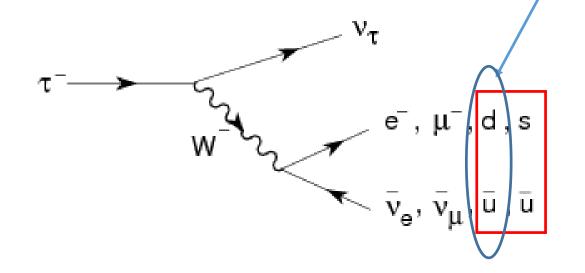

Flavour Physics with High-Luminosity Experiments


24 October–18 November 2016

Pablo Roig

Outline

- Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @ Belle-II
- Other issues in **hadronic** τ **decays**

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$ (Weinberg'58) a_0, η, b_1, ω

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$

G - Parity :
$$G|X\rangle = e^{i\pi I_y} C|X\rangle = (-1)^{\prime} C|X\rangle$$

$$G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle \neq G|\pi^{-}\eta\rangle = -|\pi^{-}\eta\rangle$$

(Leroy-Pestieau'78)

G-parity(Isospin)-violating process ($m_u \neq m_d$, $e \neq 0$)

 a_0 , η , b_1 , ω

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$

G – Parity :
$$G|X\rangle = e^{i\pi I_y}C|X\rangle = (-1)^{\prime}C|X\rangle$$

 $G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle \neq G|\pi^{-}\eta\rangle = -|\pi^{-}\eta\rangle$ (Leroy-Pestieau'78)

G-parity(Isospin)-violating process $(m_1 \neq m_d, e \neq 0)$

 a_0 , η , b_1 , ω

Note: For efforts to discover SCCs in Nuclear Physics see Rev. Mod. Phys. 78. 991 (but they need to rely on CVC).

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$

G - Parity :
$$G|X\rangle = e^{i\pi I_y}C|X\rangle = (-1)^{\prime}C|X\rangle$$

 $G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle \neq G|\pi^{-}\eta\rangle = -|\pi^{-}\eta\rangle$ (Leroy-Pestieau'78)

G-parity(Isospin)-violating process $(m_1 \neq m_d, e \neq 0)$

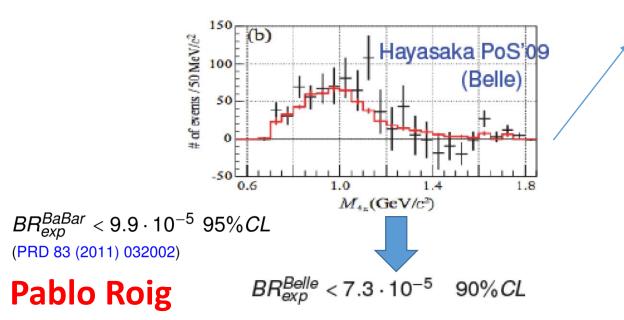
 a_0 , η , b_1 , ω

Note: With **SCC**s I mean either **genuine** SCCs (BSM) or SCCs **induced** by G-parity violation (SM)

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$


G - Parity :
$$G|X\rangle = e^{i\pi l_y} C|X\rangle = (-1)^{\prime} C|X\rangle$$

 $G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle \neq G|\pi^{-}\eta\rangle = -|\pi^{-}\eta\rangle$ (Leroy-Pestieau'78)

ω

G-parity(Isospin)-violating process ($m_{\mu} \neq m_{d}, e \neq 0$)

 $a_0, \eta, b_1,$

SCCs would have been discovered @ BaBar/Belle if it was not for the tough background !!

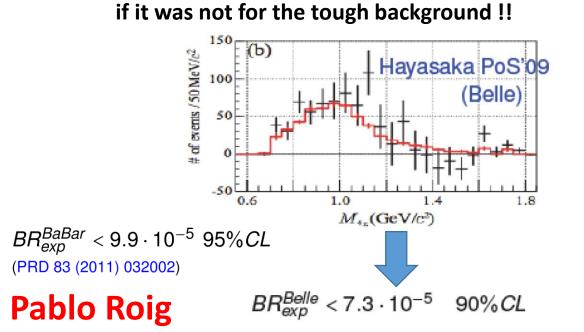
Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

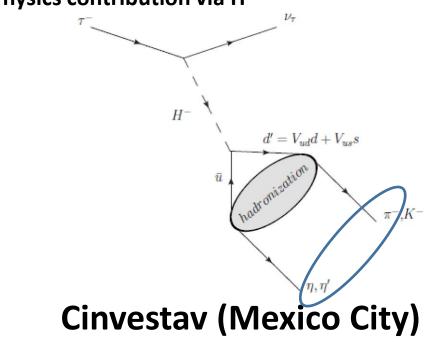
Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ (Weinberg'58) 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$

G - Parity :
$$G|X\rangle = e^{i\pi I_y} C|X\rangle = (-1)^{\prime} C|X\rangle$$

SCCs would have been discovered @ BaBar/Belle

$$G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle \neq G|\pi^{-}\eta\rangle = -|\pi^{-}\eta\rangle$$


(Leroy-Pestieau'78)


G-parity(Isospin)-violating process ($m_u \neq m_d$, $e \neq 0$)

η, b_1 , ω

а₀,

Possible New Physics contribution via H⁻

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Non-strange V-A currents can be split into: 1st class currents $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ 2nd class currents $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$ (Weinberg'58)

G - Parity :
$$G|X\rangle = e^{i\pi I_y} C|X\rangle = (-1)^{\prime} C|X\rangle$$

$$G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle \neq G|\pi^{-}\eta\rangle = -|\pi^{-}\eta\rangle$$
(Leroy-Pestieau'78)

 H^{-}

ū

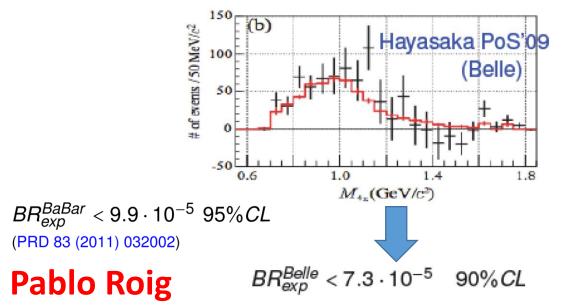
Cinvestav (Mexico City)

 $d' = V_{ud}d + V_{us}s$

- K-

G-parity(Isospin)-violating process $(m_{11} \neq m_{d}, e \neq 0)$

η, b_1 , ω


Possible New Physics contribution via H⁻

Bounds competitive with $B \rightarrow \tau v_{\tau}$ if the SFF is known (th. & exp.) with 20% accuracy!!

 a_0 ,

Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

SCCs would have been discovered @ BaBar/Belle if it was not for the tough background !!

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

- Analyticity+Unitarity+Chiral Expansion
- VFF: $\eta \pi \rightarrow \pi \pi$ is related to $\eta \rightarrow \pi \pi \pi$
- SFF: Dispersion relation + realistic model for phaseshift
 + SR constraint for inelastic region

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

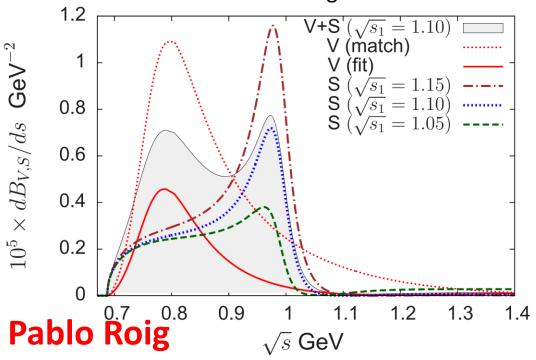
Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

- Analyticity+Unitarity+Chiral Expansion
- VFF: $\eta \pi \rightarrow \pi \pi$ is related to $\eta \rightarrow \pi \pi \pi$
- SFF: Dispersion relation + realistic model for phaseshift
 + SR constraint for inelastic region

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008

- Analyticity+Unitarity+Chiral & resonance contributions
- VFF: It is shown that it can be related to data $(\tau \rightarrow \pi \pi v_{\tau})$
- SFF: Dispersive approach + use of meson-meson scattering data

Input from Guo, Oller & Ruiz de Elvira Phys. Rev. D 86, 054006 (2012)


Cinvestav (Mexico City)

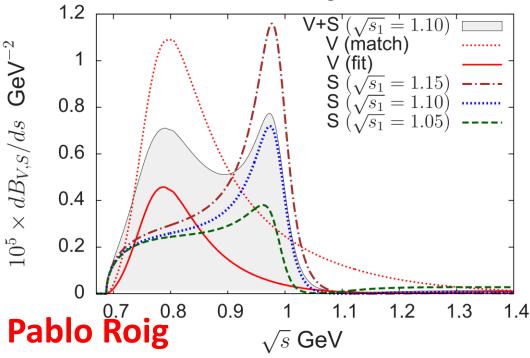
Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

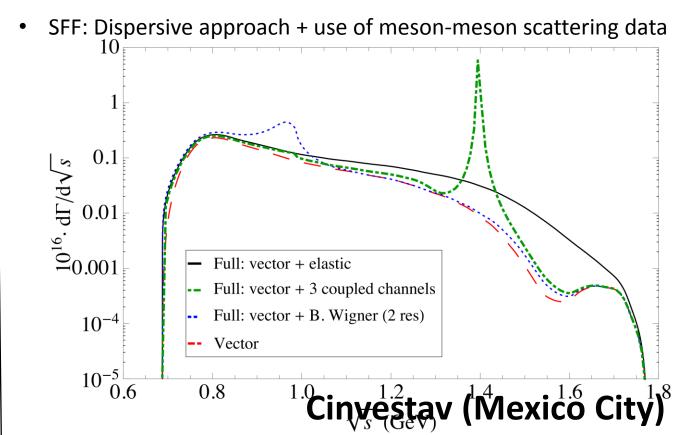
- Analyticity+Unitarity+Chiral Expansion
- VFF: $\eta \pi \rightarrow \pi \pi$ is related to $\eta \rightarrow \pi \pi \pi$
- SFF: Dispersion relation + realistic model for phaseshift
 + SR constraint for inelastic region

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008


- Analyticity+Unitarity+Chiral & resonance contributions
- VFF: It is shown that it can be related to data $(\tau \rightarrow \pi \pi v_{\tau})$
- SFF: Dispersive approach + use of meson-meson scattering data

Input from Guo, Oller & Ruiz de Elvira Phys. Rev. D 86, 054006 (2012)

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II


Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

- Analyticity+Unitarity+Chiral Expansion
- VFF: $\eta \pi \rightarrow \pi \pi$ is related to $\eta \rightarrow \pi \pi \pi$
- SFF: Dispersion relation + realistic model for phaseshift
 + SR constraint for inelastic region

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008

- Analyticity+Unitarity+Chiral & resonance contributions
- VFF: It is shown that it can be related to data $(\tau \rightarrow \pi \pi v_{\tau})$

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Descotes-Genon & Moussallam Eur. Phys. J. C74 (2014) 2946 Escribano, González-Solís & Roig Phys. Rev. D94 (2016) no.3, 034008

- Analyticity+Unitarity+Chiral Expansion
- VFF: $\eta \pi \rightarrow \pi \pi$ is related to $\eta \rightarrow \pi \pi \pi$

Pab

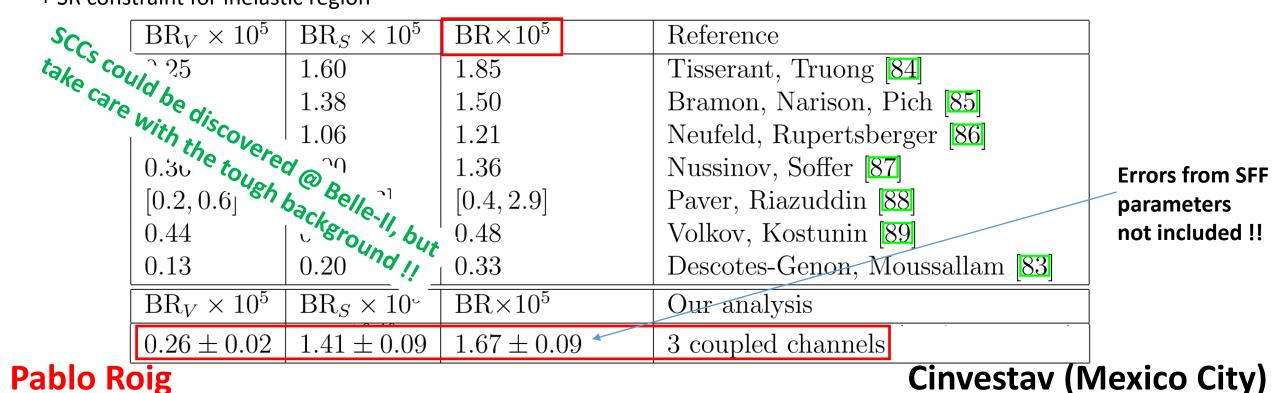
SFF: Dispersion relation + realistic model for phaseshift
 + SR constraint for inelastic region

-senband, Conzulez Jons & Norg Thys.nev. D34 (2010) 110.5, 054000

SFF: Dispersive approach + use of meson-meson scattering data

- Analyticity+Unitarity+Chiral & resonance contributions
- VFF: It is shown that it can be related to data $(\tau \rightarrow \pi \pi \nu_{\tau})$

	ie region			
$\mathrm{BR}_V \times 10^5$	$BR_S \times 10^5$	$BR \times 10^5$	Reference	
0.25	1.60	1.85	Tisserant, Truong 84	
0.12	1.38	1.50	Bramon, Narison, Pich [85]	
0.15	1.06	1.21	Neufeld, Rupertsberger [86]	
0.36	1.00	1.36	Nussinov, Soffer [87]	Errors from SFF
[0.2, 0.6]	[0.2, 2.3]	[0.4, 2.9]	Paver, Riazuddin [88]	parameters
0.44	0.04	0.48	Volkov, Kostunin 89	not included !!
0.13	0.20	0.33	Descotes-Genon, Moussallam [83]	
$BR_V \times 10^5$	$BR_S \times 10^5$	$BR \times 10^5$	Our analysis	
0.26 ± 0.02	1.41 ± 0.09	1.67 ± 0.09	3 coupled channels	
oig			Cinvestav (N	Aexico City)


Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008 Descotes-Genon & Moussallam Eur.Phys.J. C74 (2014) 2946

- Analyticity+Unitarity+Chiral Expansion •
- VFF: $\eta \pi \rightarrow \pi \pi$ is related to $\eta \rightarrow \pi \pi \pi$
- SFF: Dispersion relation + realistic model for phaseshift ٠ + SR constraint for inelastic region

SFF: Dispersive approach + use of meson-meson scattering data

- Analyticity+Unitarity+Chiral & resonance contributions •
- VFF: It is shown that it can be related to data $(\tau \rightarrow \pi \pi v_{\tau})$

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^-(\eta) v_{\tau}$ decays @Belle-II

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008

BR_V	BR_S	BR	Reference
$< 10^{-7}$	$[0.2, 1.3] \times 10^{-6}$	$[0.2, 1.4] \times 10^{-6}$	Nussinov, Soffer 90
$[0.14, 3.4] \times 10^{-8}$	$[0.6, 1.8] \times 10^{-7}$	$[0.61, 2.1] \times 10^{-7}$	Paver, Riazuddin 91
1.11×10^{-8}	2.63×10^{-8}	3.74×10^{-8}	Volkov, Kostunin 89
BR_V	BR_S	BR	Our analysis
$[0.3, 5.7] \times 10^{-10}$	$[1 \times 10^{-7}, 1 \times 10^{-6}]$	$[1 \times 10^{-7}, 1 \times 10^{-6}]$	3 coupled channels

Errors dominated by $\epsilon_{\pi\eta'}$

At least one order of magnitude suppressed with respect to $\tau \rightarrow \pi \eta \nu_{\tau} !!$

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^-(\eta) v_{\tau}$ decays @Belle-II

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008

BR_V	BR_S	BR	Reference
$< 10^{-7}$	$[0.2, 1.3] \times 10^{-6}$	$[0.2, 1.4] \times 10^{-6}$	Nussinov, Soffer 90
$[0.14, 3.4] \times 10^{-8}$	$[0.6, 1.8] \times 10^{-7}$	$[0.61, 2.1] \times 10^{-7}$	Paver, Riazuddin 91
1.11×10^{-8}	2.63×10^{-8}	3.74×10^{-8}	Volkov, Kostunin 89
BR_V	BR _S	BR	Our analysis
$[0.3, 5.7] \times 10^{-10}$	$[1 \times 10^{-7}, 1 \times 10^{-6}]$	$[1 \times 10^{-7}, 1 \times 10^{-6}]$	3 coupled channels

Errors dominated by $\epsilon_{\pi\eta'}$

At least one order of magnitude suppressed with respect to $\tau \rightarrow \pi \ \eta \ \nu_\tau \, !!$

Much more challenging to discover scc

Cinvestav (Mexico City)

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)

The Mexican members of Belle-II are studying the 'expected' backgrounds in the search for SCCs @ Belle-II (with Hayasaka-san)

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)

The Mexican members of Belle-II are studying the 'expected' backgrounds in the search for SCCs @ Belle-II (with Hayasaka-san)

Meanwhile, an 'unexpected' background has been identified:

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)

The Mexican members of Belle-II are studying the 'expected' backgrounds in the search for SCCs @ Belle-II (with Hayasaka-san)

Meanwhile, an 'unexpected' background has been identified:

There are **contributions** to $\tau \rightarrow \pi \eta \nu_{\tau} \gamma$ which are suppressed by α but not by **G**-parity

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

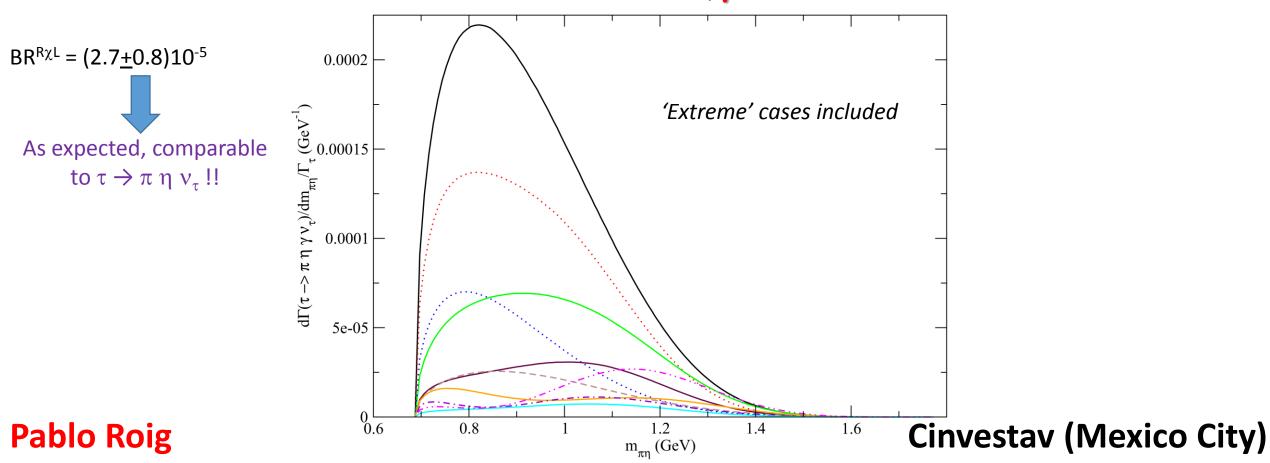
An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)

The Mexican members of Belle-II are studying the 'expected' backgrounds in the search for SCCs @ Belle-II (with Hayasaka-san)

Meanwhile, an 'unexpected' background has been identified:

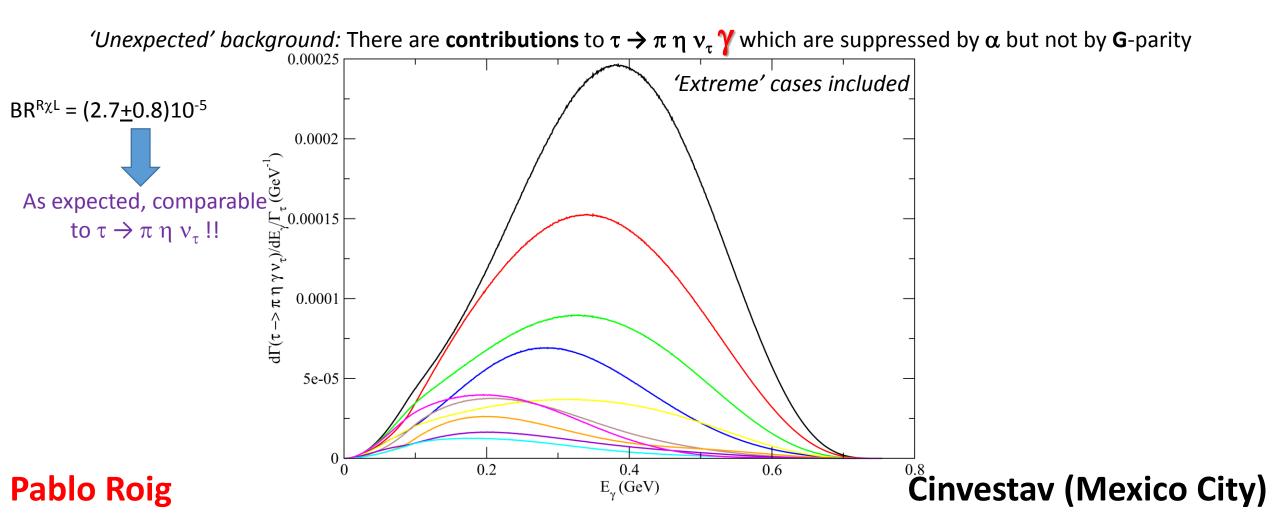
There are **contributions** to $\tau \rightarrow \pi \eta v_{\tau} \gamma$ which are suppressed by α but not by **G**-parity

We have evaluated these using Resonance Chiral Lagrangians (and MDM for comparison)

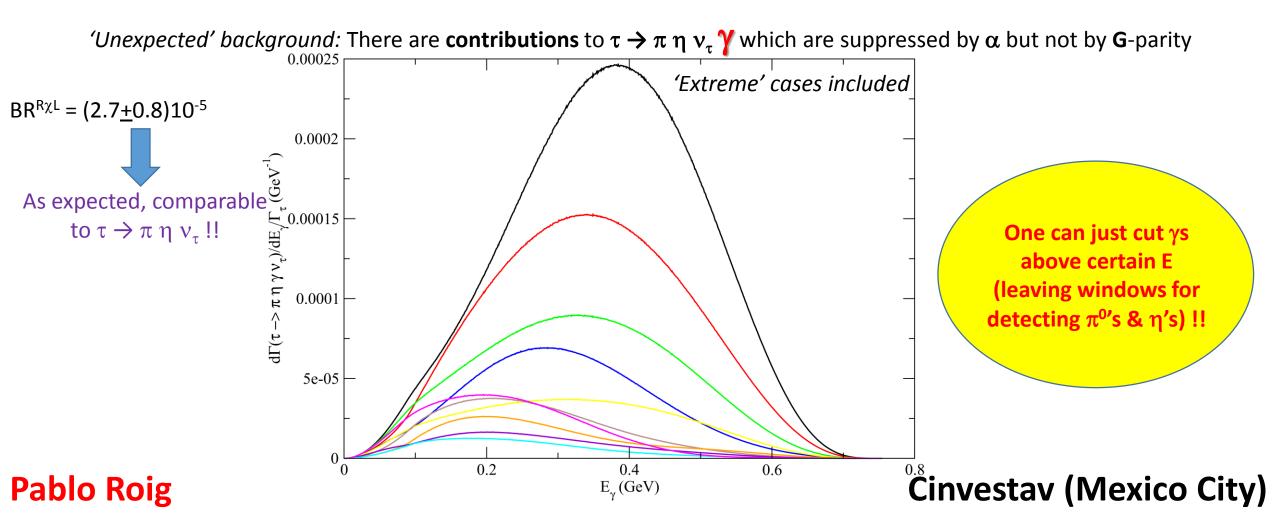

Pablo Roig

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

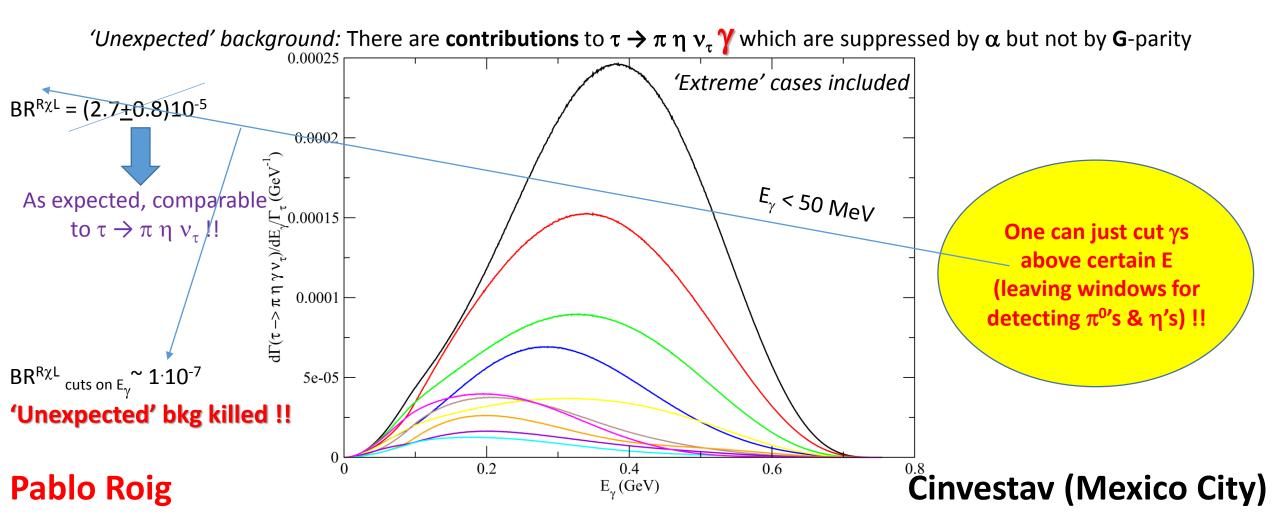
An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)


The Mexican members of Belle-II are studying the 'expected' backgrounds in the search for SCCs @ Belle-II (with Hayasaka-san)

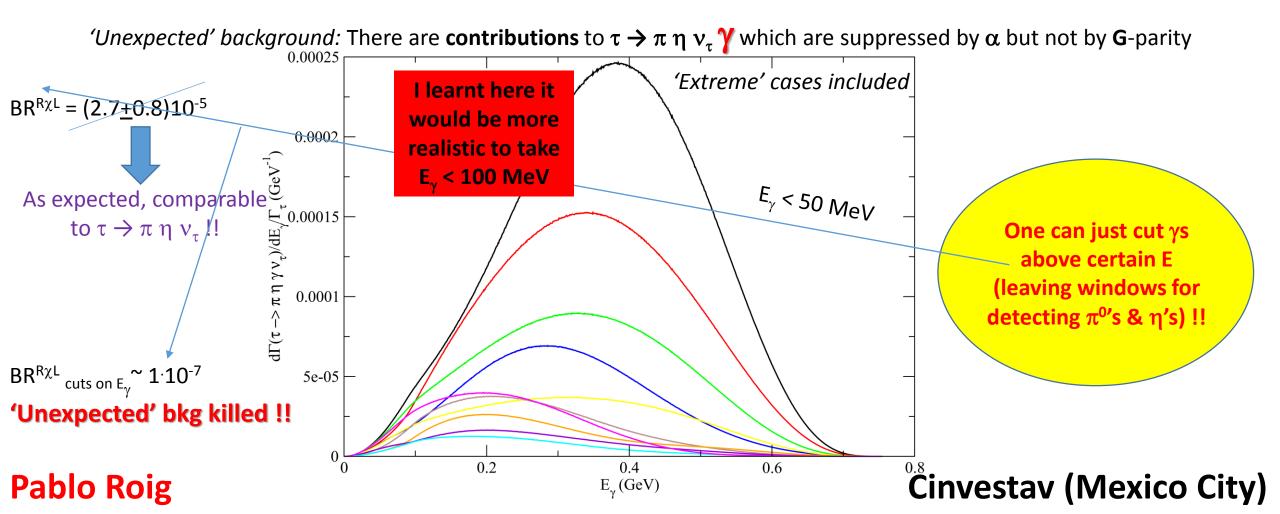
'Unexpected' background: There are **contributions** to $\tau \rightarrow \pi \eta v_{\tau} \gamma$ which are suppressed by α but not by **G**-parity


Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)


Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)


Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta v_{\tau}$ decays @Belle-II

An 'unexpected' background (A. Guevara, G. López Castro & P. Roig, to appear soon)

Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta \nu_{\tau}$ decays Belle-II

Note: With **SCC**s I mean either **genuine** SCCs (BSM) or SCCs **induced** by G-parity violation (SM)

Pablo Roig

 $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests

Pablo Roig

 $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests

Pich, A. Prog.Part.Nucl.Phys. 75 (2014) 41-85

	$\Gamma_{\tau \to \mu} / \Gamma_{\tau \to e}$	$\Gamma_{\pi \to \mu} / \Gamma_{\pi \to e}$	$\Gamma_{K \to \mu} / \Gamma_{K \to e}$	$\Gamma_{K\to\pi\mu}/\Gamma_{K\to\pi e}$	$\Gamma_{W\to\mu}/\Gamma_{W\to e}$
$ g_{\mu}/g_{e} $	1.0018(14)	1.0021(16)	0.9978(20)	1.0010(25)	0.996(10)
	$\Gamma_{\tau \to e} / \Gamma_{\mu \to e}$	$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	$\Gamma_{W \to \tau} / \Gamma_{W \to \mu}$	
$ g_{ au}/g_{\mu} $	1.0011(15)	0.9962(27)	0.9858(70)	1.034(13)	
	$\Gamma_{\tau \to \mu} / \Gamma_{\mu \to e}$	$\Gamma_{W\to\tau}/\Gamma_{W\to e}$			
$ g_{ au}/g_{e} $	1.0030(15)	1.031(13)			

Pablo Roig

 $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests

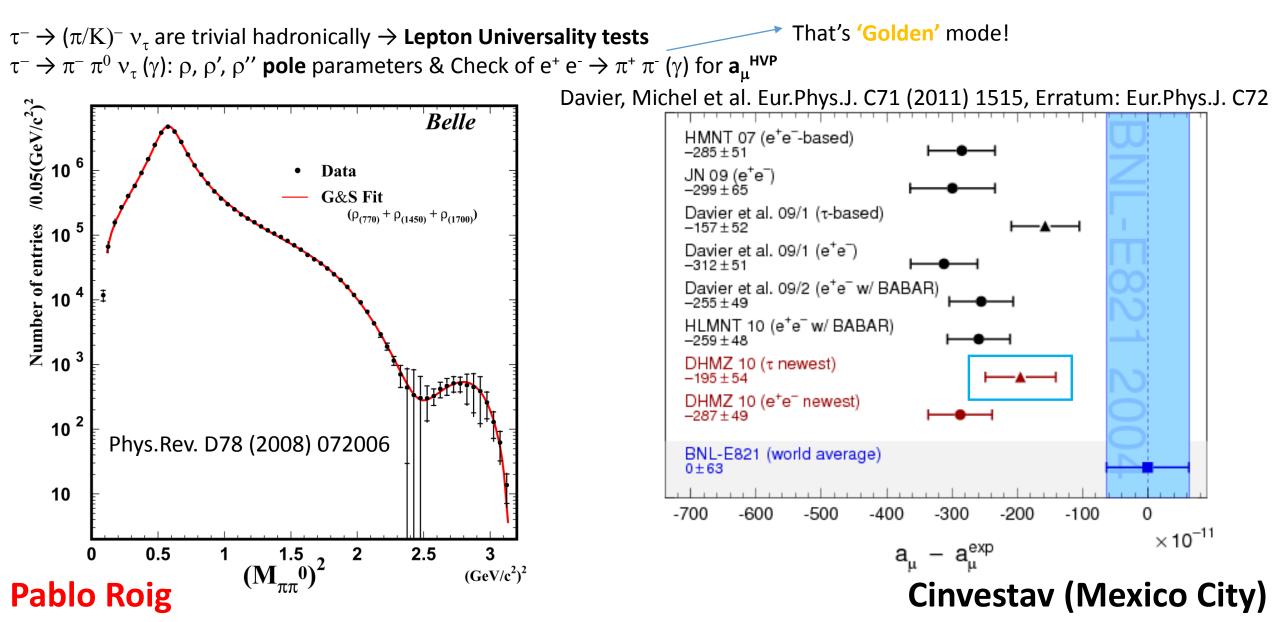
Pablo Roig

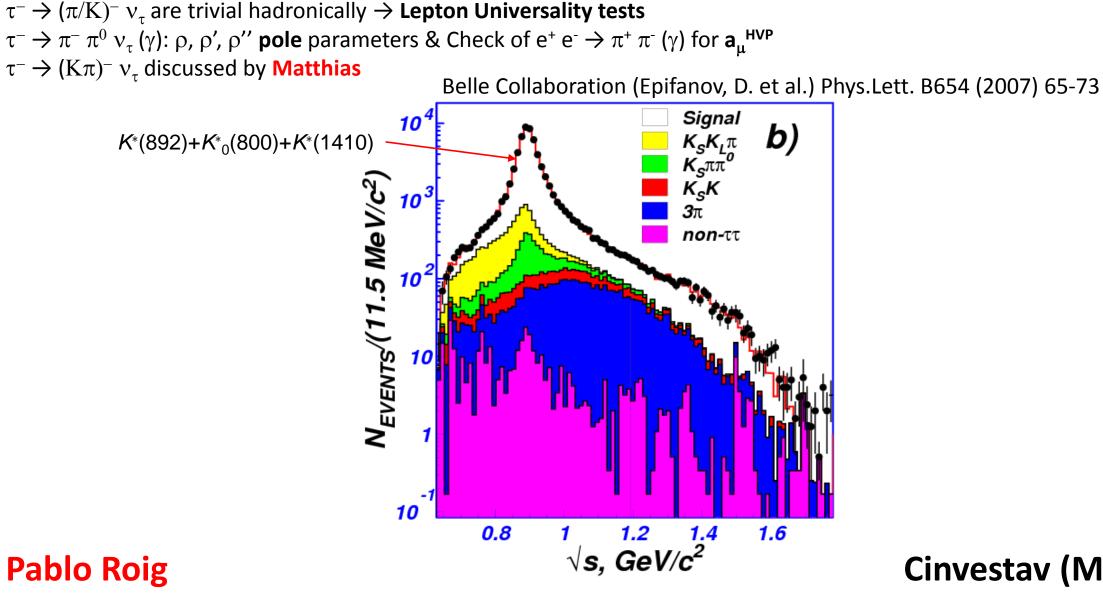
Pich, A. Prog.Part.Nucl.Phys. 75 (2014) 41-85

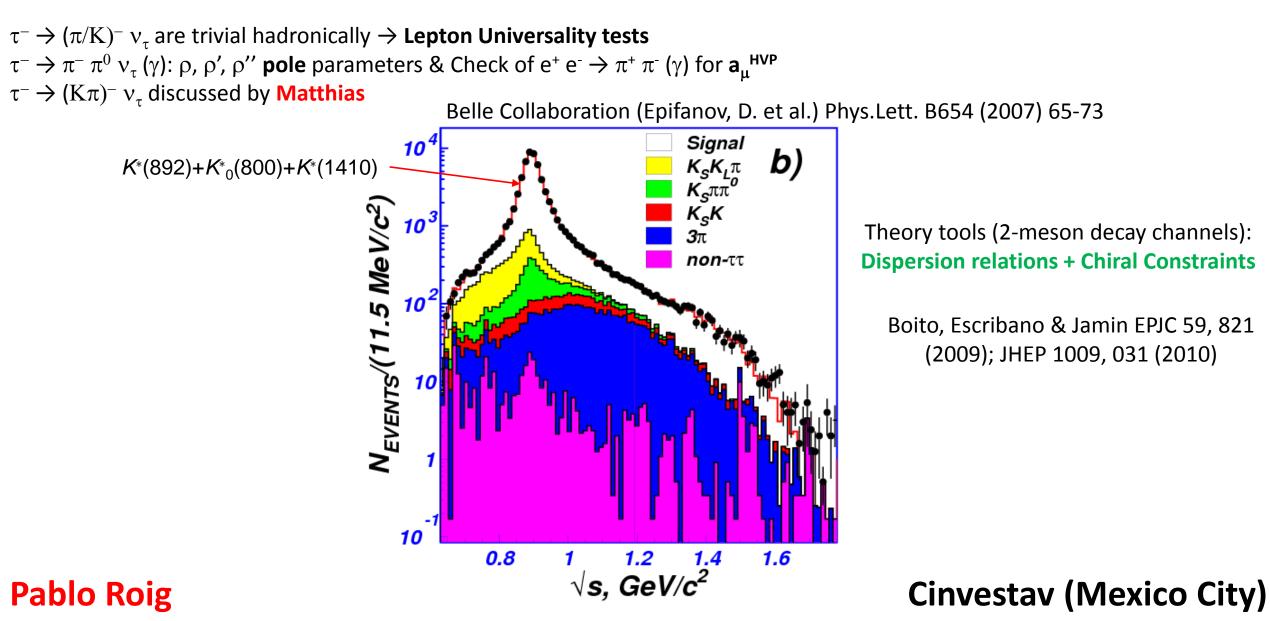
	$\Gamma_{\tau \to \mu} / \Gamma_{\tau \to e}$	$\Gamma_{\pi \to \mu} / \Gamma_{\pi \to e}$	$\Gamma_{K\to\mu}/\Gamma_{K\to e}$	$\Gamma_{K\to\pi\mu}/\Gamma_{K\to\pi e}$	$\Gamma_{W \to \mu} / \Gamma_{W \to e}$
$ g_{\mu}/g_{e} $	1.0018(14)	1.0021(16)	0.9978(20)	1.0010(25)	0.996(10)
	$\Gamma_{\tau \to e} / \Gamma_{\mu \to e}$	$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	$\Gamma_{W \to \tau} / \Gamma_{W \to \mu}$	
$ g_{ au}/g_{\mu} $	1.0011(15)	0.9962(27)	0.9858(70)	1.034(13)	
	$\Gamma_{\tau \to \mu} / \Gamma_{\mu \to e}$	$\Gamma_{W\to\tau}/\Gamma_{W\to e}$			
$ g_{ au}/g_{e} $	1.0030(15)	1.031(13)			

We should not forget the importance of testing the Lorentz structure of the charged current (Michel parameters)

See e. g. arXiv:1609.08280 [hep-ex] (Belle Coll.)


 $\overline{\eta}$ =-2.0±1.5±0.8 and $\xi \kappa$ =0.6±0.4±0.2


 $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma)$: ρ, ρ', ρ'' pole parameters



Theory tools (common to 2-meson decay channels): Dispersion relations + Chiral Constraints

Gómez-Dumm & Roig, EPJC 73, no.8, 2528 (2013) Celis, Cirigliano & Passemar PRD 89, no 1., 013008 (2014)

(introduced by <mark>Simon</mark>)

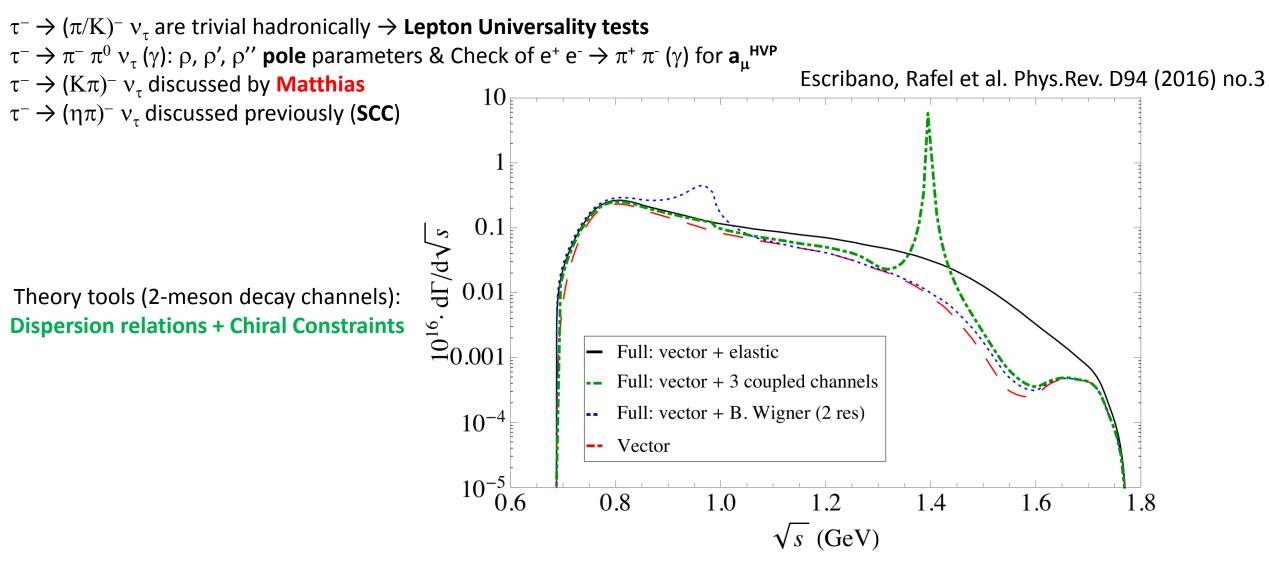
Other issues in hadronic τ decays

$ au^- ightarrow (\pi/K)^- u_{ au}$ are $ au$	trivial hadroni	callv \rightarrow Le	pton l	Universa	litv tests				Escribano, González-Solís, Jamin
$ au^- ightarrow \pi^- \pi^0 \nu_{ au} (\gamma):$ $ au^- ightarrow (K\pi)^- \nu_{ au} dis^-$	Data Error	Current	Belle-I	Belle-I $K\pi$	Belle-I $K\eta$	Belle-II	Belle-II $K\pi$	Belle-II $K\eta$	& Roig JHEP 09 (2014) 042
	$\bar{B}_{K\pi}(\%)$	0.404 ± 0.012	± 0.005	± 0.005	± 0.012	[†] (0.001)	$^{\dagger}(0.001)$	± 0.012	t. B654 (2007) 65-73
	M_{K^*}	892.03 ± 0.19	± 0.09	± 0.09	± 0.19	$^{\dagger}(0.02)$	$^{\dagger}(0.02)$	± 0.19	
K*(892	Γ_{K^*}	46.18 ± 0.44	± 0.20	± 0.20	± 0.44	$^{\dagger}(0.02)$	$^{\dagger}(0.03)$	± 0.42	
	$M_{K^{*\prime}}$	1304 ± 17	$^{\dagger}(7)$	[†] (9)	$^{\dagger}(8)$	$^{\dagger}(1)$	$^{\dagger}(1)$	$^{\dagger}(1)$	
	$\Gamma_{K^{*\prime}}$	168 ± 62	$^{\dagger}(19)$	[†] (24)	$^{\dagger}(25)$	$^{\dagger}(3)$	$^{\dagger}(4)$	$^{\dagger}(11)$	ory tools (2-meson decay channels):
	$\lambda'_{K\pi} \times 10^3$	23.9 ± 0.9	$^{\dagger}(0.3)$	$^{\dagger}(0.3)$	± 0.8	$^{\dagger}(0.04)$	$^{\dagger}(0.04)$	± 0.8	
	$\lambda_{K\pi}^{\prime\prime} \times 10^4$	11.8 ± 0.2	± 0.07	± 0.07	± 0.2	$^{\dagger}(0.01)$	$^{\dagger}(0.01)$	± 0.2	ersion relations + Chiral Constraints
	$\bar{B}_{K\eta} \times 10^4$	1.58 ± 0.10	± 0.05	± 0.10	± 0.05	†(0.01)	± 0.10	$^{\dagger}(0.01)$	
	$\gamma_{K\eta} (= \gamma_{K\pi}) \times 10^2$	-3.3 ± 1.3	$^{\dagger}(0.3)$	$^{\dagger}(0.3)$	$^{\dagger}(0.4)$	$^{\dagger}(0.04)$	$^{\dagger}(0.04)$	$^{\circ}(0.3)$	bito, Escribano & Jamin EPJC 59, 821
	$\lambda'_{K\eta} imes 10^3$	20.9 ± 2.7	$^{\dagger}(0.7)$	± 2.7	$^{\dagger}(0.8)$	$^{\dagger}(0.10)$	± 2.7	$^{\circ}(0.4)$	(2009); JHEP 1009, 031 (2010)
	$\lambda_{K\eta}^{\prime\prime} \times 10^4$	11.1 ± 0.5	$^{\dagger}(0.2)$	± 0.5	$^{\dagger}(0.2)$	$^{\dagger}(0.02)$	± 0.5	$^{\dagger}(0.06)$	

Table 4. The errors of our final results (3.3) are compared, in turn, to those achievable by analysing the complete Belle-I data sample, and updating only the $K_S\pi^-$ or $K^-\eta$ analyses. The last three columns show the potential of fitting all data collected by Belle-II and the same only for $K_S\pi^-$ or for $K^-\eta$ (assuming the other mode has not been updated to include the complete Belle-I data sample). Current Belle $K_S\pi^-$ ($K^-\eta$) data correspond to 351 (490) fb⁻¹ for a complete data set of ~ 1000 fb⁻¹ = 1 ab⁻¹. Expectations for Belle-II correspond to 50 ab⁻¹. All errors include both statistical and systematic uncertainties. [†] means that statistical errors (in brackets) will become negligible, while ° signals a tension with the current reference best fit values. We thank Denis Epifanov for conversations on these figures and on expected performance of Belle-II at the detector and analysis levels. All errors have been symmetrised for simplicity.

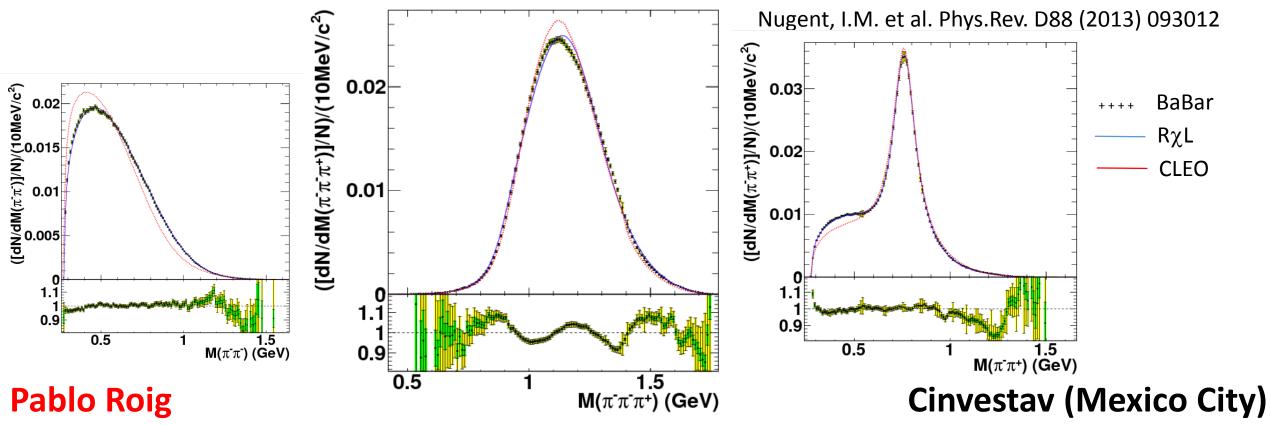
^e Cinvestav (Mexico City)

(introduced by <mark>Simon</mark>)

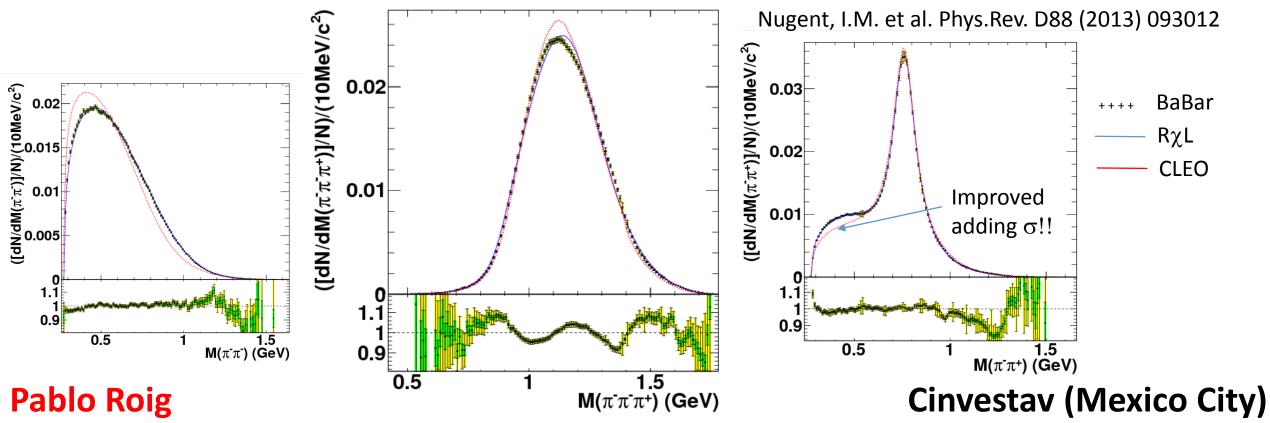

Other issues in hadronic τ decays

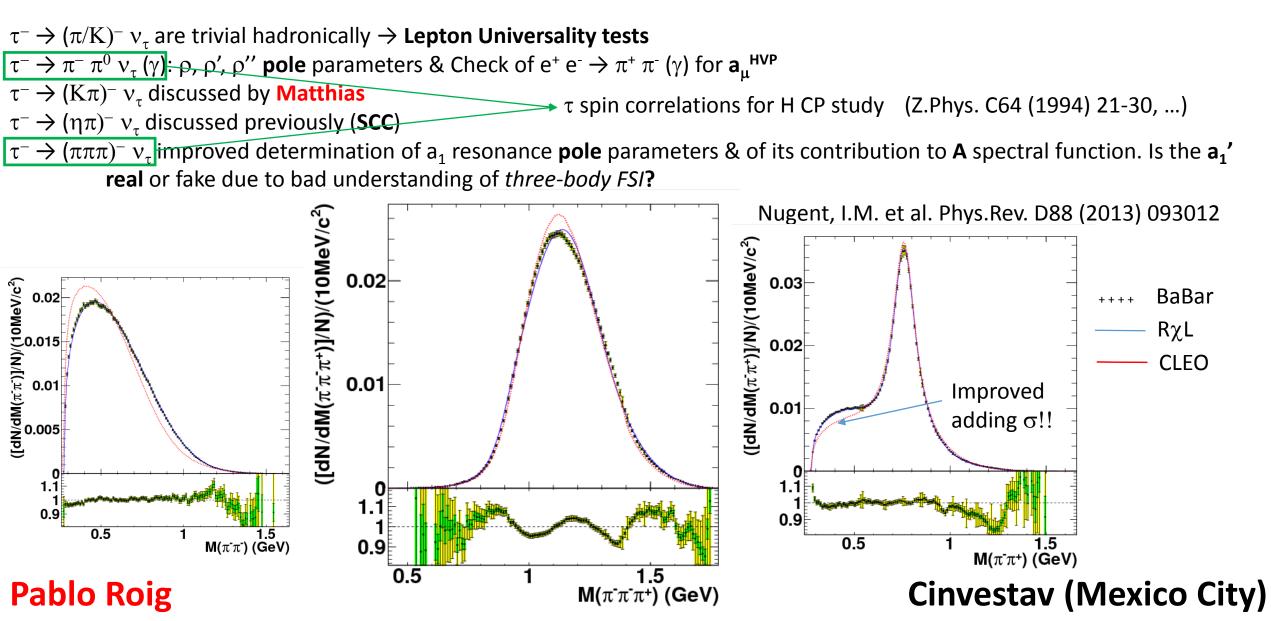
$\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$,	rivial hadroni	$callv \rightarrow Le$	pton l	Jniversa	litv tests				Escribano, González-Solís, Jamin
$ \tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\tau^- \rightarrow (K\pi)^- \nu_{\tau}) $		Data Error	Current	Belle-I	Belle-I $K\pi$	Belle-I $K\eta$	Belle-II	Belle-II $K\pi$	Belle-II $K\eta$	
		$\bar{B}_{K\pi}(\%)$	0.404 ± 0.012	± 0.005	± 0.005	± 0.012	$^{\dagger}(0.001)$	$^{\dagger}(0.001)$	± 0.012	t. B654 (2007) 65-73
		M_{K^*}	892.03 ± 0.19	± 0.09	± 0.09	± 0.19	$^{\dagger}(0.02)$	$^{\dagger}(0.02)$	± 0.19	
K*((892	Γ_{K^*}	46.18 ± 0.44	± 0.20	± 0.20	± 0.44	$^{\dagger}(0.02)$	$^{\dagger}(0.03)$	± 0.42	
		$M_{K^{*\prime}}$	1304 ± 17	$^{\dagger}(7)$	$^{\dagger}(9)$	$^{\dagger}(8)$	$^{\dagger}(1)$	$^{\dagger}(1)$	$^{\dagger}(1)$	
		$\Gamma_{K^{*\prime}}$	168 ± 62	$^{\dagger}(19)$	$^{\dagger}(24)$	$^{\dagger}(25)$	$^{\dagger}(3)$	$^{\dagger}(4)$	$^{\dagger}(11)$	ory tools (2-meson decay channels):
		$\lambda'_{K\pi} \times 10^3$	23.9 ± 0.9	$^{\dagger}(0.3)$	$^{\dagger}(0.3)$	± 0.8	$^{\dagger}(0.04)$	$^{\dagger}(0.04)$	± 0.8	
		$\lambda_{K\pi}^{\prime\prime} \times 10^4$	11.8 ± 0.2	± 0.07	± 0.07	± 0.2	$^{\dagger}(0.01)$	$^{\dagger}(0.01)$	± 0.2	ersion relations + Chiral Constraints
		$\bar{B}_{K\eta} \times 10^4$	1.58 ± 0.10	± 0.05	± 0.10	± 0.05	$^{\dagger}(0.01)$	± 0.10	$^{\dagger}(0.01)$	
		$\gamma_{K\eta} (= \gamma_{K\pi}) \times 10^2$	-3.3 ± 1.3	$^{\dagger}(0.3)$	$^{\dagger}(0.3)$	$^{\dagger}(0.4)$	$^{\dagger}(0.04)$	$^{\dagger}(0.04)$	$^{\circ}(0.3)$	pito, Escribano & Jamin EPJC 59, 821
		$\lambda'_{K\eta} imes 10^3$	20.9 ± 2.7	$^{\dagger}(0.7)$	± 2.7	$^{\dagger}(0.8)$	$^{\dagger}(0.10)$	± 2.7	°(0.4)	(2009); JHEP 1009, 031 (2010)
		$\lambda_{K\eta}^{\prime\prime} imes 10^4$	11.1 ± 0.5	$^{\dagger}(0.2)$	± 0.5	$^{\dagger}(0.2)$	$^{\dagger}(0.02)$	± 0.5	$^{\dagger}(0.06)$	(2003), SHET 1003, 031 (2010)

Table 4. The errors of our final results (3.3) are compared, in turn, to those achievable by analysing the complete Belle-I data sample, and updating only the $K_S\pi^-$ or $K^-\eta$ analyses. The last three columns show the potential of fitting all data collected by Belle-II and the same only for $K_S\pi^-$ or for $K^-\eta$ (assuming the other mode has not been updated to include the complete Belle-I data sample). Current Belle $K_S\pi^-$ ($K^-\eta$) data correspond to 351 (490) fb⁻¹ for a complete data set of ~ 1000 fb⁻¹ = 1 ab⁻¹. Expectations for Belle-II correspond to 50 ab⁻¹. All errors include both statistical and systematic uncertainties. [†] means that statistical errors (in brackets) will become negligible, while ° signals a tension with the current reference best fit values. We thank Denis Epifanov for conversations on these figures and on expected performance of Belle-II at the detector and analysis levels. All errors have been symmetrised for simplicity.


Theory assumptions need to be revised for Belle-II full data sample!!

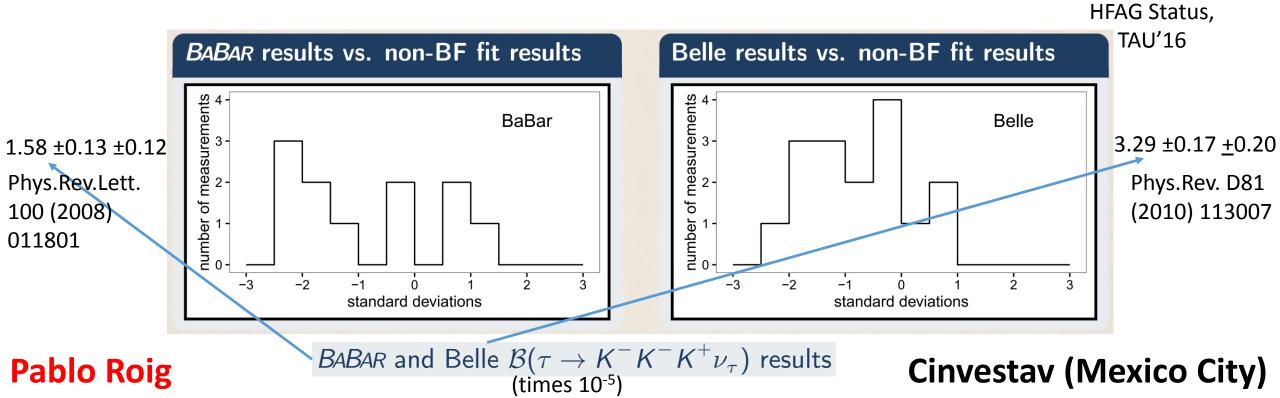
[•] Cinvestav (Mexico City)




Pablo Roig

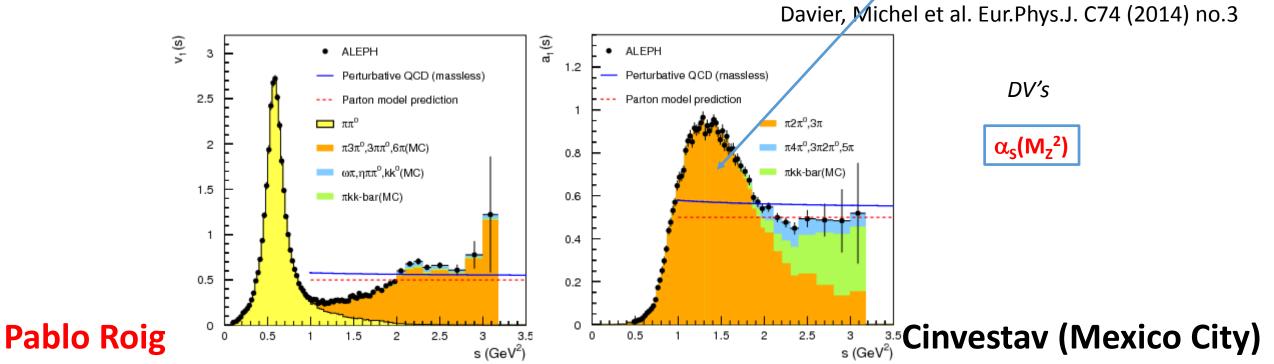
- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma)$: ρ, ρ', ρ'' **pole** parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \not\rightarrow (K\pi)^- \, \nu_\tau$ discussed by Matthias
- $\tau^{-} \not \rightarrow (\eta \pi)^{-} \, \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- \nu_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?

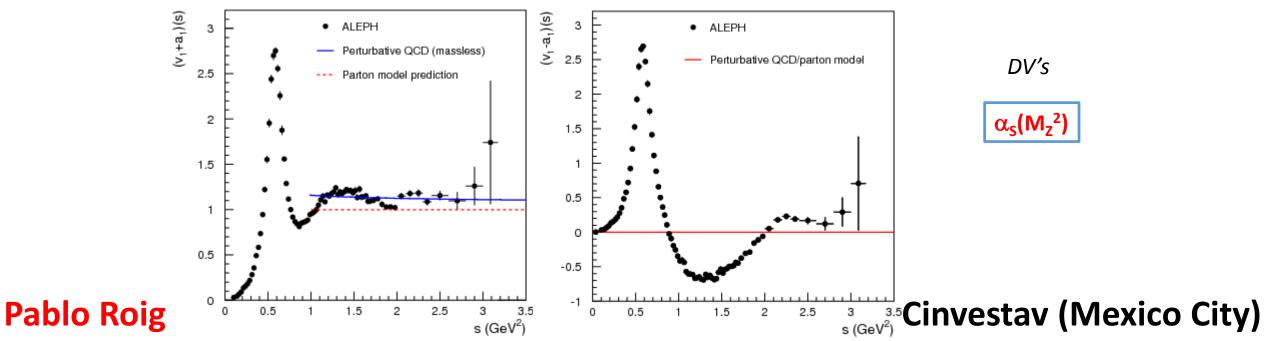
- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma)$: ρ, ρ', ρ'' **pole** parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \not\rightarrow (K\pi)^- \, \nu_\tau$ discussed by Matthias
- $\tau^{-} \not \rightarrow (\eta \pi)^{-} \, \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- v_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?



- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ **pole** parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \not\rightarrow (K\pi)^- \, \nu_\tau$ discussed by Matthias
- $\tau^{-} \not \rightarrow (\eta \pi)^{-} \, \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- v_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?

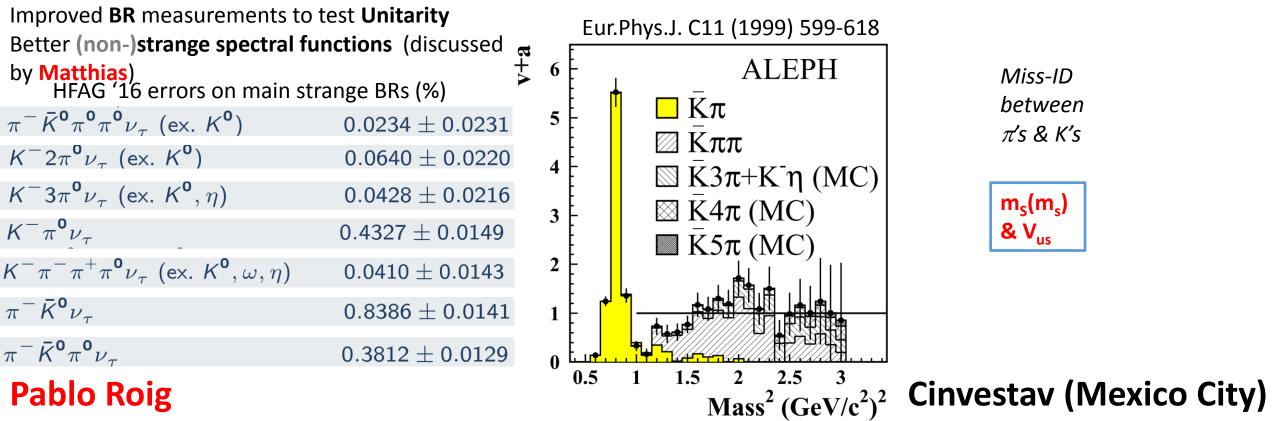
A. Lusiani,


Improved **BR** measurements to test **Unitarity**


(introduced by Simon)

Other issues in hadronic τ decays

- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ **pole** parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ discussed by Matthias
- $\tau^{-} \not \rightarrow (\eta \pi)^{-} \, \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- v_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?
- Improved **BR** measurements to test **Unitarity**
- Better non-strange spectral functions (discussed by Matthias)



- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ pole parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for a_{μ}^{HVP}
- $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ discussed by Matthias
- $\tau^- \rightarrow (\eta \pi)^- \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- v_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?
- Improved **BR** measurements to test **Unitarity**
- Better non-strange spectral functions (discussed by Matthias)

Davier, Michel et al. Eur. Phys. J. C74 (2014) no.3

- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ pole parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for $a_{\mu}^{\mu\nu\rho}$
- $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ discussed by Matthias
- $\tau^- \not \rightarrow (\eta \pi)^- \, \nu_\tau$ discussed previously (SCC)
- $\tau^{-} \rightarrow (\pi \pi \pi)^{-} v_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?

- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ **pole** parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ discussed by Matthias
- $\tau^- \rightarrow (\eta \pi)^- \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- \nu_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?
- Improved **BR** measurements to test **Unitarity**
- Better (non-)strange spectral functions (discussed by Matthias)

CPV studies in $\tau^- \rightarrow K^-\pi^-\pi^+ \nu_\tau \& \tau^- \rightarrow K^-K^+\pi^- \nu_\tau (\tau^- \rightarrow (\pi\pi\pi\pi)^- \nu_\tau)$ (Phys.Rev. D78 (2008) 113008, ...)

 $\sim (\tau^- \rightarrow K_S \pi^- v_\tau)$ is 'Golden' mode, although the situation is clear *theoretically*: Bigi-Sanda '05, Grossman-Nir'12)

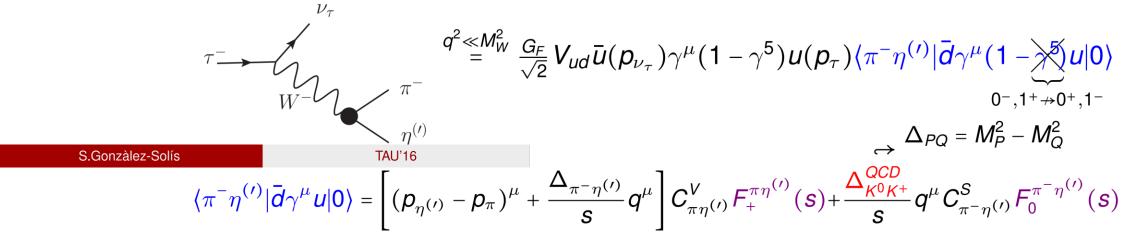
Pablo Roig

- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ pole parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ discussed by Matthias
- $\tau^- \rightarrow (\eta \pi)^- \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- \nu_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?
- Improved **BR** measurements to test **Unitarity**
- Better (non-)strange spectral functions (discussed by Matthias)

```
CPV studies in \tau^- \rightarrow K^- \pi^- \pi^+ \nu_\tau \& \tau^- \rightarrow K^- K^+ \pi^- \nu_\tau (\tau^- \rightarrow (\pi \pi \pi \pi)^- \nu_\tau)
```

Hadronic LFV τ decays are also of prime interest (JHEP 0806 (2008) 079, Phys.Rev. D89 (2014) 013008, ...)

Pablo Roig

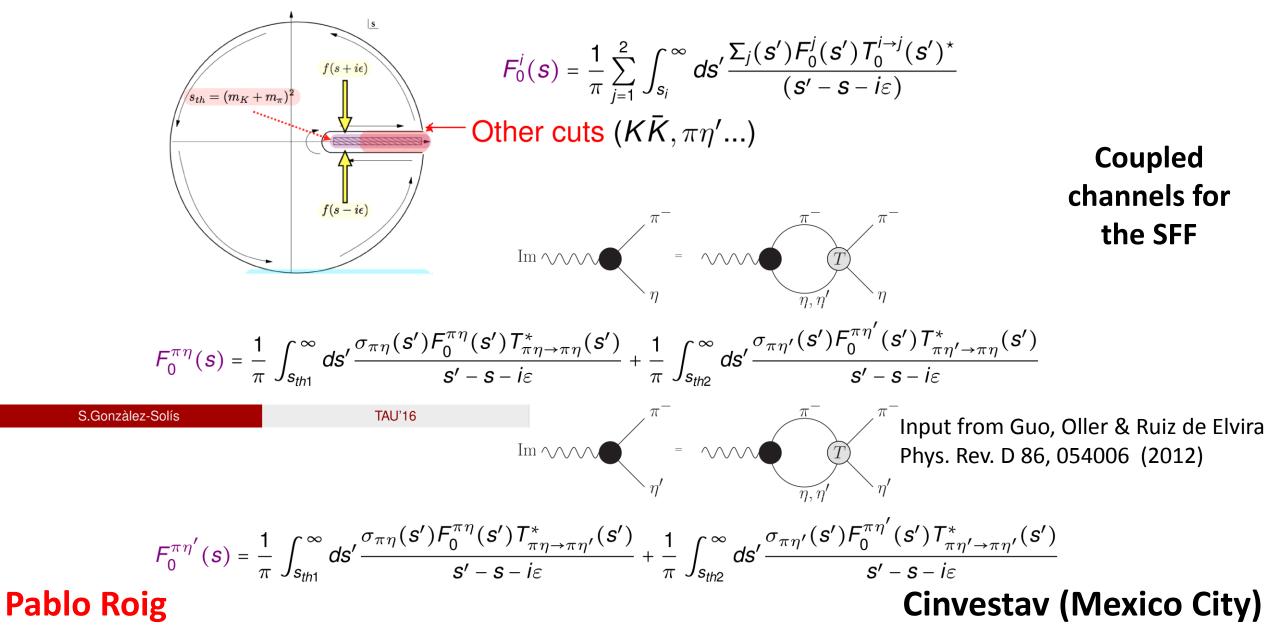

- $\tau^- \rightarrow (\pi/K)^- \nu_{\tau}$ are trivial hadronically \rightarrow Lepton Universality tests
- $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} (\gamma): \rho, \rho', \rho''$ **pole** parameters & Check of $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ for \mathbf{a}_{μ}^{HVP}
- $\tau^- \rightarrow (K\pi)^- \nu_{\tau}$ discussed by Matthias
- $\tau^- \rightarrow (\eta \pi)^- \nu_{\tau}$ discussed previously (SCC)
- $\tau^- \rightarrow (\pi \pi \pi)^- \nu_{\tau}$ improved determination of a_1 resonance **pole** parameters & of its contribution to **A** spectral function. Is the a_1' real or fake due to bad understanding of *three-body FSI*?
- Improved **BR** measurements to test **Unitarity**
- Better (non-)strange spectral functions (discussed by Matthias)
- **CPV** studies in $\tau^- \rightarrow K^- \pi^- \pi^+ \nu_\tau \& \tau^- \rightarrow K^- K^+ \pi^- \nu_\tau (\tau^- \rightarrow (\pi \pi \pi \pi)^- \nu_\tau)$
- Hadronic LFV τ decays are also of prime interest (JHEP 0806 (2008) 079, Phys.Rev. D89 (2014) 013008, ...)

Pablo Roig

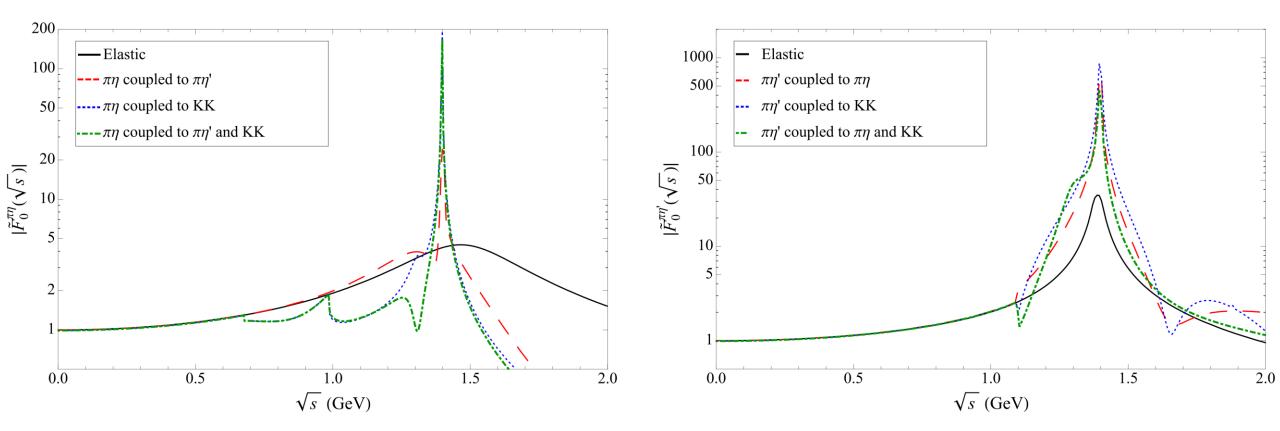
Cinvestav (Mexico City)

TAUOLA for Belle-II

ADDITIONAL MATERIAL



Matrix element & decay width


$$\frac{d\Gamma\left(\tau^{-} \to \pi^{-}\eta^{(\prime)}\nu_{\tau}\right)}{d\sqrt{s}} = \frac{G_{F}^{2}M_{\tau}^{3}}{24\pi^{3}s}S_{EW}|V_{ud}|^{2}|F_{+}^{\pi^{-}\eta^{(\prime)}}(0)|^{2}\left(1-\frac{s}{M_{\tau}^{2}}\right)^{2} \\
\left\{\left(1+\frac{2s}{M_{\tau}^{2}}\right)q_{\pi^{-}\eta^{(\prime)}}^{3}(s)|\widetilde{F}_{+}^{\pi^{-}\eta^{(\prime)}}(s)|^{2}+\frac{3\Delta_{\pi^{-}\eta^{(\prime)}}^{2}}{4s}q_{\pi^{-}\eta^{(\prime)}}(s)|\widetilde{F}_{0}^{\pi^{-}\eta^{(\prime)}}(s)|^{2}\right\} \\
\widetilde{F}_{+,0}^{\pi^{-}\eta^{(\prime)}}(s) = \frac{F_{+,0}^{\pi^{-}\eta^{(\prime)}}(s)}{F_{+,0}^{\pi^{-}\eta^{(\prime)}}(0)}, \quad F_{+}^{\pi^{-}\eta^{(\prime)}}(0) = -\frac{C_{\pi^{-}\eta^{(\prime)}}^{S}}{C_{\pi^{-}\eta^{(\prime)}}^{V}}\frac{\Delta_{K^{0}K^{+}}^{QCD}}{\Delta_{\pi^{-}\eta^{(\prime)}}}F_{0}^{\pi^{-}\eta^{(\prime)}}(0)$$

Pablo Roig

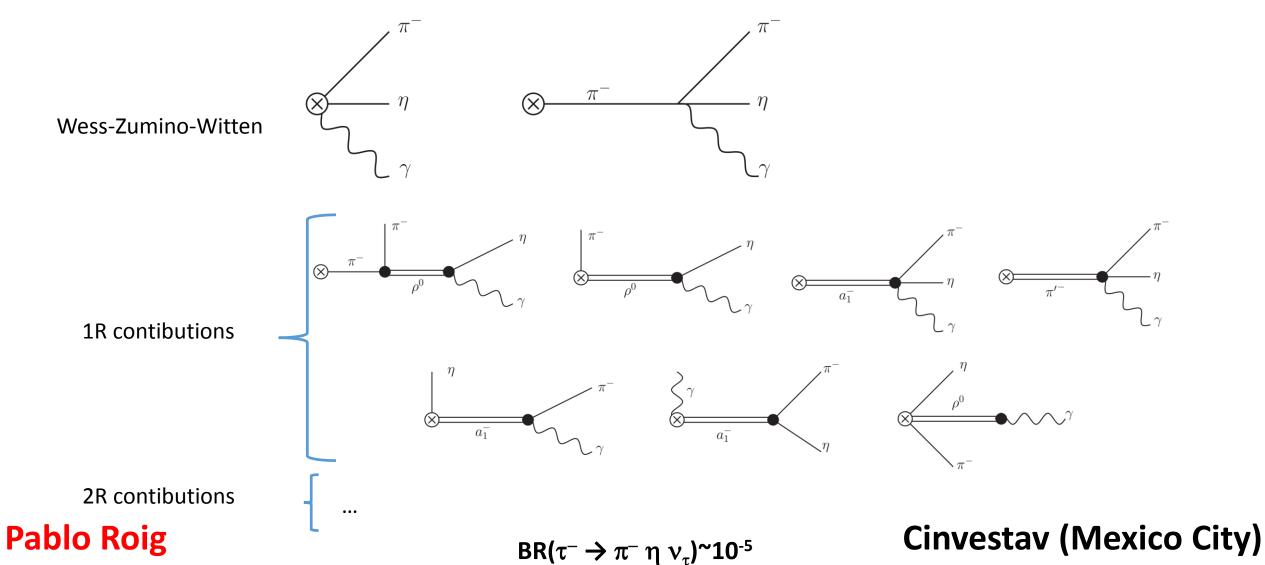
Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta \nu_{\tau}$ decays @ Belle-II

<u>Main physical effect: Coupling of $\pi\eta$ & KK channels on $\pi\eta$ SFF !!</u>

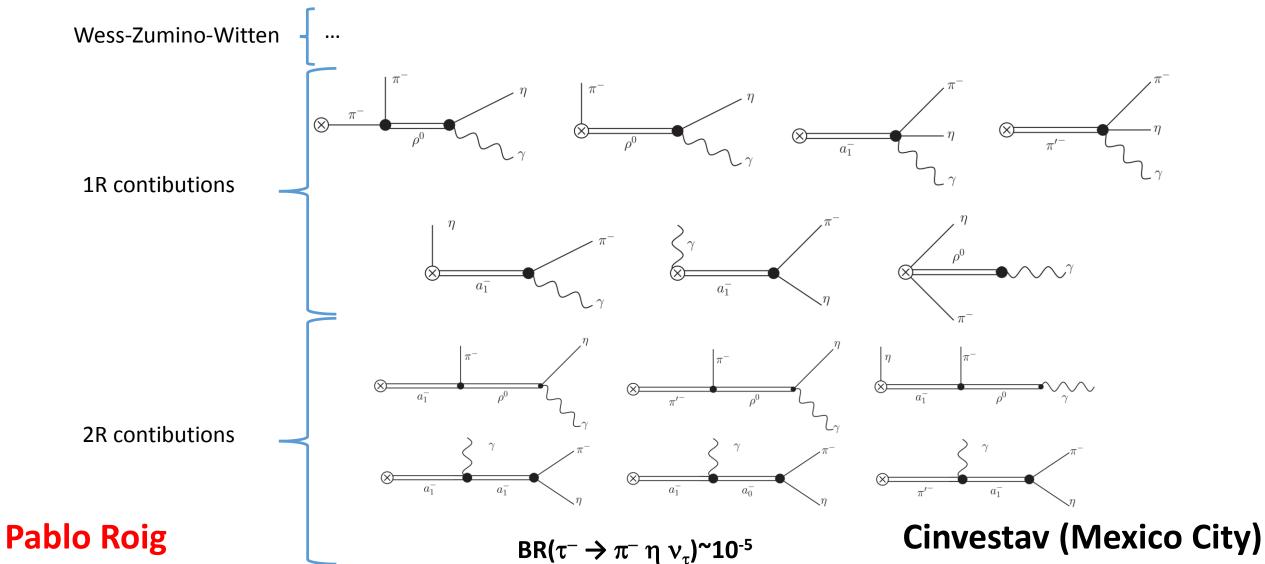
Pablo Roig

• $\pi^0 - \eta - \eta'$ mixing (P. Kroll, Mod. Phys. Lett. A20, 2667 (2005))

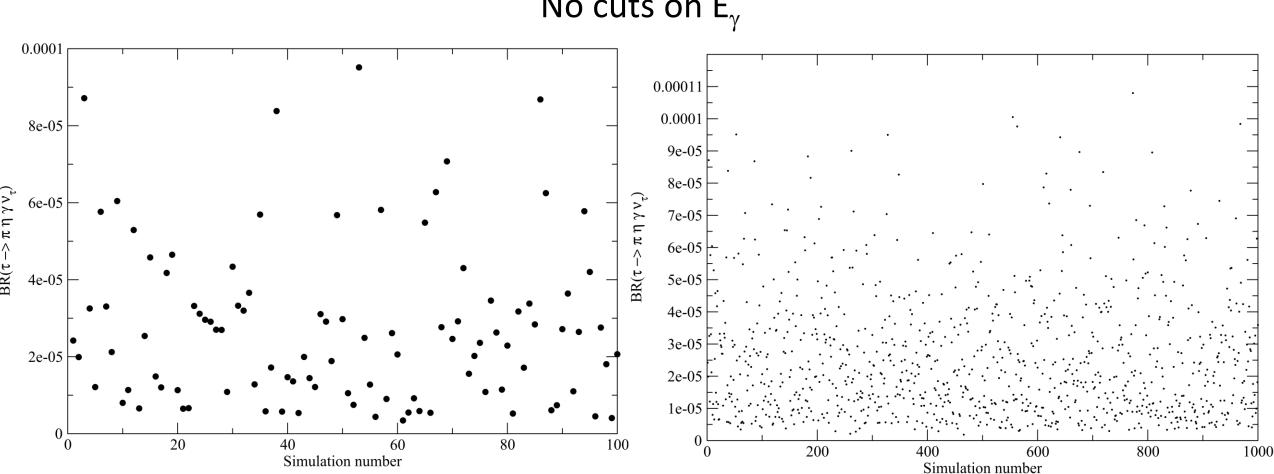
$$\begin{pmatrix} \pi^{0} \\ \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} 1 & \varepsilon_{\pi\eta} c\theta_{\eta\eta'} + \varepsilon_{\pi\eta'} s\theta_{\eta\eta'} & \varepsilon_{\pi\eta'} c\theta_{\eta\eta'} - \varepsilon_{\pi\eta} s\theta_{\eta\eta'} \\ -\varepsilon_{\pi\eta} & c\theta_{\eta\eta'} & -s\theta_{\eta\eta'} \\ -\varepsilon_{\pi\eta'} & s\theta_{\eta\eta'} & c\theta_{\eta\eta'} \end{pmatrix} \cdot \begin{pmatrix} \pi_{3} \\ \eta_{8} \\ \eta_{0} \end{pmatrix}$$


where $\varepsilon_{\pi\eta^{(\prime)}}$ and $\theta_{\eta\eta^{\prime}}$ are the π^0 - $\eta^{(\prime)}$ and η - η^{\prime} mixing angles

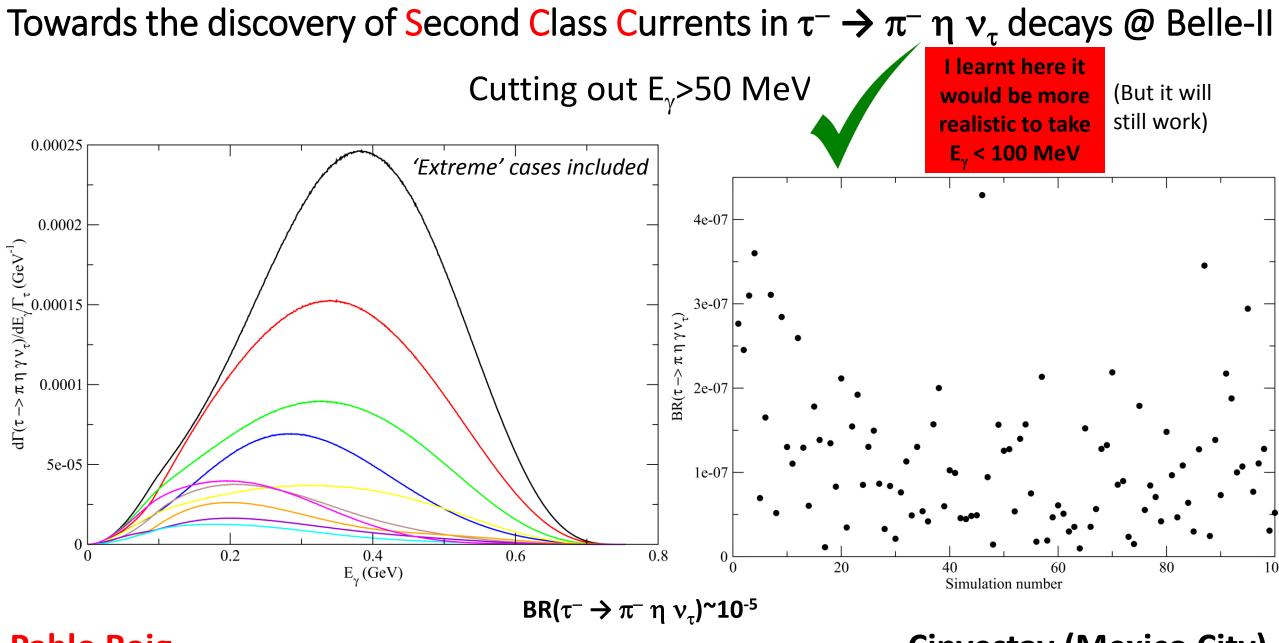
• $\pi - \eta - \eta'$ mixing: Next-to-leading order prediction in Res. ChPT


$$F_{+}^{\pi^{-}\eta^{(\prime)}}(0) = -\frac{C_{\pi^{-}\eta^{(\prime)}}^{S}}{C_{\pi^{-}\eta^{(\prime)}}^{V}} \frac{\Delta_{K^{0}K^{+}}^{QCD}}{\Delta_{\pi^{-}\eta^{(\prime)}}} F_{0}^{\pi^{-}\eta^{(\prime)}}(0)$$
S.GONZÁLOZ-SOLÍS TAU'16
$$F_{+}^{\pi^{-}\eta^{(\prime)}}(0) = \varepsilon_{\pi\eta^{(\prime)}}$$

$$F_{+}^{\pi^{-}\eta^{(\prime)}}(0) = \varepsilon_{\pi\eta^{(\prime)}}^{\pi^{-}\eta^{(\prime)}} \frac{M_{S}^{2} + \Delta_{\pi^{-}\eta^{(\prime)}}}{M_{S}^{2}} \begin{cases} \varepsilon_{\pi\eta} = 9.8(3) \cdot 10^{-3} \\ \varepsilon_{\pi\eta^{\prime}} = 2.5(1.5) \cdot 10^{-4} \end{cases}$$
Pablo Roig Cinvestav (Mexico City)


Main diagrams suppressed by α but not by **G**-parity violation (*Axial-vector FFs*):

Main diagrams suppressed by α but not by **G**-parity violation (*Axial-vector FFs*):


Towards the discovery of Second Class Currents in $\tau^- \rightarrow \pi^- \eta \nu_{\tau}$ decays @ Belle-II Main diagrams suppressed by α but not by **G**-parity violation (*Vector FFs*): 1R contibutions $\begin{array}{c} \pi^{-} \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\$ 2R contibutions **Pablo Roig Cinvestav (Mexico City)** BR($\tau^- \rightarrow \pi^- \eta \nu_{\tau}$)~10⁻⁵

No cuts on E_v

BR($\tau^- \rightarrow \pi^- \eta v_{\tau}$)~10⁻⁵

Pablo Roig

Pablo Roig

Escribano, González-Solís & Roig Phys.Rev. D94 (2016) no.3, 034008 BR_V BR_S BR Our analysis $[0.3, 5.7] \times 10^{-10}$ $[1 \times 10^{-7}, 1 \times 10^{-6}]$ $[1 \times 10^{-7}, 1 \times 10^{-6}]$ 3 coupled channels Errors dominated by $\epsilon_{\pi n'}$ At least one order of magnitude suppressed with respect to $\tau \rightarrow \pi \eta v_{\tau} !!$ Full: vector + elastic scalar -- Full: vector + 3 coupled channels -- Full: vector + B. Wigner (2 res) -- Vector ∽ 0.01 $10^{17} \cdot d\Gamma/d\sqrt{10^{-6}}$ 10^{-8} 10^{-10} 1.2 1.8 2.0 1.4 1.6 1.0 **Pablo Roig Cinvestav (Mexico City)** s (GeV)

WG8: Tau and low multiplicity

Presented by E. Kou 24/10/16 @ MIAPP Flavor Programme

		thor(s): H. Czyz, T. Teubner, D. sano, E. Passemar, T. Ferber, Hearty, B. Shvartz	nura, J. His
	1 x 2	oduction	1.2 Gold
$\left(+ E. \text{ Kou} \right)$	2	Lepton flavour violation in $\tau \rightarrow 3\mu$ decay	1.2.1
	2	Charged Lepton Flavor Violation in Higgs decays	1.2.2
	2	Study of CP violation in $\tau \rightarrow K_S^0 \pi \nu_{\tau} \dots \dots \dots \dots \dots$	1.2.3
(New content is	3	$e^+e^- \rightarrow \pi^+\pi^-$ cross section for $(g-2)_{\mu}$ (H. Czyz, T. Teubner, D. Nomura, B. Shvartz, T. Ferber)	1.2.4
currently under discussion)	5	Search for a Dark Photon de- caying into Light Dark matter (C. Hearty, T. Ferber)	1.2.5
	11	clusions	1.3 Con
	11	phy	Bibliogra