicon detector setup (used for beam background study)

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

Accelerator ECM reach

 E_{CM} max with constant $\gamma\beta$ =0.284 is ~ 11.1 GeV

Phillip URQUIJO

Particles	Threshold, GeV/c^2
$B^{(*)}\bar{B}^{**}$	11.00 - 11.07
$B_s^{(*)} \bar{B}_s^{**}$	11.13 - 11.26
$arLambda_bar\Lambda_b$	11.24
$B^{**}\bar{B}^{**}$	11.44 - 11.49
$B_s^{**}\bar{B}_s^{**}$	11.48 - 11.68
$arLambda_bar\Lambda_b^{**}$	11.53 - 11.54
$\Sigma_b^{(*)} \bar{\Sigma}_b^{(*)}$	11.62 - 11.67
$\Lambda_b^{**}ar{\Lambda}_b^{**}$	11.82 - 11.84

Accelerator Conditions

Phillip URQUIJO

Particle Identification

Y(nS) @ Belle II, MIAPP October 2016

MELBOURNE

Neutral reconstruction

Production & Cross Sections

New L1 menu under evaluation. HLT output estimated to be ~10 nb (expected from Belle)

5.5 nb hadronic + τ pairs, 4.5 nb leptonic (triggered and prescaled)

Physics process	s Cross section [nb]	Cuts	Reference	HLT eff., Output
$\Upsilon(4S)$	1.05 ± 0.10	-	[10]	99.7%, 1.05 nb
$u\bar{u}(\gamma)$	1.61	-	KKMC	
$dar{d}(\gamma)$	0.40	-	KKMC	
$sar{s}(\gamma)$	0.38	-	KKMC	
$c\bar{c}(\gamma)$	1.30	-	KKMC	99%, 3.7 nb (total $q\bar{q})$
$e^+e^-(\gamma)$	$300\pm3~({\rm MC \ stat.})$	$10^\circ < \theta^*_{e's} < 170^\circ,$	BABAYAGA.NLO	
		$E^*_{e's} > 0.15~{\rm GeV}$		
$e^+e^-(\gamma)$	74.4	$e^{}\mathrm{s}~(p>0.5\mathrm{GeV})$ in ECL	-	2.1 (total)
$\gamma\gamma(\gamma)$	$4.99\pm0.05~(\mathrm{MC}~\mathrm{stat.})$	$10^{\circ} < \theta^*_{\gamma's} < 170^{\circ},$	BABAYAGA.NLO	0.1 nb (total)
		$E^*_{\gamma's} > 0.15 \text{ GeV}$		
$\gamma\gamma(\gamma)$	3.30	$\gamma \mbox{'s} \ (p > 0.5 \mbox{GeV})$ in ECL	-	
$\mu^+\mu^-(\gamma)$	1.148	-	KKMC	
$\mu^+\mu^-(\gamma)$	0.831	μ 's ($p > 0.5$ GeV) in CDC	-	
$\mu^+\mu^-\gamma(\gamma)$	0.242	$\mu {\rm 's}~(p>\!0.5{\rm GeV})$ in CDC	D ,	0.6 nb (total)
		$\geq 1~\gamma~(E_{\gamma} > 0.5 {\rm GeV})$ in	ECL	
$\tau^+\tau^-(\gamma)$	0.919	-	KKMC	85.2 %, 0.8 nb
$ uar{ u}(\gamma)$	0.25×10^{-3}	-	-	
$e^+e^-e^+e^-$	$39.7\pm0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 {\rm GeV}$	AAFH	
$e^+e^-e^+e^-$	1.1	$\geq 2 \text{ tracks } (p > 0.5 \text{ GeV})$	-	1.5 nb (total)
		in CDC		
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~(\mathrm{MC}~\mathrm{stat.})$	$W_{\ell\ell} > 0.5 {\rm GeV}$	AAFH	
$e^+e^-\mu^+\mu^-$	1.0	$\geq 2 \text{ tracks } (p > 0.5 \text{ GeV})$ in CDC	-	1.6 nb (total)

TABLE I: Total production cross section from various physics processes from collisions at $\sqrt{s} = 10.573 \,\text{GeV}$ to be used for MC normalization.

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

Trigger: More flexible, improved access to low multiplicity channels

Challenge

- Total physics event rate ~10kHz @8x10³⁵ cm⁻²s⁻¹
- High beam-induced backgrounds
 - Touschek scattering proportional to the inverse of beam size
 - One order higher than Belle
- Physics
 - >99.9% efficient for B and D physics
 - Low multiplicity processes challenge the trigger due to substantial QED background
 - Precision electroweak tests of ee and μμ
 - LFV and leptonic τ decay
 - Precision ISR for g-2: ππ/KK/pp/... and one photon
 - Searches for Dark Photons and Light Higgs
- Scheme: Hardware trigger + Software trigger
 - Level 1 (L1): hardware based
 - High Level Trigger (HLT): software based

LI improvements

- Data flow : parallel → high-speed serial links
- Data rate : 16 Mbps \rightarrow 190 Mbps (CDC wire case)
- Logic : hard-coded →FPGA

Phases 2 & 3: Full physics preparation

Phase 2 will provide sufficient data to begin calibration and physics preparation. These will be repeated in phase 3. **Non exhaustive list.**

1. Performance measurements in data using control modes

- Tracking: CDC only in phase 2
- Particle ID: K/ π , lepton, proton ID.
- Neutral reconstruction efficiency and resolution: $\pi 0$, γ , KL

2. Normalisation measurements and trigger stability checks, e.g.

- Luminosity (precision)
- B-counting

3. Trigger Menu & Performance

- Trigger efficiency measurements, L1 and HLT
- Trigger menu tuning

4. Algorithm tests

• Full event interpretation (B-tag)

5. Background measurements

- Beam background characterisation and impact on reconstruction.
- Collection of beam background for overlay in MC.

6. Simulation tuning

• Unbiased measurements of qq for Pythia tuning.

Recent results in Bottomonium-like states Bosttomonia

History of Bottomonium-like states @ e⁺e⁻

- Belle collected 120 fb⁻¹ near Y(5S) and 5.6 fb⁻¹ near Y(6S)
 - Y(5S)= Y(10860), Y(6S)= Y(11020)
- Unexpectedly high rate to $Y(nS)\pi^+\pi^-$ (n=1,2,3), x10², at Y(5S)
 - PRL 100, 112001 (2008)
- $\sigma(Y(nS)\pi\pi)$, $\sigma(bb)$ vs CMS energy: "Y(5S)" peaks offset by 9±4 MeV
 - PRD 82, 091106 (2010)
- Bottomonium-like Z_b[±](10610), Z_b[±] (10650) in 5 channels at Y(5S): Y(nS)π[±], h_b(mP)π[±] (m=1,2)
 - PRL 108, 122001 (2012)
- Neutral Bottomonium-like Z_b^0 (10610) to Y(nS) π^0 at Y(5S)
 - PRD 88, 052016 (2013)
- $Z_b^{\pm}(10610)$, $Z_b^{\pm}(10650) \rightarrow Y(nS)\pi^{\pm}$ amplitude analysis yields $J^P = 1^+$
 - PRD 91, 072003 (2015)

Z_b states

- $Z_{b}^{\pm}(10610) \rightarrow B^{*}B$, $Z_{b}^{\pm}(10650) \rightarrow B^{*}B^{*}$ observed
 - PRL 116, 212001 (2016)
- Exclusive events $B^*B(^*)\pi^{\pm}$

600

500

400

Events/(5 00 100

100

0_⊠ 5.0

 MeV/c^2)

- Fully reconstructed $B^{0/\pm} + \pi$
- Sign of π^{\pm} correlates w/ B flavour
- "wrong sign" background + mixed B⁰
- Bπ missing mass: peaks at M_{B*} , $M_{B*}+\Delta M$

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

19

MELBOURN

B^{*}B^(*) dominate Z_b channels observed so far

Channel	Fracti	on, %
	$Z_b(10610)$	$Z_b(10650)$
$\Upsilon(1S)\pi^+$	$0.54\substack{+0.16+0.11\\-0.13-0.08}$	$0.17\substack{+0.07+0.03\\-0.06-0.02}$
$\Upsilon(2S)\pi^+$	$3.62\substack{+0.76+0.79\\-0.59-0.53}$	$1.39\substack{+0.48+0.34\\-0.38-0.23}$
$\Upsilon(3S)\pi^+$	$2.15\substack{+0.55+0.60\\-0.42-0.43}$	$1.63\substack{+0.53+0.39\\-0.42-0.28}$
$h_b(1P)\pi^+$	$3.45\substack{+0.87+0.86\\-0.71-0.63}$	$8.41_{-2.12-1.06}^{+2.43+1.49}$
$h_b(2P)\pi^+$	$4.67^{+1.24+1.18}_{-1.00-0.89}$	$14.7^{+3.2+2.8}_{-2.8-2.3}$
$B^+ar{B}^{*0}+ar{B}^0B^{*+}$	$85.6^{+1.5+1.5}_{-2.0-2.1}$	• • •
$B^{*+}ar{B}^{*0}$	• • •	$73.7^{+3.4+2.7}_{-4.4-3.5}$

Favors "meson molecule" configuration model [Voloshin PRD 87, 091501 (2013)]

K. Kinoshita

Y(10860) and Y(11020) via $\sigma(e^+e^- \rightarrow Y(nS)\pi^+\pi^-)$ @ Belle

Phillip URQUIJO

4 3.5 2.5 2

Z_b via h_b

- Events saturated by Z_b[±] states, no nonresonant contribution
 Relative rates to Z_b(10610), Z_b (10650) loosely constrained;
- > Hypothesis of only Z_b (10610) excluded at 3.3 σ

Phase II

Existing data sets at varying E_{CM}

- Significant data sets already taken at other resonances.
- Limitations for quarkonia studies with small mass differences, no VXD for slow tracks.
- Scans may be challenging for accelerator.
- Belle was not optimised for low multiplicity triggering new opportunities at Belle II if we redesign the trigger logic.

Options in Phase 2 : Quarkonium

2 highlight options for ~20 fb⁻¹

10750 MeV: Take O(10 fb⁻¹) at 10.75, near R_Y bump. Analogous transitions in charm revealed new structures.

Y(6S): Study $\pi^{\pm} Z_{b}^{\pm}(10610/50)[\rightarrow \pi^{\pm}h_{b}(1P)]$ modes Analogous transitions to **Y(5S)** $\rightarrow \pi\pi$ **Y(nS)**

at either E_{CM}, new triggers for dark photons can be employed.

P. Urquijo, CoEPP Workshop, Belle II Physics

Quarkonia options

Energy	Outcome	fb ⁻¹	Comments
Y(1S) On	N/A	60+	Limited interest. Low end for machine
Y(2S) On	New physics	20+	Special triggers
Y(1D) Scan	Particle discovery	10-20	
Y(3S) On	Many -onia topics	200+	Known resonance. Needs lumi.
Y(3S) Scan	Precision QED	~10	Need to understand beam conditions for scans.
Y(2D) Scan	Particle discovery	10-20	Unknown masses
>Y(4S) Scan	Particle discovery	10+	Energy to be determined
Y(6S) On	Particle discovery	30+	Upper limit of machine E
Single y	New physics	20+	Special triggers required

Phillip URQUIJO

Y(3S) Vs Y(6S) Physics

- Lack of vertex detector diminishes low p_T track reconstruction
- Y(3S) $\rightarrow \pi^+\pi^-$ Y(2S) unfeasible, but Y(6S) $\rightarrow \pi Z_b(\pi h_b(nP))$ unaffected

Pacific Northwest

NATIONAL LABORATORY

Phase 3 Full physics ~Dec 2018-

Y(nD) Scan : unseen $Y(1^3D_J)$ and $Y(2^3D_J)$

 $Y(3S) \rightarrow \gamma \chi_{bJ}(1P) w/ converted photons$

Dark Higgs: Y(2S) & Y(3S) \rightarrow Y(nS) $\pi\pi$, Y(nS) $\rightarrow \chi \chi$

Exotic: Dark photons, $e^+e^- \rightarrow A' \gamma$

 μ pair cross section

light quark & charm fragmentation

B2TiP Nov 2015, G. Inguglia

 $\Upsilon(nS) \to \pi^+ \pi^- \Upsilon(1S), (n=2,3)$

P. Urquijo, BPAC, Physics Overview

Y(6S) case in Phase II

Plans (wishlist)

- Search for higher mass Z_b-like particles.
- Observation of separate Z_b peaks from Y(6S).
- Hadronic transitions from Y(6S) (pp,h,W,KK).
 - virtual meson loops and connection with tetraquarks.
- R_b decomposition at Y(6S).
- Trigger validation for Y(1S) \rightarrow invisible and hb \rightarrow gg
- Trigger validation for bottomonium physics.

Y(6S) = Y(11020)

- $\sigma(e^+e^- \rightarrow Y(6S)) = 0.15 \text{ nb.} ~1 \text{ Million Y(6S) in 10 fb}^{-1}$.
- Above thresholds for production of new- & poorly measured states
 B_J^(**), QCD Hybrids, W_{bJ} & X_b (ππ transition), h_b(3P) and Y(2D).

Phillip URQUIJO

Z_b Y(6S) Scan analysis

- Anomalous Y(5S) $\rightarrow \pi\pi$ Y(pS) transitions led to discovery of Z [±](106XX)
- Preliminary evidence for Y(6S) $\rightarrow \pi \pi h(nP)$, via $\pi Z^{\pm}(106XX)$
- Resonance structure of Y(6S) channel not fully studied

Belle arXiv:1508.06562

$I^G(J^P)$	Name	Composition	Co-produced particles	Decay channels
			[Threshold, GeV/c^2]	
$1^+(1^+)$	Z_b	$Bar{B}^*$	π [10.75]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^+(1^+)$	Z_b'	$B^*\bar{B}^*$	π [10.79]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^{-}(0^{+})$	W_{b0}	$Bar{B}$	$ ho$ [11.34], γ [10.56]	$\Upsilon(nS) ho,\eta_b(nS)\pi$
$1^{-}(0^{+})$	W_{b0}^{\prime}	$B^*\bar{B}^*$	$ ho \; [11.43], \; \gamma \; [10.65]$	$\Upsilon(nS) ho,\eta_b(nS)\pi$
$1^{-}(1^{+})$	W_{b1}	$Bar{B}^*$	$ ho$ [11.38], γ [10.61]	$\Upsilon(nS) ho$
$1^{-}(2^{+})$	W_{b2}	$B^*\bar{B}^*$	$ ho$ [11.43], γ [10.65]	$\Upsilon(nS) ho$
$0^{-}(1^{+})$	X_{b1}	$B\bar{B}^*$	η [11.15]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^{-}(1^{+})$	X_{b1}^{\prime}	$B^*\bar{B}^*$	$\eta~[11.20]$	$\Upsilon(nS)\eta,\eta_b(nS)\omega$
$0^+(0^+)$	X_{b0}	$Bar{B}$	ω [11.34], γ [10.56]	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(0^+)$	X_{b0}^{\prime}	$B^*\bar{B}^*$	$\omega \ [11.43], \ \gamma \ [10.65]$	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(1^+)$	X_b	$B\bar{B}^*$	ω [11.39], γ [10.61]	$\Upsilon(nS)\omega$
$0^+(2^+)$	X_{b2}	$B^*\bar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega$

Phillip URQUIJO

Phillip URQUIJO

36

MELBOURNE

Y(nS) @ Belle II, MIAPP October 2016

$Z_b \And W_b$

- Closed-flavour decays with the largest branching fractions are 2π transitions into other bottomonium states.
 - Without b-quark spin flip
 Y(5S) →Y(nS)ππ, n < 5
 - With spin flip Y(5S) \rightarrow h_b(nP) $\pi\pi$, n = 1,2.
 - Observations didn't follow spin symmetry → led to discovery.
- If Z_b(') are molecules, they have W_b siblings.
 - Not yet seen, the best portal to W_b may be ππ transitions - ρ tail.
 Possible at 6S, not 5S.
 - Radiative mode analogous to Y(4260)→γ X(3872) - more phase space at 6S for this.

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

MELBOURNE

- Isovector Z_b and W_{bJ} states may possess isoscalar C-odd and Ceven partners, also residing at the B^(*)<u>B</u>^(*) thresholds.
- Analogous to C-even X (3872)
- Y(6S) is expected to have an enhanced rate to X_b due to phase space.

Search for QCD Hybrids?

 A quarkonium hybrid consists of Q, anti-Q in a color octet configuration and a gluonic excitation g. Similar system to diatomic molecule.

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

MELBOURN

QCD Hybrid Production & Decay

Y(11020) is above threshold for b <u>b</u> g hybrid production.

Hypothesised, not found/confirmed.

Scan would be best					10.9 GeV			
way to probe various				alt	hybrid	standard	IKP	reduced
masses.	2^{-+}	B^*B	Р	.1	0	.5	3	44
	1^{-+}	B^*B	Р	.1	0	.5	3	44
With Y(6S) we can	0^{-+}	B^*B	Р	.5	0	2	13	177
	1	B^*B	Р	.2	0	1.2	7	88
start looking.	2^{+-}	B^*B	D	.08	.05	.25	1	22
	1+-	B^*B	S	.02	.1	.2	5	13
		B^*B	D	.02	.02	.15	.6	12
	1 + +	B^*B	S	.01	.05	.25	2	7
		B^*B	D	.1	.05	.5	1	24

TABLE VI. 10.7 GeV $b\bar{b}$ hybrid decay modes (MeV).

Swanson et al.

Phillip URQUIJO

Y(6S) Measurements, W, X and Z States & Hybrids

- Program based on decay modes that have been seen with the Y(5S) sample at some level.
- Assume similar rates as from Y(5S) where relevant.

		reasibility x interest
1	$Y(6S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(1P, 2P) \pi^+ \pi^-$	***
2	$Y(6S) \rightarrow Z_b^+ \pi^- \rightarrow Y(1S, 2S, 3S) \pi^+ \pi^-$	***
3	$Y(6S) \rightarrow Z_b^+ \pi^- \rightarrow \eta_b \rho$	*
4	$Y(6S) → W_b^0 γ$, $W_b → η_b π$, χ _b π, Υρ	*
5	Y(6S) → W _b ⁰ π ⁺ π ⁻ , W _b → η _b π ,χ _b π, Yρ	**
6	$Y(6S) \rightarrow \gamma X_b (\rightarrow \omega Y(1S))$	**
7	$Y(6S) \rightarrow \pi \pi X_b (\rightarrow \omega Y(1S))$	*
8	QCD hybrids in BB*	*

• Searches also for neutral modes to $\pi^0 \pi^0$

Phillip URQUIJO

Foodibility y Inton

Y(6S) Measurements, Conventional quarkonia

High mass opens up access to most Y(n³D_J) states, & unseen bottomonium states. Marginal discovery potential.
 Not clear if ~10-30 fb⁻¹ is sufficient.

Excited B_J/B^{**} states

- B anti-B_J production near threshold in Y(6S) may be useful for resolving states.
- e.g. m(Y(6S)) m(B₁)-m(B) ~ 20 MeV
- Reconstructed in S- and D-wave pion transitions.
- Is the D_J puzzle replicated in the B_J system?

In cs⁻ system, $J^P = 0^+$ and $J^P = 1^+$ states (both L = 1) have predicted masses ~100 MeV higher than measured masses of the D_{SJ} mesons.

 \rightarrow Might not be simple quark-antiquark configurations

PDG 2014 (masses and widths in MeV)

	•	· · · · · ·
Resonance	mass	width
B *	5325.2 ± 0.4	—
$B_1(5721)^0$	5723.5 ± 2.0	—
$B_2^*(5747)^0$	5743 ± 5	23^{+5}_{-11}
B_s^*	$5415.4^{+2.4}_{-2.1}$	-
$B_{s1}(5830)^0$	5828.7 ± 0.4	_
$B_{s2}(5840)^0$	5839.96 ± 0.20	1.6 ± 0.5
$B_2^*(5747)^0$ B_s^* $B_{s1}(5830)^0$ $B_{s2}(5840)^0$	$\begin{array}{c} 5743\pm 5\\ 5415.4^{+2.4}_{-2.1}\\ 5828.7\pm 0.4\\ 5839.96\pm 0.20\end{array}$	$23^{+5}_{-11} \\ - \\ - \\ 1.6 \pm 0.5$

43

Phillip URQUIJO

6S measurements, Spectroscopy & Production

- 1 B_J mesons spectroscopy, Y(11020) \rightarrow B^(*) anti-B_J^(*)
- 2 $\sigma(B^{(*)}B^{(*)})$, $\sigma(B_s^{(*)}B_s^{(*)})$, possible structure study
- 3 f_{Bs}, f_{Bd} @ Y(6S), Characterisation of Y(6S) decay for open flavour.

?

?

**

*

5 q anti-q production - Pythia tuning. Doesn't have to at 6S.

Phillip URQUIJO

Physics study preparation

- Currently working on large MC samples to test analyses and build physics case.
 - Incremental step from 5.6fb⁻¹ (6S) @ Belle (but not all at σ (peak))
- Great opportunity/exercise for analysis and paper production.
- Keeping in mind alternative operating points as Plan B.

Phase II Dark Sector & Other exotics

Dark Sector

If dark matter is non-WIMP what hope do we have?

- Dark gauge bosons, or dark photons, A' = g' = A = U postulated:
 - Very small couplings to SM, may be ow mass: of order MeV to GeV
- Recent interest in dark sector models that:
 - Explain observed anomalies
 - Often introduce, in addition, a dark diggs boson, 7

BaBar, Belle, and Belle II can cover region between a few MeV/c² and 10 GeV/c²

meson decay

Dark photon to invisible, $e+e- \rightarrow \gamma A'$, $A' \rightarrow invisible$.

- Requirements: single photon trigger, charged track detection efficiency
- BaBar: 28fb⁻¹ single-photon trigger (Y(2S,3S)) unpublished.

Phillip URQUIJO

Sensitivity (work in progress)

Dark photon to charged final states

Predicted Belle II upper limits extrapolated from BaBar PRL 113, 201801 (2014)

- $e^+e^- \rightarrow \gamma A'$, with $A' \rightarrow I^+I^-$, with $I = e, \mu$
- Extrapolation assuming BaBar trigger efficiency

Belle II di–muon invariant mass resolution improved by 35% compared to Belle

Phillip URQUIJO

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

MELBOURNE

$$\frac{BR(Y(Y,S),S) \Rightarrow w_1 \pi}{(1S)} = \frac{V(IS)M_{Y(1S)}}{(1S)} (-1 + \frac{4}{3}\sin^2\theta_w)^2 = 4.14 \times 10^{-4} \qquad Y(3S)$$

$$\frac{BR(Y(1S),Y$$

Further exotic ideas for phase II data?

Magnetic monopoles?

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

Beyond phase II

- Bottomonium offers a unique way to study interactions of QCD. Can use nonrelativistic QM and effective theories. Spinsinglet states permit study of spin-spin interactions.
- Y(1S) and Y(2S) are expected to decay mainly via 3 gluons, with a few % probability to two gluons and a γ.
 - 2 and 3-gluon channels probe states made of pure glue (glueballs), light Higgs bosons, and light quark states.
- Y(1S) and Y(2S) hadronic decays can be studied to improve understanding of gluon fragmention into hadrons.

Bottomonium plan beyond Phase II

Hadronic transitions

- \rightarrow Missing η transitions from Y(4S,5S)
- → Missing η transitions from Y(3S)
- $\rightarrow \pi^0$ transitions
- \rightarrow Y(3S) \rightarrow $\pi\pi$ h_b(1P)
- $\rightarrow \eta_{b}(1S,2S)$ lineshape
- \rightarrow Hindered radiative transitions
- \rightarrow Y(1D,2D) spin singlets (and triplets)
- \rightarrow Y(1S) \rightarrow invisible
- \rightarrow h_b(1P, 2P) \rightarrow e⁺e⁻
- $\rightarrow \chi_{b0}(2P) \rightarrow \tau^{+}\tau^{-}$ (NP)
- $\rightarrow \chi_{b}(3P)$ properties
- $\rightarrow \eta_{b}(1S) \rightarrow \gamma \gamma$

Phillip URQUIJO

Table 1.4: Missing bottomonium levels below the $B\bar{B}$ threshold, their quantum numbers, potential model predictions for masses [35], light hadrons emitted in the transitions from vector bottomonium-like states to the considered bottomonia and thresholds of these transitions.

Name	L	S	J^{PC}	Mass, MeV/ c^2	Emitted hadrons [Threshold, GeV/c^2]
$\eta_b(3S)$	0	0	0^{-+}	10336	ω [11.12], ϕ [11.36]
$h_b(3P)$	1	0	1^{+-}	10541	$\pi^+\pi^-$ [10.82], η [11.09], η' [11.50]
$\eta_{b2}(1D)$	2	0	2^{-+}	10148	ω [10.93], ϕ [11.17]
$\eta_{b2}(2D)$	2	0	2^{-+}	10450	ω [11.23], ϕ [11.47]
$\Upsilon_J(2D)$	2	1	$(1, 2, 3)^{}$	10441 - 10455	$\pi^+\pi^-$ [10.73], η [11.00], η' [11.41]
$h_{b3}(1F)$	3	0	3^{+-}	10355	$\pi^+\pi^-$ [10.63], η [10.90], η' [11.31]
$\chi_{bJ}(1F)$	3	1	$(2, 3, 4)^{++}$	10350 - 10358	ω [11.14], ϕ [11.38]
$\eta_{b4}(1G)$	4	0	4^{-+}	10530	ω [11.31], ϕ [11.55]
$\Upsilon_J(1G)$	4	1	$(3, 4, 5)^{}$	10529 - 10532	$\pi^+\pi^-$ [10.81], η [11.08], η' [11.49]

Phillip URQUIJO

BSM Higgs in Y(3S) decays

$$\mathsf{BR}^{H}(\chi_{b0}(1P) \to \tau\tau) = 3.1 \times 10^{-13} \\ \mathsf{BR}^{H}(\chi_{b0}(2P) \to \tau\tau) = (1.9 \pm 0.5) \times 10^{-12} \\ \right\} \times \left[1 + \frac{M_{H_{125}}^{2} \tan^{2} \beta}{M_{\mathsf{new}}^{2} - M_{\chi_{b0}}^{2}} \right]^{2}$$

Will only need $(M_{H_{125}}/M_{H_{\text{new}}}) \tan \beta \sim 30$ for $\mathcal{O}(100)$ signal events in $\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P) \rightarrow \gamma \tau \tau$

Y(nS) @ Belle II, MIAPP October 2016

Phillip URQUIJO

Y(5S)

Did not discuss Y(5S) here. Early running precludes Y(5S) as we already have 120 fb⁻¹.

- σ(Y(5S)) = 0.3 nb, f_{Bs} = 0.2
- In 1 ab⁻¹, expect 60M B_s pairs.
- Y(5S)→ B_s anti-B_s full reconstruction algorithms under development.
 - Challenge due to large excited state production resulting in lack of resolution in extra track and cluster quantities.

b-quark mass

- Data at high ECM may help provide an accurate determination of mb via bottomonium sum-rules.
- Currently there is a discrepancy between pQCD and e+e- near the accelerator threshold region.
- This is important as it is well into the bb continuum region.

Phillip URQUIJO

Light quark Fragmentation	Cross section measurements as a function of z below the B threshold. Improved particle identification and vertex reconstruction in Belle II will help to suppress charm background.
Charm Fragmentation	Cross section measurements as a function of z below the B threshold.
α_s	Determination of the strong coupling constant from frag- mentation data.
Pythia tuning	Tuning of Pythia 8 with early Belle II fragmentation data in $\Upsilon(1S)$ and $e^+e^- \rightarrow q\bar{q}$ below the <i>B</i> threshold.
Muon-pair asymmetry	Precision electroweak tests and probes of axial-axial operators with measurements of the forward-backward asymmetry.

Phillip URQUIJO

- Phase II starts in Jan 2018, for a 5 month run. Machine can reach up to 11.1 GeV E_{CM.}
- Expect about 20 fb⁻¹ for Phase II Physics @ Y(6S).
 - Y(6S) program looks to further probe bottomonium and bottomonium-like structures through many channels.
- Additional 10-20 fb⁻¹ to be taken @ Y(4S)
 - New triggers open up low multiplicity physics, dark sectors.
- Phase III starts ~Dec 2018, with a full detector.
 - Y(5S)-Y(6S) scans, Y(3S), Y(nD) scans all on the table.
- MANY more ideas discussed in <u>B2TiP workshops</u> and in <u>B2TiP Quarkonium chapter</u>.

