Kaon Flavour Physics strikes back

Andrzej J. Buras (Technical University Munich, TUM-IAS)

MIAPP TUM Oct. 2016

1

Overture

Stars of KAON Flavour Physics

$$\begin{split} \epsilon_{\kappa}, \Delta \mathbf{M}_{\kappa} & \epsilon' / \epsilon & \mathbf{K}^{+} \to \pi^{+} \nu \overline{\nu} & \mathbf{K}_{L} \to \pi^{0} \nu \overline{\nu} \\ \hline \mathbf{K}_{L} \to \mu^{+} \mu^{-} & \mathbf{K}_{L} \to \pi^{0} \mathbf{e}^{+} \mathbf{e}^{-} & \mathbf{K}_{L} \to \pi^{0} \mu^{+} \mu^{-} \end{split}$$

They all can give some information about very short distance scales but to identify new physics, correlations with $B_{s,d}$ and D observables, EDMs, Lepton physics crucial

In particular if we want to reach Zeptouniverse without any direct hints from the LHC

B Physics Anomalies

$$\mathbf{R}_{\mathbf{D}^{(*)}} = \frac{\mathbf{Br}\left(\mathbf{B} \to \mathbf{D}^{(*)} \tau \nu_{\tau}\right)}{\mathbf{Br}\left(\mathbf{B} \to \mathbf{D}^{(*)} \mu \nu_{\mu}\right)} \qquad (\mathbf{3.5} - \mathbf{4\sigma})$$

BaBar, LHCb, Belle

$$\mathbf{R}_{\kappa} = \frac{\Gamma(\mathbf{B} \to \mathbf{K}\mu\mu)}{\Gamma(\mathbf{B} \to \mathbf{K}ee)} = 0.745 \begin{array}{c} +0.090 \\ -0.074 \end{array} \pm 0.036 \tag{2.6}{c}$$

$$\frac{\mathsf{B} \to \mathsf{K}(\mathsf{K}^{*})\mu^{+}\mu^{-}}{(\mathsf{B} \to \varphi\mu^{+}\mu^{-})} \qquad (3\sigma) \qquad (hadronic uncertainties)$$

$$\begin{split} & \mathsf{Br} \left(\mathsf{B}_{\mathsf{S}} \to \mu^{+} \mu^{-} \right)_{\mathsf{SM}} = \left(3.65 \pm 0.23 \right) \cdot 10^{-9} \\ & \mathsf{CMS} + \mathsf{LHCb} \ \left(2.8 {}^{+0.7}_{-0.6} \right) \cdot 10^{-9}; \quad \mathsf{ATLAS} \ \left(0.9 {}^{+1.1}_{-0.9} \right) \cdot 10^{-9} \end{split}$$

B Physics Anomalies

Many papers:

Violation of lepton flavour universality

New flavour violating interactions:

Z', Leptoquarks, Vector-like quarks, General 2HDM, U(2), ...W', H⁺,...

But no particular signs of new sources of CP-violation!

But: Anomaly in CP-violation in K-physics (ϵ'/ϵ)

$$\varepsilon = CP$$
-violation in Decay (K_L $\rightarrow \pi\pi$)

 $\varepsilon = \mathbf{CP}$ -violation in $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ Mixing

B-Physics Flavour Anomalies

Zugspitze

750 GeV Resonance

Kaon Flavour Physics

Section 1 ε΄/ε strikes back

2015 Anatomy of $\epsilon^{\prime}\!/\epsilon$: 1507.06345

AJB

AJB

Martin Gorbahn

Jean-Marc Gérard

Sebastian Jäger

Matthias Jamin

Large N news 1507.06326

FSI 1603.05686 ε'/ε strikes back (CP-Violation in $K_L \rightarrow \pi\pi$)

New results on hadronic matrix elements of QCD penguin (B₆) and electroweak penguin (B₈) operators

Z´general (AJB, Buttazzo, Knegjens, 1507.08672) Littlest Higgs Model (Blanke, AJB, Recksiegel, 1507.06316) 331 Models (AJB, De Fazio, 1512.02869,1604.02344) New Strategy (AJB, 1601.00005) Vector-like Quarks (Bobeth, AJB, Celis, Jung, 1609.04783)

Four dominant contributions to ϵ'/ϵ in the SM

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)

$$\mathbf{Re}\left(\epsilon^{'}/\epsilon\right) = \begin{bmatrix} \mathbf{Im}\left(\mathbf{V}_{td}\mathbf{V}_{ts}^{*}\right) \\ \mathbf{1.4}\cdot\mathbf{10}^{-4} \end{bmatrix} \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} - \mathbf{10.4}\cdot\mathbf{B}_{8}^{(3/2)} \\ \mathbf{1.4}\cdot\mathbf{10}^{-4} \end{bmatrix} \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} - \mathbf{10.4}\cdot\mathbf{B}_{8}^{(3/2)} \\ \mathbf{1.4}\cdot\mathbf{10}^{-4} \end{bmatrix} \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} - \mathbf{10.4}\cdot\mathbf{B}_{8}^{(3/2)} \\ \mathbf{1.4}\cdot\mathbf{10}^{-4} \end{bmatrix} \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} - \mathbf{10.4}\cdot\mathbf{B}_{8}^{(3/2)} \\ \mathbf{1.4}\cdot\mathbf{10}^{-4} \end{bmatrix} \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} - \mathbf{10.4}\cdot\mathbf{B}_{8}^{(3/2)} \\ \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} - \mathbf{10.4}\cdot\mathbf{B}_{8}^{(1/2)} \\ \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} + \mathbf{1.2} \\ \mathbf{10}^{-4} \begin{bmatrix} -3.6 + 2\mathbf{1.4}\cdot\mathbf{B}_{6}^{(1/2)} \\ \mathbf{10}^{-4} \end{bmatrix} \end{bmatrix} \mathbf{10$$

Assumes that ReA_0 and ReA_2 ($\Delta I=1/2$ Rule) fully described by SM (includes isospin breaking corrections)

Extracted from

$$B_{6}^{(1/2)} = B_{8}^{(3/2)} = 1 \text{ in the large N limit}$$
RBC-UKQCD : $B_{6}^{(1/2)} = 0.57 \pm 0.19$ $B_{8}^{(3/2)} = 0.76 \pm 0.05$

Why
$$B_6^{(1/2)} < B_8^{(3/2)} < 1$$
?

and not $B_6^{(1/2)} > 1$, $B_8^{(3/2)} < 1$ (Pallante, Pich... FSI 2000)

Answer in Large N (Dual QCD) Approach AJB + Gérard (1507.06326)

Before 2015 it was wrongly assumed that $B_{c}^{(1/2)} = B_{c}^{(3/2)} = 1$ at $\mu \approx 0(1 \text{ GeV})$

But
$$B_6^{(1/2)} = B_8^{(3/2)} = 1$$
 is large N prediction
for $\mu = m_{\pi,K}$ not $\mu = 0(1 \text{ GeV})$

Meson evolution $m_{\pi,K} \rightarrow \mu = 0(1 \text{ GeV})$ suppresses $B_6^{(1/2)}$ and $B_8^{(3/2)}$ below 1 and $B_6^{(1/2)}$ stronger than $B_8^{(3/2)}$ in accordance with quark evolution for $\mu > 1 \text{ GeV}$

AJB, Gérard 1603.05686

New application of dual QCD to $K \rightarrow \pi l^+ l^-$ (Caluccio-Leskow, D'Ambrosio, Greynat, Nath, 1604.09721)

2016 Standard Model Results

Teppei Kitahara

Ulrich Nierste

Paul Tremper

 $(\varepsilon'/\varepsilon)_{SM} = (1\pm 5)\cdot 10^{-4}$ **NLO**

1607.06727

First NNLO Result for $(\epsilon'/\epsilon)_{SM}$

Maria Cerda-Sevilla

Martin Gorbahn

Sebastian Jäger

Ahmet Kokulu

Section 2

$\epsilon_{\kappa} \leftrightarrow \Delta M_{s,d}$ tension in SM and CMFV

(1602.04020)

Monika Blanke

AJB

Universal Unitarity Triangle 2016

(CMFV)

AJB, Gambino, Gorbahn, Jäger, Silvestrini 0007085

Universal Unitarity Triangle 2016

Tensions between $\Delta M_{d,s}$ and ϵ_{K}

Intermezzo

$K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$ and $K_{L} \rightarrow \pi^{o} \nu \overline{\nu}$

in the Standard Model

1503.02693

AJB

D.Buttazzo

J.Girrbach-Noe

R.Knegjens

Waiting for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ and $K_{L} \rightarrow \pi \nu \overline{\nu}$

AJB, M. Lautenbacher, G. Ostermaier (9303284)

AJB, F. Schwab, S. Uhlig (0405132)

$\mathbf{K}^+ \rightarrow \pi^+ v \overline{v}$ and $\mathbf{K}_L \rightarrow \pi^0 v \overline{v}$ in the SM

CKM Uncertainties

AJB, Buttazzo, Girrbach-Noe, Knegjens 1503.02693

$$Br(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left[\frac{|V_{cb}|}{0.0407} \right]^{2.8} \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$
$$Br(K_{L} \to \pi^{0} \nu \overline{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left[\frac{|V_{ub}|}{3.88 \cdot 10^{-3}} \right]^{2} \left[\frac{|V_{cb}|}{0.0407} \right]^{2} \left[\frac{\sin \gamma}{\sin(73.2)} \right]^{2}$$

$$\begin{split} &\mathsf{Br}\Big(\mathsf{K}^{+}\to\pi^{+}\nu\overline{\nu}\Big) = \big(8.39\pm0.58\big)\cdot10^{-11} \bigg[\frac{\gamma}{73.2^{\circ}}\bigg]^{0.81} \Bigg[\frac{\overline{\mathsf{Br}}\big(\mathsf{B}_{s}\to\mu^{+}\mu^{-}\big)}{3.4\cdot10^{-9}}\Bigg]^{1.42} \bigg[\frac{227.7}{\mathsf{F}_{\mathsf{B}_{s}}}\Bigg]^{2.84} \\ &\mathsf{Br}\big(\mathsf{K}^{+}\to\pi^{+}\nu\overline{\nu}\big) = \big(8.39\pm1.11\big)\cdot10^{-11} \Bigg[\frac{|\epsilon_{\mathsf{K}}|}{2.23\cdot10^{-3}}\Bigg]^{1.07} \bigg[\frac{\gamma}{73.2^{\circ}}\Bigg]^{-0.11} \bigg[\frac{\mathsf{V}_{\mathsf{ub}}}{3.88\cdot10^{-3}}\Bigg]^{-0.95} \end{split}$$

$$\begin{aligned} &\mathsf{Br} \left(\mathsf{K}^{+} \to \pi^{+} \nu \overline{\nu} \right) = \left(8.4 \pm 1.0 \right) \cdot 10^{-11} \\ &\mathsf{Br} \left(\mathsf{K}_{\mathsf{L}} \to \pi^{0} \nu \overline{\nu} \right) = \left(3.4 \pm 0.6 \right) \cdot 10^{-11} \end{aligned}$$

Section 3

$\varepsilon'/\varepsilon, \varepsilon_{\kappa}, \mathbf{K} \to \pi v \overline{\nu}, \Delta \mathbf{M}_{\kappa}$

beyond SM

AJB (1601.00005)

Section 3 ε΄/ε, ε_κ, $K \rightarrow \pi v \overline{v}$, ΔM_{K} beyond SM ΔJB (1601.00005)

What are the implications of NP in ε'/ε and ε_{K} on $K \rightarrow \pi v \overline{\nu}$ and ΔM_{K} ? ϵ'/ϵ within SM

$$\epsilon'/\epsilon \sim \left[\frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \operatorname{Im} C_6 \langle Q_6 \rangle_0 - \operatorname{Im} C_8 \langle Q_8 \rangle_2 + \text{ smaller contributions} \right]$$

$$\left\{ \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \approx \frac{1}{22} \quad \frac{\operatorname{Im} C_6}{\operatorname{Im} C_8} \approx 90 \quad \frac{\langle Q_8 \rangle_2}{\langle Q_6 \rangle_0} \approx 2 \right\} \Rightarrow \text{ strong cancellations}$$

$$\epsilon'/\epsilon \text{ beyond SM} \quad \left(Q_6, Q_8, Q_6', Q_8' \right)$$

$$\left\{ \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \otimes Q_8 \text{ wins over } Q_6 \text{ because} \left(\frac{\operatorname{Im} C_6}{\operatorname{Im} C_8} \right)^{\operatorname{NP}} \approx 0(1) \right\}$$

Q₆ wins over Q₈ in the presence of a flavour symmetry forbidding Q₈

AJB (1601.00005)

Basic Structure of NP Contributions

AJB (1601.00005)

$$\begin{aligned} \left(\varepsilon'/\varepsilon \right)^{\mathsf{NP}} &\to \mathsf{Im} & \varepsilon_{\mathsf{K}}^{\mathsf{NP}} \to \mathsf{Im} \cdot \mathsf{Re} \\ \left(\kappa_{\varepsilon'} \ge 0.5 \right) & \left(\kappa_{\varepsilon} \ge 0.1 \right) \\ \Delta \mathsf{M}_{\mathsf{K}}^{\mathsf{NP}} &\sim \left[\left(\mathsf{Re} \right)^2 - \left(\mathsf{Im} \right)^2 \right] \end{aligned}$$

Dominance of
$$\mathbf{Q}_{6}(\mathbf{Q}_{6}) \Rightarrow \mathbf{Im} \gg \mathbf{Re} \Rightarrow \left\{ \Delta \mathbf{M}_{K}^{NP} < \mathbf{0} \right\}$$
 (Z')
(large)

$$\begin{array}{l} \text{Dominance of } \mathsf{Q}_{8}\left(\mathsf{Q}_{8}^{'}\right) \ \Rightarrow \ \mathsf{Re} \gg \mathsf{Im} \ \Rightarrow \ \left\{\Delta\mathsf{M}_{\mathsf{K}}^{\mathsf{NP}} > 0\right\} \quad (\mathsf{Z}/\mathsf{Z}) \\ (\text{small}) \end{array}$$

$$\begin{array}{l} \mathsf{Implications for} \quad \boxed{\mathsf{R}_{+}^{\mathsf{v}\overline{\mathsf{v}}} = \frac{\mathsf{Br}\left(\mathsf{K}^{+} \to \pi^{+}\mathsf{v}\overline{\mathsf{v}}\right)}{\mathsf{Br}\left(\mathsf{K}^{+} \to \pi^{+}\mathsf{v}\overline{\mathsf{v}}\right)_{\mathsf{SM}}} } \quad \boxed{\mathsf{R}_{0}^{\mathsf{v}\overline{\mathsf{v}}} = \frac{\mathsf{Br}\left(\mathsf{K}_{\mathsf{L}} \to \pi^{0}\mathsf{v}\overline{\mathsf{v}}\right)}{\mathsf{Br}\left(\mathsf{K}_{\mathsf{L}} \to \pi^{0}\mathsf{v}\overline{\mathsf{v}}\right)_{\mathsf{SM}}}}$$

$$\begin{array}{l} \mathsf{Re}_{\mathsf{N}}^{\mathsf{NP}} = \frac{\mathsf{Re}(\mathsf{Re},\mathsf{Im})}{\mathsf{Re}_{\mathsf{N}}^{\mathsf{NP}}} = \frac{\mathsf{Re}(\mathsf{Re},\mathsf{Im})}{\mathsf{Re}_{\mathsf{N}}^{\mathsf{NP}}} \\ (\mathsf{Im}) \end{array}$$

Lesson 1

We need new sources of CP violation! 1508.08672

Lesson 2

Tree-Level Z with LH or RH FCNC currents (Anticorrelation of ϵ'/ϵ and $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$) $K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$ can be significantly enhanced

LH

$$R_{+}^{\nu\bar{\nu}} < 2$$
 Q_8

 RH
 $R_{+}^{\nu\bar{\nu}} < 5.7$
 Q_8

Only small effects in ε_{K} , ΔM_{K} allowed because of $K_{L} \rightarrow \mu^{+}\mu^{-}$ upper bounds

Isidori, Unterdorfer 0311084

Lesson 3

Tree-Level Z with LH + RH FCNC currents $\epsilon'/\epsilon, \epsilon_{\kappa}, K^+ \rightarrow \pi^+ \nu \overline{\nu}$ and $K_{L} \rightarrow \pi^0 \nu \overline{\nu}$ can be simultaneously enhanced

Lesson 4

Correlation between ϵ'/ϵ , $K \to \pi v \overline{\nu}$ in Z' scenarios depends on whether QCP Penguin (Q₆) or EWP (Q₈) dominates NP in ϵ'/ϵ

Dominance of $Q_6(Q_6') \Rightarrow Im >> Re \Rightarrow \{\Delta M_K^{NP} < 0\}$ Dominance of $Q_8(Q_8') \Rightarrow Re >> Im \Rightarrow \{\Delta M_K^{NP} > 0\}$ Z with LH and RH Flavour Violating Couplings

QCD Penguin (Q₆)

Electroweak Penguin (Q₈)

(Z´)

Section 4

Highlights from 331, LHT, Vector-Like Quark Models, SUSY Models

$\varepsilon'/\epsilon + \mathbf{K} \rightarrow \pi v \overline{v}$ beyond SM

AJB

AJB

Fulvia de Fazio

Jennifer Girrbach-Noe

1404.3824,... 1311.6729

Dario Buttazzo

Rob Knegjens

Simplified NP Models 1507.08672

Monika Blanke

Stefan Recksiegel

LHT 1507.0631
Most Recent

AJB

Fulvia de Fazio

331 models facing $\Delta M_{s,d} \leftrightarrow \varepsilon_{\kappa}$ tension $\varepsilon'/\varepsilon, B_s \rightarrow \mu^+\mu^-,$ $B \rightarrow K^* \mu^+\mu^-$

Model with Vektor-like Quarks

Christoph Bobeth

AJB

Alejandro Celis

Martin Jung

331 Models Facing \varepsilon'/\varepsilon Anomaly

AJB, De Fazio 1512.02869, 1604.02344

$\kappa_{s} \leq 0.8$ (only 3 among 24 models can reach upper bound)

None of them can explain suppressions of $C_9 (B \rightarrow K(K^*)\mu^+\mu^-) \text{ and } B_s \rightarrow \mu^+\mu^$ simultaneously. None R_k

Small NP effects in $\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$ and $\mathbf{K}_{1} \rightarrow \pi^{0} \nu \overline{\nu}$

Correlations in Favorite 331 Models

(AJB+De Fazio, 1604.02344)

LHT: Blanke, AJB, Recksiegel (1507.06316)

$$\begin{bmatrix} B_{6}^{(1/2)} = 1.0, & B_{8}^{(3/2)} = 0.76 \end{bmatrix}$$
 (Violates
Large N bound)
$$\begin{pmatrix} B_{6}^{(1/2)} = 1.0, & B_{8}^{(3/2)} = 1.0 \end{pmatrix}$$

$$\begin{pmatrix} B_{6}^{(1/2)} = 0.75, & B_{8}^{(3/2)} = 0.76 \end{pmatrix}$$

$$\begin{pmatrix} B_{6}^{(1/2)} = 0.57, & B_{8}^{(3/2)} = 0.76 \end{pmatrix}$$

Supersymmetric Explanation of ε'/ε and ε_{K}

Teppei Kitahara

Ulrich Nierste

Paul Tremper 1604.07400

 ϵ'/ϵ anomaly can be explained in the MSSM with squark masses above 3 TeV being consistent with ϵ_{K} without fine-tuning of CP phases or other parameters.

Other recent Studies of ϵ'/ϵ , Rare K Decays

Motoi Endo

Satoshi Mishima

Kei Yamamoto

1608.01444

: Superpartners lighter than 4-6 TeV Correlations with other observables

Morimitsu Tanimoto

11 Vector-like Quark (VLQ) Models

Bobeth, AJB, Celis, Jung 1609.04783

(5)
$$G_{SM} = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

(2)
$$\left\{ \mathbf{G}_{SM}^{'}(\mathbf{S}) = \mathbf{G}_{SM} \otimes \mathbf{U}(1)_{\mathbf{L}_{\mu}-\mathbf{L}_{\tau}} \right\}$$

(4)
$$\left(\mathbf{G}_{SM}^{'}(\Phi) = \mathbf{G}_{SM} \otimes \mathbf{U}(1)_{\mathbf{L}_{\mu}-\mathbf{L}_{\tau}} \right)$$

tree level Z (Δ F = 1)Boxes (Δ F = 2), VLQ

(Z[´], boxes) Altmannshofer et al. (1403.1269)

Most interesting effects in G_{SM} models: 5

5 free parameters in Yukawa couplings: Y_i + M_{VLQ}

• Large NP effects in
$$\varepsilon'/\epsilon$$
, $K^+ \to \pi^+ \nu \overline{\nu}$, $K_L \to \pi^0 \nu \overline{\nu}$

- Smaller but significant in $B_{s,d} \rightarrow \mu^+ \mu^-$
- ϵ_{K} , $\Delta M_{s,d}$ tensions removed
- Combination of ∆F=2 and ∆F=1 observables allows to determine M_{VLQ} independently of Y_i
 - Unable to explain B → K*I⁺I⁻ anomalies (possible in G[']_{SM}(S) but then other NP small)

Patterns dependent on LH and RH currents

Constraints on Yukawa Couplings (VLQ-Art)

-0.2

-0.4 -0.4

-0.2

0.0

 $\operatorname{Re}(\Lambda_{bd})$

0.2

0.4

Correlations between Observables in G_{SM}

(VLQ Models) BBCJ

Left-handed FCNCs

Right-handed FCNCs

Standard Model

 ϵ/ϵ - anomaly easily solved

 $K_L \rightarrow \pi^0 v \overline{v}$ suppressed because of ϵ' / ϵ

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ only enhanced In the presence of RH currents (because of $K_L \rightarrow \mu^+ \mu^-$) **Open Questions for Coming Years**

New Anomalies in Flavour Physics (B, D, LFV)?

New Particles discovered at the LHC?

What about $\Delta I = 1/2$ Rule?

Exciting Times are just ahead of us !!!

Exciting Times are just ahead of us !!!

Anomalies in Kaon Flavour Physics

Backup

AJB, Buttazzo, Knegjens: hep-ph-1507.08672

New Physics Explanations of Anomalies

Andreas Crivellin, 1605.02934

RBC-UK QCD

$$\varepsilon'/\epsilon = (1.4 \pm 7.0) \cdot 10^{-4}$$

$$\left(\frac{\operatorname{Re}A_{0}}{\operatorname{Re}A_{2}}\right) = 31.0 \pm 6.6$$

$$(\epsilon'/\epsilon)_{exp} = (16.6 \pm 2.3) \cdot 10^{-4}$$

$$\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)_{exp} = 22.4$$

Large N

$$(\epsilon'/\epsilon) < (8.6 \pm 3.2) \cdot 10^{-4}$$

$$\left(\frac{\text{Re }A_0}{\text{Re }A_2}\right) = 16.0 \pm 1.5$$

 $\Delta \mathbf{I} = \mathbf{1}/\mathbf{2} \; \mathbf{Rule}$

 $\Delta \mathbf{I} = \mathbf{1}/\mathbf{2} \; \mathbf{Rule}$

Motivations for New Analysis

$$Br(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}), Br(K_{L} \rightarrow \pi^{0} \nu \overline{\nu})$$

$K^{+} \rightarrow \pi^{+} \nu \overline{\nu}$ and $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ in simplified NP Models

Review Mod. Phys.: AJB, Schwab, Uhlig (2008) (0405132) AJB, Buttazzo, Knegjens: hep-ph-1507.08672

- MFV : 20-30% effects, strong correlation between K^+ and K_L (Z, Z)
- U(2)³: Larger effects in the absence of $B_s \rightarrow \mu^+ \mu^-$ constraint
 - Correlation depends on the presence or absence of ϵ_K constraint, size on ϵ'/ϵ , $K_L \rightarrow \mu^+ \mu^-$
- FCNCs Z :

No MFV:

- Enhancements by factors 2-3 over SM still possible (ϵ'/ϵ constraint important)
- FCNCs Z[']: Still larger enhancements possible as ϵ'/ϵ constraint can be eliminated in a model independent analysis but not in specific models with known flavour diagonal quark couplings.

More info in BBK

see Rob Knegjens (Moriond) 1505.04928

Different Patterns of Flavour Violation

Z with LH couplings: Δ_{L}^{sd} (Z)

AJB (1601.00005)

 $(\mathbf{K}_{1} \rightarrow \mu^{+}\mu^{-} \text{ constraint})$

more important)

Unless

Q₈ EWP

Loop effects

important

No specific

correlation

- Anticorrelation of ϵ'/ϵ and $K_L \rightarrow \pi^0 \nu \overline{\nu}$
- Strong suppression of $Br(K_L \rightarrow \pi^0 v \overline{v})$
- $Br(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \leq 2 Br(K^+ \rightarrow \pi^+ \nu \overline{\nu})^{SM}$
- NP effects in ΔM_{κ} and ϵ_{κ} very small .

Z with RH couplings: $\Delta_{R}^{sd}(Z)$

- Anticorrelation of ε'/ε and $K_L \rightarrow \pi^0 v \overline{v}$
- Moderate suppression of $Br(K_L \rightarrow \pi^0 \nu \overline{\nu})$
- $Br(K^+ \to \pi^+ \nu \overline{\nu}) \leq 6 Br(K^+ \to \pi^+ \nu \overline{\nu})^{SM}$
- NP effects in ΔM_{κ} and ϵ_{κ} very small

Both tensions can only be clarified through improved $|V_{ub}|$, $|V_{cb}|$ + Lattice Input and improved measurement of $S_{\psi K_s}$

Correlations within SM

$$|\mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-}, \mathbf{K}^{+} \rightarrow \pi^{+}\nu\overline{\nu}, \gamma|$$

$$K^+ \rightarrow \pi^+ \nu \overline{\nu}, K_L \rightarrow \pi^0 \nu \overline{\nu}, \beta$$

BBGK (2015)

Buchalla, AJB (94)

General Properties

- **1** $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ CP-conserving
- **Z** $\mathbf{K}_{1} \rightarrow \pi^{\circ} \nu \overline{\nu}$ **CP-violating**

Both sensitive to New Physics (NP) $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ bounded by $K_{L} \rightarrow \mu^+ \mu^ \mathbf{K}_{1} \rightarrow \pi^{0} v \overline{v}$ bounded by ϵ' / ϵ

The correlation between $\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$ and $K_{I} \rightarrow \pi^{0} v \overline{v}$ depends on the ε_{κ} constraint (Blanke 0904.2528)

Can probe scales far above LHC.

Strategy B: use ϵ_{K} , ΔM_{s} , ΔM_{d} , $S_{\psi K_{s}}$

$$||\mathbf{V}_{cb}| = (42.4 \pm 1.0) \cdot 10^{-3}|$$

$$|V_{ub}| = (3.61 \pm 0.13) \cdot 10^{-3}$$

$$\gamma = (69.5 \pm 5.0)^{\circ} \implies \gamma = (70.8 \pm 2.3)^{\circ}$$

(after new lattice results for ξ)

$$Br(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = (9.1 \pm 0.7) \cdot 10^{-11}$$
$$Br(K_{L} \rightarrow \pi^{0} \nu \overline{\nu}) = (3.0 \pm 0.3) \cdot 10^{-11}$$

UTfit :
$$|V_{cb}| = (41.7 \pm 0.6) \cdot 10^{-3}$$
 $|V_{ub}| = (3.63 \pm 0.12) \cdot 10^{-3}$ CKMfitter : $|V_{cb}| = (41.2 \pm 1.0) \cdot 10^{-3}$ $|V_{ub}| = (3.55 \pm 0.16) \cdot 10^{-3}$

New Bound on $B_6^{(1/2)}$ and $B_8^{(3/2)}$ from Large N

AJB + Gérard 1507.06326

$$B_6^{(1/2)} \le B_8^{(3/2)} < 1$$

Using BGJJ formula

$$\begin{array}{lll} \mathsf{B}_{6}^{(1/2)} = 1.0 & \mathsf{B}_{8}^{(3/2)} = 1.0 & \Rightarrow & \left(\epsilon^{'}/\epsilon\right)_{\mathsf{SM}} = 8.6 \cdot 10^{-4} \\ \mathsf{B}_{6}^{(1/2)} = 0.8 & \mathsf{B}_{8}^{(3/2)} = 0.8 & \Rightarrow & \left(\epsilon^{'}/\epsilon\right)_{\mathsf{SM}} = 6.4 \cdot 10^{-4} \\ \mathsf{B}_{6}^{(1/2)} = 0.6 & \mathsf{B}_{8}^{(3/2)} = 0.8 & \Rightarrow & \left(\epsilon^{'}/\epsilon\right)_{\mathsf{SM}} = 2.2 \cdot 10^{-4} \end{array}$$

For
$$\operatorname{Im}(V_{ts}V_{td}^{*}) = 1.4 \cdot 10^{-4}$$

Below data but positive

Yet still large uncertainties

 $\mathbf{K}^{+} \rightarrow \pi^{+} \nu \overline{\nu}$

Error Budgets

Z´ outside the reach of the LHC

QCD Penguin

EWP Penguin

: Significant effects in rare decays only for $q\bar{q}Z' \approx 0(10^{-2})$

Using Tree Level Determination of CKM

$$\begin{vmatrix} V_{ub} |_{excl} = (3.72 \pm 0.14) \cdot 10^{-3} & |V_{cb}|_{excl} = (39.36 \pm 0.75) \cdot 10^{-3} \\ |V_{ub}|_{incl} = (4.40 \pm 0.25) \cdot 10^{-3} & |V_{cb}|_{incl} = (42.21 \pm 0.78) \cdot 10^{-3} \\ \hline \\ \hline \\ \begin{vmatrix} V_{ub} |_{avg} = (3.88 \pm 0.29) \cdot 10^{-3} & |V_{cb}|_{avg} = (40.7 \pm 1.4) \cdot 10^{-3} \\ \hline \\ \end{vmatrix}$$

Z with LH or RH Flavour Violating Couplings

Z' Scenarios with LH Couplings Δ_{L}^{sd} **(Z')**

AJB (1601.00005)

Dominance of QCD Penguins (Q₆) in ϵ'/ϵ

- Strong correlation between K⁺ and K_L on the branch parallel to GN bound
- Very large effects in K_L, moderate in K⁺
- $(\Delta M_{\kappa})^{NP} < 0$ (could be 20%)

 $\epsilon_{\rm K}$ anomaly can be solved

Dominance of electroweak Penguins (Q_8) in ϵ'/ϵ

Pattern for $\Delta_{\rm R}^{q\bar{q}}(Z') \approx 0(1)$ in ϵ'/ϵ Both enhanced but anticorrelated

 $\mathbf{K}_{\mathsf{L}} \mathbf{\hat{\Pi}} \quad \mathbf{K}^{+} \mathbf{\bigcup} \quad \text{with } \mathbf{\kappa}_{\varepsilon} \mathbf{\hat{\Pi}}$

(K⁺ \uparrow with κ_{ϵ} \uparrow) Only (20-40)% effects

• $(\Delta M_{K})^{NP} > 0$ (below 10%)

 $\epsilon_{\rm K}$ anomaly can be solved

$$M_{z'} = 3 \text{ TeV}$$
Z with LH and RH Couplings $\Delta_{L,R}^{sd}$ (Z)

(no dependence on κ_{E})

Correlation between K_L and K⁺ On the branch parallel to Grossmann-Nir Bound

Can we reach Zeptouniverse through Rare K and B Decays?

(Z´)

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1408.0728

If only left-handed or only right-handed couplings present in NP : Only with rare K Decays : $B_s \sim 15$ TeV, $B_d \sim 15$ TeV

If both LH and RH present but $g_L^{ij} \ll g_R^{ij}$ or $g_L^{ij} >> g_R^{ij}$ $\begin{array}{ll} \mathsf{K} \rightarrow \pi \nu \overline{\nu} \colon \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq 2000 \; \mathsf{TeV} \\ \mathsf{B}_{\mathsf{d}} & : \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq \; \mathsf{160} \; \mathsf{TeV} \\ \mathsf{B}_{\mathsf{s}} & : \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq \; \mathsf{160} \; \mathsf{TeV} \end{array}$

Heavy Z´ at Work

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1408.0728

Can we reach Zeptouniverse through S and P

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1408.0728

Yes :
$$B_{s,d} \rightarrow \mu^+ \mu^-$$

S : ≈ 350 TeV P : ≈ 700 TeV Pseudoscalars more powerful than scalars because of the interference with SM contribution

Similar to $K \rightarrow \pi v \overline{v}$ (Z'): No tuning neccessary to reach Zeptouniverse

