

Experiment	Highlights	Accelerator	Years	Institute	Production
BaBar	Y(4260) [28] Y(4360) [103]	PEP-II	1999– 2008	SLAC (Menlo Park, California, USA)	e^+e^- annihilation ($E_{\rm CM} \approx 10$ GeV):
Belle	X(3872) [4] Y(3940) [101] X(3915) [160] $Z_c(4430)$ [29, 131, 132] $Z_b(10610)$, $Z_b(10650)$ [154, 156, 157] $Y_b(10888)$ [145, 146]	KEKB	1998- 2010	KEK (Tsukuba, Japan)	$e^{+}e^{-} \rightarrow B\bar{B}; B \rightarrow KX$ $e^{+}e^{-} \rightarrow Y_{b}$ $e^{+}e^{-} \rightarrow \pi Z_{b}$ $e^{+}e^{-}(\gamma_{\rm ISR}) \rightarrow Y$ $e^{+}e^{-}(\gamma_{\rm ISR}) \rightarrow \pi Z_{c}$ $e^{+}e^{-} \rightarrow J/\psi + X$
Belle II	Upcoming continuation of Belle	SuperKEKB	2018-		$\gamma\gamma \to X$
CLEO-e	$Y(4260)$ [137] $\pi^{+}\pi^{-}h_{c}$ [171]	CESR-c	2003- 2008	Cornell U. (Ithaca, New York, USA)	e^+e^- annihilation $(E_{\rm CM} \approx 4 { m ~GeV})$:
BESIII	$Z_c(3900)$ [21, 148] $Z_c(4020)$ [150, 152] Y(4230) [143] X(3872) [49]	BEPCII	2008-	IHEP (Beijing, China)	$e^+e^- \rightarrow Y$ $e^+e^- \rightarrow \pi Z$ $e^+e^- \rightarrow \gamma X$
CDF	Y(4140) [121] Y(4274) [127] X(3872) [172, 173, 166] X(3872) [165]	Tevatron	1985– 2011	Fermilab (Batavia, Illinois,	$par{p}$ collisions ($E_{\mathrm{CM}} \approx 2 \; \mathrm{TeV}$):
D0	Y(4140) [168] X(5568) [169]		2011	USA)	$p\bar{p} \to X + \text{any}$ $p\bar{p} \to B + \text{any}; B \to KX$
ATLAS	$\chi_b(3P)$ [174]				
CMS	X(3872) [27] Y(4140), Y(4274) [125]	LHC	2010-		pp collisions ($E_{\rm CM}=7,8,13~{ m TeV}$):
LHCb	$Z_c(4430)$ [133, 134] X(3872) [104] $P_c(4380)$, $P_c(4450)$ [34] Y(4140), Y(4274) [120, 126]		2010	CERN (Geneva, Switzerland)	$pp \to X + \text{any}$ $pp \to B + \text{any}; B \to KX$ $pp \to \Lambda_b + \text{any}; \Lambda_b \to KP_b$
COMPASS	photoproduction [175] $a_1(1420)$ [176]	SPS	2002-2011		μ/π beam on N target $(p_{beam} \approx 160, 200 \text{ GeV})$ $\pi N \rightarrow XN$ $\gamma N \rightarrow XN$
PĀNDĀ	Upcoming	HESR		GSI (Darmstadt, Germany)	$ar{p}$ beam on p target $(p_{beam} \approx 1.515 \text{ GeV})$: $par{p} \rightarrow X$ $par{p} \rightarrow X + \text{any}$
GlueX	Beginning (searches for light	CEBAF	2016-	Jefferson Lab (Newport News,	γ beam on p target ($E_{beam} \le 11 \text{ GeV}$):
CLAS12	quark hybrid mesons)	CEDAF	2010-	Virginia, USA)	$\gamma p \rightarrow X p$

Process	Production	Decay	Particle
		$X \to \pi^+\pi^- J/\psi$ [4, 104, 105, 106, 107, 108, 109] $X \to D^{*0}\bar{D}^0$ [110, 111, 112] $X \to \gamma J/\psi$ [113, 114, 115, 116] $X \to \gamma \psi(2S)$ [113, 115]	X(3872)
B and Λ_b Decays	$B \to K + X$	$X \to \omega J/\psi \ [101, \ 117, \ 118]$	X(3872) Y(3940)
		$X \rightarrow \gamma \chi_{c1}$ [119]	X(3823)
		$X \to \phi J/\psi$ [120, 121, 122, 123, 124, 125, 126, 127]	Y(4140) Y(4274) X(4500) X(4700)
	$B \to K + Z$	$Z o \pi^{\pm} \chi_{c1} \ [128, 129]$	$Z_1(4050)$ $Z_2(4250)$
		$Z ightarrow \pi^{\pm} J/\psi$ [43, 130]	$Z_c(4200)$ $Z_c(4430)$
		$Z o \pi^\pm \psi(2S)$ [29, 130, 131, 132, 133, 134]	$Z_c(4240)$ $Z_c(4430)$
	$B \rightarrow K\pi + X$	$X \rightarrow \pi^+\pi^- J/\psi$ [135]	X(3872)
	$\Lambda_b o K + P_c$	$P_c o pJ/\psi$ [34]	$P_c(4380)$ $P_c(4450)$
	$e^+e^- o Y$	$Y \to \pi\pi J/\psi$ [22, 28, 136, 137, 138, 139]	Y(4008) Y(4260)
		$Y \to \pi \pi \psi(2S)$ [103, 140, 141, 142]	Y(4360) Y(4660)
		$Y \rightarrow \omega \chi_{c0}$ [143]	Y(4230)
		$Y \rightarrow \Lambda_c \bar{\Lambda}_c [144]$	X(4630)
		$Y \rightarrow \pi\pi\Upsilon(1S, 2S, 3S)$ [145, 146] $Y \rightarrow \pi\pi h_b(1P, 2P)$ [147]	$Y_b(10888)$
	$e^+e^- o \pi + Z$	$Z \to \pi J/\psi \ [21, 22, 30, 31]$ $Z \to D^* \bar{D} \ [32, 148, 149]$	$Z_c(3900)$
e ⁺ e ⁻ Annihilation		$Z \to \pi h_c \ [150, \ 151]$ $Z \to D^* \bar{D}^* \ [152, \ 153]$	$Z_c(4020)$
		$Z \rightarrow \pi^{\pm} \psi(2S)$ [142]	$Z_c(4055)$
		$Z \to \pi \Upsilon(1S, 2S, 3S)$ [154, 155, 156]	$Z_b(10610)$
		$Z \rightarrow \pi h_b(1P, 2P)$ [154]	$Z_b(10650)$
		$Z \rightarrow B\bar{B}^*$ [157]	$Z_b(10610)$
		$Z \rightarrow B^*\bar{B}^*$ [157]	$Z_b(10650)$
	$e^+e^- \rightarrow \gamma + X$	$X \rightarrow \pi^+\pi^-J/\psi$ [49]	X(3872)
	$e^+e^- \rightarrow \pi^+\pi^- + X$	$X \rightarrow \gamma \chi_{c1}$ [158]	X(3823)
	$e^+e^- o J/\psi + X$	$X \to D\bar{D}^*$ [38, 159]	X(3940)
		$X \rightarrow D^*\bar{D}^*$ [38]	X(4160)
		$X \rightarrow \omega J/\psi$ [160, 161]	X(3915)
$\gamma\gamma$ Collisions	$\gamma\gamma \rightarrow X$	$X \rightarrow D\bar{D}$ [162, 163]	Z(3930)
		$X \rightarrow \phi J/\psi$ [164]	X(4350)
	pp or $p\bar{p} \to X+$ anything	$X \rightarrow \pi^{+}\pi^{-}J/\psi$ [26, 165, 166, 167]	X(3872)
Hadron Collisions		$X \rightarrow \phi J/\psi$ [168]	Y(4140)
		$X \rightarrow B_s \pi^{\pm}$ [169]	X(5568)

Y(4260)

Y(4260)

$$e^+e^- \to \gamma_{\rm ISR}\pi\pi J/\psi$$

$$\Gamma = 50 - 90$$

Y(4260)

Charmonium Vectors

Z(44430)

Four-quark States

$$Z^{+}(4430)$$

$$B \to K\pi^{+}\psi'$$

- .manifestly exotic
 .not confirmed by
 BaBar
 - 30 BELLE

 Neg 10 30 8 4.05 4.3 4.55 4.8

 S.-K Choi et al. Belle 0708.179

$$M = 4443^{+24}_{-18}$$

$$\Gamma = 107^{+113}_{-71}$$

$$J^{PC} = ?$$

Mokhtar, 0810.1073

$$Z^{+}(4430)$$

pp -> B B(pi K psi')

prompt production

F. Rubbo, Torino thesis

 $Z^{+}(4430)$

Belle original

Belle re-analysis 1306.4894

LHCb

F. Rubbo, Torino thesis

$$Z^{+}(4430)$$

.confirmed by LHCb

$$J^{P} = 1^{+}$$

Z(4240) [?]

X(3872)

$$B^{\pm} \to K^{\pm} \pi^+ \pi^- J/\psi$$

S.-K. Choi (Belle), hep-ex/0309032

- D. Acosta (CDF) hep-ex/0312021
- B. Aubert (Babar) hep-ex/0402025

Zc and Zb

$Z_c(3900)$

Observation of Zc(3900) at BESIII

BESIII: PRL110, 252001 (2013)

- $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$
- Γ = 46±10±20 MeV
- 307 ± 48 events

The mass position is 24 MeV away from DD* threshold!

A Partial wave analysis is on going!

Confirmed by Belle and CLEOc: established!

Zc(3900)

Wolfgang Gradl, "Bound States in QCD", St Goar, Mar 24-27, 2015

New BESIII result with all three particles identified.

Much smaller background.

$$Z_c(4025)$$

$$e^+e^- \to (D^*\bar{D}^*)^{\pm}\pi^{\mp}$$

$$M = 4026.3 \pm 2.6 \pm 3.7$$

$$\Gamma = 24.8 \pm 5.6 \pm 7.7$$

BESIII Phys. Rev. Lett. 112, 132001 (2014)

Adachi et al. [Belle] 1105.4583 $Z_b^{\dagger}(10610)$ $Z_b^{\dagger}(10650)$ $I^G.I^P = 1^+1^+$ $B^*\bar{B}$ $\overset{*}{ \textstyle \bowtie_{Z_b(10650)}}$ Z_b(10610) $Y(1S)\pi^{+}\pi^{-}$ $Y(2S)\pi^{+}\pi^{-}$ $Y(3S)\pi^{+}\pi^{-}$ $h_b(1P)\pi^+\pi^$ $h_b(2P)\pi^+\pi^ \Upsilon(5S) \to \pi\pi\Upsilon(nS)$ Average -10 0 10 -10 0 10 -10 0 10 -10 0 10 ΔM, MeV ΔΓ, MeV ΔM, MeV ΔΓ, MeV $h_b(1P)$ $h_b(2P)$ $\Upsilon(2S)$ Events / 10 MeVe² 0000 10000 0 15000 7 12000 10000 £ 12500 8000 ₫10000 6000 6000 7500 4000 5000 4000 2000 2500 2000 Po.4 10.5 10.5 10.6 10.4 10.5

MM(π), GeV/c²

MM(π), GeV/c2

MM(π), GeV/c2

Loops Create Cusps

- E.P. Wigner, Phys. Rev. 73 (1948) 1002
- D. V. Bugg, Europhys. Lett. 96, 11002 (2011)
- D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)
- E.S. Swanson, arXiv:1409.3291

and are related to thresholds

Modelling the Zs — Cusps

phase motion

Modelling the Zs — Cusps

LHCb 4X

$B \to KJ/\psi \phi$

State	Mass (unct.) [MeV]	Width (unct.) [MeV]	J^{PC}
Y(4140)	4165.5(5,3)	83(21,16)	1++
Y(4274)	4273.3(8,11)	56(11,10)	1++
X(4500)	4506(11,13)	92(21,21)	0_{++}
X(4700)	4704(10,19)	120(31,35)	0++

red: LHCb fit black GI

blue: PDG

green: unconfirmed

X(5568)

Seen by D0 in $X(5568) \rightarrow B_s^0 \pi^{\pm}$

V. M. Abazov et al. (D0 Collaboration) Phys. Rev. Lett. 117,022003

$$m = 5567.8 \pm 2.9^{+0.9}_{-1.9}$$

$$\Gamma = 21.9 \pm 6.4^{\,+5.0}_{\,-2.5}$$

subd (the first example of such an open flavour exotic!)

New Pentaquarks

$$P_c(4450)$$
 $P_c(4380)$

$$\Lambda_b^0 o J/\psi K^- p$$

$$P_c(4450)$$
 $\Gamma = 39 \pm 5 \pm 19 \text{ MeV}$

 $P_c(4380)$ $\Gamma = 205 \pm 18 \pm 86 \text{ MeV}$

LHCb 1507.03414v2

$$J^P = \frac{3}{2}^{\pm}$$

$$J^P = \frac{5}{2}^{\mp}$$

 $P_c(4450)$ $P_c(4380)$

 $P_c(4450)$ $P_c(4380)$

Observations

Why do ee and b decay production modes differ?

$$Y(4260) \to \pi^{+}\pi^{-}J/\psi$$

$$B_0 \to \pi^+ \pi^- J/\psi$$

Why do ee and b decay production modes differ?

Why does "radial filtering" happen?

$$e^{+}e^{-} \to Y(4360) \to \pi^{+}\pi^{-}\psi(2S)$$
 $Y(4660)$
 $e^{+}e^{-} \to Y(4260) \to \pi^{+}\pi^{-}J/\psi$

$$e^{+}e^{-} \to \pi^{\pm}Z_{c}(4055); Z_{c}(4055) \to \pi^{\mp}\psi(2S)$$
 $B \to KZ_{c}(4475); Z_{c}(4475) \to \pi^{\pm}\psi(2S)$
 $Z_{c}(4240)$

$$B \to KZ_c(4200); Z_c(4200) \to \pi^{\pm} J/\psi$$

Fig. 1. The fit to the R values for the high mass charmonia structure. The dots with error bars are the updated R values. The solid curve shows the best fit, FIG. 2 (color online). (a) The $J/\psi\pi^+\pi^-$ at around 4.2 GeV, wing any from the updated R values. The solid curve shows the best fit, FIG. 2 (color online). (a) The $J/\psi\pi^+\pi^-$ mass spectrum from the other curves show the contributions from each resonance $R_{\rm BW}$, the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and the other curves show the contributions from each resonance $R_{\rm BW}$, the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and the other curves show the contributions from each resonance $R_{\rm BW}$, the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and the other curves show the contributions from each resonance $R_{\rm BW}$, the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and the data and the data and the other curves show the contributions from each resonance $R_{\rm BW}$, the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and the da

Conclusions

- \subseteq X(3872): likely a $c\bar{c} \bar{D}D^*$ mixture (not a cusp!)
- Y(4260): our best candidate for a hybrid; expect many more!
- ² Zc(4475): 4q exotic? Much to be understood with this (and related?) states.
- §4X: more exotics/cusps?
- \bigcirc X(5568): likely dead.
- Why do ee and B decays differ?
- Why are states associated with radial excitations?

Conclusions

- where are a lot of new states, not all of them are 'real'!
- cusp effects can be important and should be accounted for when modelling
- cusps appear above threshold with fixed properties such as widths and phases
- channel-dependent widths, masses, and production characteristics are a clue!
- nonrelativistic separable model fits the data well and is internally consistent.

Conclusions

- search for new decay modes of exotics
- \odot clarify conventional $c\bar{c}$ in 3.8-4.0 GeV range. Zc(3930) = ?
 - . $\chi_{c2}(2P)$: should be able to observe a DD* decay mode
- \bigcirc understand the e^+e^- charm cross sections better
- © compare $p\bar{p}$ to e^+e^- production (via PANDA); photoproduction at COMPASS
- full amplitude analysis a la LHCb, more sophisticated models than isobar?

Heavy-Quark QCD Exotica

R.F. Lebed, R.E. Mitchell, and E.S. Swanson, to appear in Prog. Part. Nucl. Phys.

arXiv:1610.04528

Issues and Opportunities with Exotic Hadrons

R. Briceno et al., Chin. Phys. C40, 042001 (2016).

arXiv:1511.06779

The hidden-charm pentaquark and tetraquark states

Hua-Xing Chen, Wei Chen, Xiang Liu, Shi-Lin Zhu

arXiv:1601.02092