(2003

Experiment	Highlights	Accelerator	Years	Institute	Production
BaBar	$\begin{gathered} Y(4260)[28] \\ Y(4360)[103] \end{gathered}$	PEP-II	$\begin{aligned} & 1999- \\ & 2008 \end{aligned}$	SLAC (Menlo Park, California, USA)	$\begin{gathered} e^{+} e^{-} \text {annihilation } \\ \left(E_{\mathrm{CM}} \approx 10 \mathrm{GeV}\right): \\ e^{+} e^{-} \rightarrow B \bar{B} ; B \rightarrow K X \\ e^{+} e^{-} \rightarrow Y_{b} \\ e^{+} e^{-} \rightarrow \pi Z_{b} \\ e^{+} e^{-}\left(\gamma_{\mathrm{IsR}}\right) \rightarrow Y \\ e^{+} e^{-}\left(\gamma_{\mathrm{ISR}}\right) \rightarrow \pi Z_{c} \\ e^{+} e^{-} \rightarrow J / \psi+X \\ \gamma \gamma \rightarrow X \end{gathered}$
Belle	$X(3872)[4]$ $Y(3940)[101]$ $X(3915)[160]$ $Z_{c}(4430)[29,131,132]$ $Z_{b}(10610)$, $Z_{b}(10650)[154,156,157]$ $Y_{b}(10888)[145,146]$	KEKB	$\begin{aligned} & 1998- \\ & 2010 \end{aligned}$	KEK (Tsukuba, Japan)	
Belle II	Upcoming continuation of Belle	SuperKEKB	2018-		
CLEO-c	$\begin{aligned} & Y(4260)[137] \\ & \pi^{+} \pi^{-} h_{c}[171] \end{aligned}$	CESR-c	$\begin{aligned} & 2003- \\ & 2008 \end{aligned}$	Cornell U. (Ithaca, New York, USA)	$e^{+} e^{-}$annihilation $\left(E_{\mathrm{CM}} \approx 4 \mathrm{GeV}\right):$
BESIII	$\begin{gathered} Z_{c}(3900)[21,148] \\ Z_{c}(4020)[150,152] \\ Y(4230)[143] \\ X(3872)[49] \end{gathered}$	BEPCII	2008-	IHEP (Beijing, China)	$\begin{gathered} e^{+} e^{-} \rightarrow Y \\ e^{+} e^{-} \rightarrow \pi Z \\ e^{+} e^{-} \rightarrow \gamma X \end{gathered}$
CDF	$\begin{gathered} Y(4140)[121] \\ Y(4274)[127] \\ X(3872)[172,173,166] \end{gathered}$	Tevatron	1985-	Fermilab (Batavia,	pp̄ collisions $\left(E_{\mathrm{CM}} \approx 2 \mathrm{TeV}\right)$
D0	$X(3872)[165]$ $Y(4140)[168]$ $X(5568)[169]$	Tevatron	2011	Illinois, USA)	$\begin{gathered} p \bar{p} \rightarrow X+\text { any } \\ p \bar{p} \rightarrow B+\text { any; } B \rightarrow K X \end{gathered}$
ATLAS	$\chi_{b}(3 P)[174]$	LHC	2010-	CERN (Geneva, Switzerland)	
CMS	$\begin{gathered} X(3872)[27] \\ Y(4140), \\ Y(4274)[125] \end{gathered}$				$\begin{gathered} p p \text { collisions } \\ \left(E_{\mathrm{CM}}=7,8,13 \mathrm{TeV}\right): \end{gathered}$
LHCb	$\begin{gathered} Z_{c}(4430)[133,134] \\ X(3872)[104] \\ P_{c}(4380), \\ P_{c}(4450)[34] \\ Y(4140), \\ Y(4274)[120,126] \\ \hline \end{gathered}$				$\begin{gathered} p p \rightarrow X+\text { any } \\ p p \rightarrow B+\text { any; } B \rightarrow K X \\ p p \rightarrow \Lambda_{b}+\text { any; } \Lambda_{b} \rightarrow K P_{c} \end{gathered}$
COMPASS	$\begin{gathered} \text { photoproduction [175] } \\ a_{1}(1420)[176] \end{gathered}$	SPS	2002-2011		$\begin{gathered} \mu / \pi \text { beam on } N \text { target } \\ \left(p_{\text {beam }} \approx 160,200 \mathrm{GeV}\right) \\ \\ \pi N \rightarrow X N \\ \gamma N \rightarrow X N \end{gathered}$
PANDA	Upcoming	HESR		$\begin{gathered} \text { GSI } \\ \text { (Darmstadt, } \\ \text { Germany) } \end{gathered}$	$\begin{gathered} \bar{p} \text { beam on } p \text { target } \\ \left(p_{\text {beam }} \approx 1.5-15 \mathrm{GeV}\right): \\ p \bar{p} \rightarrow X \\ p \bar{p} \rightarrow X+\text { any } \end{gathered}$
GlueX CLAS12	Beginning (searches for light quark hybrid mesons)	CEBAF	2016-	Jefferson Lab (Newport News, Virginia, USA)	γ beam on p target $\left(E_{\text {beam }} \leq 11 \mathrm{GeV}\right)$: $\gamma p \rightarrow X_{p}$

Process	Production	Decay	Particle
B and Λ_{b} Decays	$B \rightarrow K+X$	$\begin{gathered} X \rightarrow \pi^{+} \pi^{-} J / \psi[4,104,105,106,107,108,109] \\ X \rightarrow D^{* 0} \bar{D}^{0}[110,111,112] \\ X \rightarrow \gamma J / \psi[113,114,115,116] \\ X \rightarrow \gamma \psi(2 S)[113,115] \end{gathered}$	$X(3872)$
		$X \rightarrow \omega J / \psi[101,117,118]$	$\begin{aligned} & X(3872) \\ & Y(3940) \\ & \hline \end{aligned}$
		$X \rightarrow \gamma \chi_{\text {c1 }}$ [119]	$X(3823)$
			$Y(4140)$
			$Y(4274)$
		$X \rightarrow \phi J / \psi(120,121,122,123,124,125,126,127)$	$X(4500)$
			$X(4700)$
	$B \rightarrow K+Z$	$Z \rightarrow \pi^{ \pm} \chi_{\text {c1 }}[128,129]$	$Z_{1}(4050)$
			$Z_{2}(4250)$
		$Z \rightarrow \pi^{ \pm} J / \psi[43,130]$	$\begin{aligned} & Z_{c}(4200) \\ & Z_{c}(4430) \end{aligned}$
		$Z \rightarrow \pi^{ \pm} \psi(2 S)[29,130,131,132,133,134]$	$Z_{c}(4240)$
	$B \rightarrow K \pi+X$	$X \rightarrow \pi^{+} \pi^{-} J / \psi[135]$	$Z_{c}(4430)$ $X(3872)$
	$\Lambda_{b} \rightarrow K+P_{c}$	$P_{c} \rightarrow p J / \psi[34]$	$\begin{aligned} & P_{c}(4380) \\ & P_{c}(4450) \end{aligned}$
$e^{+} e^{-}$Annihilation	$e^{+} e^{-} \rightarrow Y$	$Y \rightarrow \pi \pi J / \psi[22,28,136,137,138,139]$	$\begin{aligned} & Y(4008) \\ & Y(4260) \end{aligned}$
		$Y \rightarrow \pi \pi \psi(2 S)[103,140,141,142]$	$Y(4360)$
			$Y(4660)$
		$Y \rightarrow \omega \chi_{c 0}$ [143]	$Y(4230)$
		$Y \rightarrow \Lambda_{c} \bar{\Lambda}_{c}$ [144]	$X(4630)$
		$\begin{gathered} Y \rightarrow \pi \pi \Upsilon(1 S, 2 S, 3 S)[145,146] \\ Y \rightarrow \pi \pi h_{b}(1 P, 2 P)[147] \end{gathered}$	$Y_{b}(10888)$
	$e^{+} e^{-} \rightarrow \pi+Z$	$\begin{gathered} Z \rightarrow \pi J / \psi[21,22,30,31] \\ Z \rightarrow D^{*} \bar{D}[32,148,149] \end{gathered}$	$Z_{c}(3900)$
		$\begin{gathered} Z \rightarrow \pi h_{c}[150,151] \\ Z \rightarrow D^{*} D^{*}[152,153] \end{gathered}$	$Z_{c}(4020)$
		$Z \rightarrow \pi^{ \pm} \psi(2 S)[142]$	$Z_{c}(4055)$
		$Z \rightarrow \pi \Upsilon(1 S, 2 S, 3 S)(154,155,156]$	$Z_{b}(10610)$
		$Z \rightarrow \pi h_{b}(1 P, 2 P)[154]$	$Z_{b}(10650)$
		$Z \rightarrow B \bar{B}^{*}[157]$	$Z_{b}(10610)$
		$Z \rightarrow B^{*} \mathcal{B}^{*}[157]$	$Z_{b}(10650)$
	$e^{+} e^{-} \rightarrow \gamma+X$	$X \rightarrow \pi^{+} \pi^{-J / \psi[49]}$	$X(3872)$
	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}+X$	$X \rightarrow \gamma \chi_{c 1}$ [158]	$X(3823)$
	$e^{+} e^{-} \rightarrow J / \psi+X$	$X \rightarrow D \bar{D}^{*}[38,159]$	$X(3940)$
		$X \rightarrow D^{*} \bar{D}^{*}[38]$	$X(4160)$
$\gamma \gamma$ Collisions	$\gamma \gamma \rightarrow X$	$X \rightarrow \omega J / \psi[160,161]$	$X(3915)$
		$X \rightarrow D \bar{D}[162,163]$	$Z(3930)$
		$X \rightarrow \phi J / \psi(164)$	$X(4350)$
Hadron Collisions	$p p$ or $p \bar{p} \rightarrow X+$ anything	$X \rightarrow \pi^{+} \pi^{-} J / \psi(26,165,166,167)$	$X(3872)$
		$X \rightarrow \phi J / \psi 168)$	$Y(4140)$
		$X \rightarrow B_{s} \pi^{ \pm}$[169]	$X(5568)$

Y(4260)

Y(4260)

$$
e^{+} e^{-} \rightarrow \gamma_{\mathrm{ISR}} \pi \pi J / \psi
$$

$$
\Gamma=50-90
$$

Y(4260)

Charmonium Vectors

Z(4430)

Four-quark States

$\pi \pi \Upsilon(n S)$
$\pi \pi h_{b}(n P)$
$\pi B B^{*}$
$Z_{b}(10610)$
$Z_{b}(16650)$
\underbrace{B}_{B}

$Z^{+}(4430)$

$$
B \rightarrow K \pi^{+} \psi^{\prime}
$$

$$
\begin{gathered}
M=4443_{-18}^{+24} \\
\Gamma=107_{-71}^{+113} \\
J^{P C}=?
\end{gathered}
$$

.manifestly exotic
. not confirmed by

BaBar

Mokhtar. 0810.1073

$Z^{+}(4430)$

pp -> B B(pi K psi')

prompt production

(b)

$Z^{+}(4430)$

Belle original

CDF

$Z^{+}(4430)$

.confirmed by LHCb

$$
J^{P}=1^{+}
$$

Z(4240) [?]

X(3872)

X(3872)

$$
B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} J / \psi
$$

S.-K. Choi (Belle), hep-ex/0309032

D. Acosta (CDF) hep-ex/0312021
B. Aubert (Babar) hep-ex/0402025

Zc and Zb

$Z_{c}(3900)$

Observation of $\mathrm{Zc}(3900)$ at BESIII

Shuangshi Feng [BESIII] H13

Zc(3900)

Wolfgang Gradl, "Bound States in QCD", St Goar, Mar 24-27, 2015

New BESIII result with all three particles identified. Much smaller background.

$Z_{c}(4025)$

$$
e^{+} e^{-} \rightarrow\left(D^{*} \bar{D}^{*}\right)^{ \pm} \pi^{\mp}
$$

$$
\begin{aligned}
& M=4026.3 \pm 2.6 \pm 3.7 \\
& \Gamma=24.8 \pm 5.6 \pm 7.7
\end{aligned}
$$

BESIII Phys. Rev. Lett. 112, 132001 (2014)

$Z_{b}^{+}(10610) \quad Z_{b}^{+}(10650)$

Adachi et al. [Belle] 1105.4583

$$
I^{G} J^{P}=1^{+} 1^{+}
$$

$$
\Upsilon(5 S) \rightarrow \pi \pi \Upsilon(n S)
$$

$h_{b}(1 P)$
$h_{b}(2 P)$

Loops Create Cusps

D. V. Busg, Europhys. Lett. 96, 11002 (2011)
D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)
E.S. Swanson, arXiv:1409.3291

(a)

(b)

(c)

(d)

and are related to thresholds

Modelling the Zs - Cusps

phase motion

Modelling the Zs - Cusps

LHCb 4X
$B \rightarrow K J / \psi \phi$

State	Mass (unct.) $[\mathrm{MeV}]$	Width (unct.) $[\mathrm{MeV}]$	$J^{P C}$
$Y(4140)$	$4165.5(5,3)$	$83(21,16)$	1^{++}
$Y(4274)$	$4273.3(8,11)$	$56(11,10)$	1^{++}
$X(4500)$	$4506(11,13)$	$92(21,21)$	0^{++}
$X(4700)$	$4704(10,19)$	$120(31,35)$	0^{++}

red: LHCb fit black Gl blue: PDG green: unconfirmed

X(5568)

Seen by D 0 in $X(5568) \rightarrow B_{s}^{0} \pi^{ \pm}$

$$
\begin{aligned}
m & =5567.8 \pm 2.9_{-1.9}^{+0.9} \\
\Gamma & =21.9 \pm 6.4_{-2.5}^{+5.0}
\end{aligned}
$$

$s u \bar{b} \bar{d}$ (the first example of such an open flavour exotic!)

New Pentaquarks

```
Pc
Pc
```

$$
\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p
$$

$P_{c}(4450) \quad \Gamma=39 \pm 5 \pm 19 \mathrm{MeV}$
$P_{c}(4380) \quad \Gamma=205 \pm 18 \pm 86 \mathrm{MeV}$

$$
\begin{aligned}
J^{P} & =\frac{3}{2}^{ \pm} \\
J^{P} & =\frac{5}{2}^{\mp}
\end{aligned}
$$


```
Pc(4450)
Pc}(4380
```



```
\(P_{c}(4450)\)
\(P_{c}(4380)\)
```


Observations

Why do ee and b decay production modes differ?

$$
Y(4260) \rightarrow \pi^{+} \pi^{-} J / \psi
$$

$$
B_{0} \rightarrow \pi^{+} \pi^{-} J / \psi
$$

Why do ee and b decay production modes differ?

Why does "radial filtering" happen?

$$
e^{+} e^{-} \rightarrow \underset{Y(4660)}{Y(4360)} \rightarrow \pi^{+} \pi^{-} \psi(2 S)
$$

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \pi^{ \pm} Z_{c}(4055) ; Z_{c}(4055) \rightarrow \pi^{\mp} \psi(2 S) \\
& B \rightarrow K Z_{c}(4475) ; Z_{c}(4475) \rightarrow \pi^{ \pm} \psi(2 S) \\
& Z_{c}(4240)
\end{aligned}
$$

R_{b}

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \Upsilon(n S)
$$

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{b}
$$

Contrast ee -> bb where the Upsilon(4S) and (5S) are clearly visible to cc:

Conclusions

Q X (3872): likely a $c \bar{c}-\bar{D} D^{*}$ mixture (not a cusp!)
Q Y(4260): our best candidate for a hybrid; expect many more!
$\bullet \mathrm{Z}_{\mathrm{c}}(4475): 4 \mathrm{q}$ exotic? Much to be understood with this (and related?) states.
-4X: more exotics/cusps?
Q X(5568): likely dead.
$\bullet \mathrm{Pc}(4450)+\mathrm{Pc}(4380)$: actual pentaquarks? Again, much remains to be understood.

Q Why do ee and B decays differ?
Q Why are states associated with radial excitations?

Conclusions

- there are a lot of new states, not all of them are 'real'!
- cusp effects can be important and should be accounted for when modelling
- it appears likely (?) that the Z_{b} and Z_{c} states are kinematical
Q cusps appear above threshold with fixed properties such as widths and phases
- channel-dependent widths, masses, and production characteristics are a clue!
- nonrelativistic separable model fits the data well and is internally consistent.

Conclusions

Q search for new classes of exotics: hexaquarks, double heavies, eg $c c \bar{u} \bar{d}$; $\operatorname{exotic} J^{P C}$
esearch for new decay modes of exotics
Qclarify conventional $c \bar{c}$ in $3.8-4.0 \mathrm{GeV}$ range. $\mathrm{Zc}(3930)=$?
. $\chi_{c 2}(2 P)$: should be able to observe a DD^{*} decay mode
Qunderstand the $e^{+} e^{-}$charm cross sections better
θ compare $p \bar{p}$ to $e^{+} e^{-}$production (via PANDA); photoproduction at COMPASS
Q full amplitude analysis a la LHCb, more sophisticated models than isobar?

Heavy-Quark QCD Exotica

R.F. Lebed, R.E. Mitchell, and E.S. Swanson, to appear in Prog. Part. Nucl. Phys. arXiv:1610.04528

Issues and Opportunities with Exotic Hadrons

R. Briceno et al., Chin. Phys. C40, 042001 (2016).
arXiv:1511.06779

The hidden-charm pentaquark and tetraquark states
Hua-Xing Chen, Wei Chen, Xiang Liu, Shi-Lin Zhu
arXiv:1601.02092

