$B \rightarrow \pi \pi \ell \nu$
Accesing theory estimates in various phase space corners

Danny van Dyk
Universität Zürich

MIAPP discussion session
November 3rd, 2016

Motivation

- $B \rightarrow \pi \pi \ell \nu$ includes resonant $B \rightarrow\left\{\rho(770), f_{0}(980), \sigma, \ldots\right\} \ell \nu$
- provides for unambigious interface between theory calculation and experimental analyses
- poses challenge to access the $B \rightarrow \pi \pi$ form factors in the entire $\pi \pi \ell \nu$ phase space
- provides laboratory to study only hadronic form factors (i.e.: no further matrix elements as in FCNC decays)

Lorentz decomposition

- $4 B \rightarrow \pi \pi$ form factors $F_{\perp}, F_{\|}, F_{0}, F_{t}$ in (axial) vector current

$$
\begin{aligned}
\langle\pi \pi| \bar{u} \gamma^{\mu} b|\bar{B}\rangle & =i F_{\perp} \frac{1}{\sqrt{k^{2}}} \bar{q}_{(\perp)}^{\mu} \\
-\langle\pi \pi| \bar{u} \gamma^{\mu} \gamma_{5} b|\bar{B}\rangle & =F_{0} \frac{2 \sqrt{q^{2}}}{\sqrt{\lambda}} k_{(0)}^{\mu}+F_{\|} \frac{\bar{k}_{(\|)}^{\mu}}{\sqrt{k^{2}}}+F_{t} \frac{q^{\mu}}{\sqrt{q^{2}}}
\end{aligned}
$$

- $F_{i} \equiv F_{i}\left(q^{2}, k^{2}, q \cdot \bar{k}\right)$
- $\bar{q}_{(\perp)}^{\mu}, \bar{k}_{(\|)}^{\mu}, k_{(0)}^{\mu}, q^{\mu}:$ orthogonal by construction
- $\lambda \equiv \lambda\left(M_{B}^{2}, q^{2}, k^{2}\right)$ Källén function

Partial Wave Decomposition

- expand in Legendre polynomials of $\cos \theta_{\pi} \propto q \cdot \bar{k}$ (dipion helicity angle)
$-\lambda=0, t$ starts with S wave:

$$
F_{0(t)}=F_{0(t)}^{S}\left(q^{2}, k^{2}\right)+\sqrt{3} F_{0(t)}^{P}\left(q^{2}, k^{2}\right) \cos \theta_{\pi}+\ldots
$$

$-\lambda=\perp, \|$ starts with P wave:

$$
F_{\perp(\|)}=\frac{\sqrt{3}}{\sqrt{2}} F_{\perp(\|)}^{P}\left(q^{2}, k^{2}\right)+\ldots
$$

- result: problem reduced to to functions $F_{\lambda}^{(\ell)}\left(q^{2}, k^{2}\right)$ (Dalit-plot like)

Dispersion relations and $\chi \mathbf{P T}$

- dispersion relation for fixed q^{2}

$$
F\left(q^{2}, k^{2}\right)=\left(k^{2}\right)^{n} \int_{4 M_{\pi}^{2}}^{\infty} \mathrm{d} s_{k} \frac{\rho\left(q^{2}, s_{k}\right)}{s_{k}^{n}\left(s_{k}-k^{2}-i \varepsilon\right)}+n-1 \text { subtraction terms }
$$

- up to $16 M_{\pi}^{2}$ (more practically: up to $4 M_{K}^{2}$) the phase of the form factor relates to the $\pi \pi \rightarrow \pi \pi$ scattering phase via Watson's theorem
- Omnès representation used to solve the dispersive integral equation
- subtraction terms are fixed through use of Heavy Hadron χ PT

Light-Cone Sum Rules (LCSRs)

- sum rule with on-shell dipion state, interpolating the B meson
- two 2π-LCDAs are a universal, non-perturbative input
- one LCDA normalized to F_{π}, the e.m. pion form factor, taken from data
- other LCDA normalization from instanton model
- sum rule works for k^{2} close to the threshold $4 M_{\pi}^{2}$
- P wave not saturated by $B \rightarrow \rho$ transition: ample room (20-30\%) for non-resonant P -wave contributions

QCD-improved Factorization (QCDF)

- the energies of the pions $E_{1,2}$ are large in the B rest frame: $E_{1,2} \sim M_{B}$
- the soft modes in the B meson factorize from the collinear modes in the pion
- the dipion mass k^{2} is large: $k^{2} \sim M_{B}^{2}$
- the collinear modes in the first pion factorize from he anticollinear modes in the second pion
- factorization formula

$$
\begin{aligned}
\left\langle\pi_{1} \pi_{2}\right| \bar{u}\lceil b|\bar{B}\rangle & =\xi_{\pi}\left(E_{2}\right) \int_{0}^{1} \mathrm{~d} u \phi_{\pi}(u) T_{\Gamma}^{\mathrm{I}}\left(u, k^{2}, E_{1}, E_{2}\right) \\
& +\int_{0}^{1} \mathrm{~d} u \int_{0}^{1} \mathrm{~d} v \int_{0}^{\infty} \frac{\mathrm{d} \omega}{\omega} \phi_{\pi}(u) \phi_{\pi}(v) \phi_{B}^{+}(\omega) T_{\Gamma}^{\mathrm{II}}\left(u, v, \omega, k^{2}, E_{1}, E_{2}\right)
\end{aligned}
$$

- formula confirmed by explicit calculation up to NLO in α_{s}

