`Duality'

This item is used very often, when one does not understand what happens. This 'duality' talks about how to connect the worlds of quarks \& gluons with those with hadrons.
The landscape is 'complex'. Can we 'paint' that?

`Duality'

This item is used very often, when one does not understand what happens. This 'duality' talks about how to connect the worlds of quarks \& gluons with those with hadrons.
The landscape is 'complex'. Can we 'paint' that?

In this case we know a lot about underlying dynamics - we are in the middle.
For good reasons we focus on semi-leptonic decays of beauty mesons \& baryons (charm hadrons ??)
-- Misha, Kolya \& me agreed there all the time;
-- for non-leptonic ones the situation was less clear
-- the situations are clearer for inclusive vs. exclusive decays
$-\mathrm{V}_{\mathrm{xb}}: \mathrm{V}_{\mathrm{ub}}$ vs. V_{cb} :

Basics of O (perator) $P($ roduct $) E(x p a n s i o n) ~$

$\Gamma\left(H_{Q} \rightarrow f\right)=\Sigma_{i} c_{i}{ }^{(f)}\left(K M, M_{W}, m_{Q}, \alpha_{s},(\bar{u})<H_{Q}\left|O_{i}\right| H_{Q}{ }^{(\text {(u) })}\right.$

- short distance dynamics \rightarrow coeff. $c_{i}{ }^{(f)}$
- universal cast of local operators O_{i}
- < $\left.H_{Q}\left|O_{i}\right| H_{Q}\right\rangle$ inferred from other observables or $\angle Q C D$!
- expansion parameter

$$
1 / E_{\text {release }} \sim \begin{cases}1 /\left(m_{b}-m_{c}\right) & \text { for } \\ 1 / m_{b} & b \rightarrow c \\ b \rightarrow u\end{cases}
$$

- Wilson(ial) OPE: auxiliary scale μ s.t. short distance < $(\underset{\mu}{\prime})^{-1}<$ Tong distance
$\otimes c_{i} \rightarrow$ short distance dynamics
© O_{i} active fields - long distance dynamics
ibi: "duality"

$R(e+e-->$ hadrons $)$

It needs some judgment where to apply
-- somewhat above thresholds etc. etc.
choose judiciously!
Scylla \& Charybdis: $\Lambda_{Q C D} \ll \mu \ll m_{Q}$
\longrightarrow matrix elements calculable
$\cdots \alpha_{s} \ll 1$
$\mu \sim 1 \mathrm{GeV}$ okay for $Q=b$! yet: $Q=c$?
leads to `smart' pert. treatment
treat as physical parameter (s. sum rules)

Novel symbiosis between different theoretical technologies for heavy flavour nonperturbative dynamics -in particular between HQE and LQCD observables $\left.=\Sigma_{i} c_{i}\left(C K M, m_{Q}\right\rangle, \alpha_{s}\right)\left\langle H_{Q}\right| O_{i}\left|H_{Q}\right\rangle$

```
HQE
```


* it enhances the power of and confidence in both technologies by
- increasing the range of applications \&
- providing more benchmarks

```
 duality }\not=\mathrm{ additional ad-hoc assumption
* duality violation in \Gamma }\mp@subsup{\Gamma}{SI}{}(B)<0.5%\mathrm{ !
```

-- IB \& N.Uraltsev,Int.J.Mod.Phys.A16(01)5201 (48 p!), arXiv: hep-ph/0106346
-- IB \& Th. Mannel: arXiv: hep-ph/0212021v1 (13 p.) [it is easier to repd]
ibi: "duality"
-- failure in $\left|V_{u b}\right|_{\text {incl. }}$ vs. $\left|V_{u b}\right|_{\text {excl. }}$?
usually probed $B \rightarrow \mid v \pi$'s
but not $\mathrm{B}^{-} \rightarrow \mathrm{I}^{-} \vee \mathrm{K}^{+} \mathrm{K}^{-}, \mathrm{I}^{-} v \overline{\mathrm{~K}^{0} \mathrm{~K}^{0}}, ~ \mathrm{I}^{-} v \overline{\mathrm{KK}} \pi$ $B_{d}{ }_{d} \rightarrow I^{+} v K_{S} K^{-}, I^{-} v \bar{K} K \pi$

Real $\left|V_{u b}\right|_{\text {incl. }}$ might be smaller than thought before

due re-scattering!

at least novel lessons of non-perturb. QCD
ibi: "duality"

