Mixing \& CP Violation in Charm From LHCb perspective

Jolanta Brodzicka, University of Manchester

Flavour Physics with High-Luminosity Experiments
Munich, November 2016

Outline

- Why is charm special?
- Where and how is charm studied?
- Introduction to mixing and CPV
- Recent results from LHCb
- Future opportunities and limitations
- Summary

Is there any New Physics?

- Loop processes are promising for NP searches

- Before we find NP it would be good to measure mixing parameters and observe any CPV

Why is charm special?

- Complementary to strange and beauty sectors
- Unique access to system with up-type quarks
- Down-type quarks in loops: different New Particles?
- Bul...
- In SM rare charm processes are very suppressed
- QCD 'corrections' are large (usually disadvantageous)
- Thus we need
- Large/clean data samples
- Precise estimation of SM contribution (penguin size)
"Everything is smaller in charm"

Charm samples

Pros \＆cons of charm experiments

－LHCb

\square large x －section
® busy environment，nontrivial triggers
囚 decays with γ^{\prime} s and neutrinos difficult
∇ D flight distance $\sim 10 \mathrm{~mm}, \sigma(\mathrm{t}) \sim 0.1 \times \tau_{\mathrm{D}}$
\square magnet polarity reversed periodically

区 asymmetric production of charm／anti－charm
－Belle／Babar
\square clean environment
\square good for neutrals \＆decays with neutrinos
\square D flight distance $\sim 200 \mu \mathrm{~m}, \sigma(\mathrm{t}) \sim 0.5 \times \tau_{\mathrm{D}}$
－BESIII／Cleo－C
\square background－free charm

区 charm not boosted \Rightarrow no time measurement
$\boxtimes \psi(3770) \rightarrow \mathrm{D} \overline{\mathrm{D}}$ quantum coherence $\Rightarrow \mathrm{CP}(\mathrm{D}) \times \mathrm{CP}(\overline{\mathrm{D}})=-1$
－Jolanta＠MIAPP

LHCb changes \& will change more

- LHCb Run-1 (2010-2012) Collected $3 \mathrm{fb}^{-1}$

Finalizing charm analyses. Still more to come

- LHCb Run-2 (2015-2018) Collect $5 \mathrm{fb}^{-1}$ ($2 \mathrm{fb}^{-1}$ already collected) Improved triggers \& computing. First results (charm x-section)
- LHCb Run-3, Run-4 (2021-2023, 2026-2029)

Major New Experiment: LHCb Upgrade Phase-I
C.Parkes@Charm2016

Collect $>50 \mathrm{fb}^{-1}$ data
$\mathrm{L} \sim 2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- LHCb Run-5 (2031-)

LHCb Upgrade Phase-II
Plans in discussion
Collect $\sim 300 \mathrm{fb}^{-1}$ data
$\mathrm{L} \sim 2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Quick Introduction for non-charmers

Basics of mixing

- Flavour eigenstates $\mathrm{D}^{0}[\bar{c} \bar{u}] \overline{\mathrm{D}}^{0}[\overline{\mathrm{c}} \mathrm{u}] \neq$ mass eigenstates $\mathrm{D}_{1} \mathrm{D}_{2}\left[\mathrm{~m}_{1,2} \Gamma_{1,2}\right]$

$$
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \quad|p|^{2}+|q|^{2}=1
$$

y $\mathrm{t}=0$ production of $\mathrm{D}^{0} \quad$ mixing $\mathrm{D}^{0} \Rightarrow \overline{\mathrm{D}}^{0} \quad$ decay of $\mathrm{D}_{1,2} \rightarrow \mathrm{f}$

- Mixing frequencies $x=\frac{m_{2}-m_{1}}{\Gamma} \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma} \quad \Gamma=\frac{\Gamma_{1}+\Gamma_{2}}{2}$
- Probability that initial flavour unchanged/changed at time t

$$
\begin{aligned}
& \mathcal{P}\left[D^{0}(t) \rightarrow D^{0}\right] \propto e^{-\Gamma t}[\cosh (\mathbf{y} \Gamma t)+\cos (\mathbf{x} \Gamma t)] \quad \mathcal{P}\left[D^{0}(t) \rightarrow \bar{D}^{0}\right] \propto\left|\frac{q}{p}\right|^{2} e^{-\Gamma t}[\cosh (\mathbf{y} \Gamma t)-\cos (\mathbf{x} \Gamma t)] \\
& \text { - Jolanta@MIAPP } \text { non-oscillating oscillating }
\end{aligned}
$$

What's behind x and y ?

Short distance mixing @ quark level

- bloop $\sim \mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{cb}}\left(\mathrm{m}_{\mathrm{b}} / \mathrm{m}_{\mathrm{W}}\right)^{2}$
- $\mathrm{s} \& \mathrm{~d}$ cancel in $\mathrm{SU}(3) \operatorname{limit}\left(\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{d}}\right)$

Long distance

 mixing via final-state interactions
difficult to calculate

- No significant x measurement yet
- Large uncertainties in SM mixing rate \Rightarrow difficult to identify NP
- NP can increase x, does not affect y
- LQCD calculations finally happening (coupled channels with 2-body final states)
See M.Hansen talk @ 6th LHCb Implications Workshop

What charm UT tells us?

- If the CKM matrix elements complex \Rightarrow CPV exists \Rightarrow UT triangles
- Triangle openness indicates how large CPV expected

$$
\lambda \approx 0.2
$$

B Triangle Bs Triangle

$$
\begin{gathered}
V_{\text {ud }} V_{\text {ub }}^{*} \sim \lambda^{3} \alpha V_{\text {td }} V_{\text {tb }}^{*} \sim \lambda^{3} \\
V_{\text {cd }} V_{c b}^{*} \sim \lambda^{3}
\end{gathered}
$$

DTriangle
$\mathrm{V}_{\mathrm{ub}}^{*} \mathrm{~V}_{\mathrm{cb}} \lambda^{5}$

$$
\mathrm{V}_{\mathrm{us}}^{*} \mathrm{~V}_{\mathrm{cs}} \sim \lambda
$$

- D triangle \Rightarrow tiny CPV in preferred decays, larger CPV in rare decays

CP Violation: Types and Observables

In decays $|D \rightarrow f|^{2} \neq|\bar{D} \rightarrow \bar{F}|^{2} \Rightarrow\left|\bar{A} \bar{f} / A_{f}\right|^{2} \neq 1$

- Difference in rates for particles and antiparticles
- Depends on decay mode
$\stackrel{B}{U}$ In mixing $\left|D^{0} \rightarrow \bar{D}^{0}\right|^{2} \neq\left|\bar{D}^{0} \rightarrow D^{0}\right|^{2} \Rightarrow|q / p| \neq 1$ mixing and decays

$$
\left|\begin{array}{l}
D^{0} \rightarrow \bar{D}^{0} \rightarrow f \\
+D^{0} \rightarrow f
\end{array}\right|^{2} \neq\left|\begin{array}{l}
\bar{D}^{0} \rightarrow D^{0} \rightarrow f \\
+\bar{D}^{0} \rightarrow f
\end{array}\right|^{2}
$$

$$
\Rightarrow \phi=\arg (q / p) \neq 0
$$

- Difference in rates as function of D^{0} decay-time
- Independent of decay mode
- Final states accessible for both D^{0} and $\overline{\mathrm{D}}^{0}$

Mixing \& indirect CPV

- Universal = don't depend on decay mode
- The way they are probed depends on decay mode
- Only in D^{0}

Recent results from LHCD + BaBar

- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$, LHCb
- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi \pi, \mathrm{LHCb}$
- $\mathrm{D}^{0} \rightarrow \pi \pi \pi^{0}$, BaBar
- $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \pi \pi$, LHCb
- $\mathrm{A}_{\Gamma}, \mathrm{LHCb}$

How to get flavour of D^{0} ?

- Tag flavour at the production (then mixing changes flavour)

Prompl charm $p p \rightarrow D^{* \pm}$

- D tagged with soft-pion charge
- $\mathrm{D}^{* \pm}$ reconstructed with high purity

Secondary charm $p P \rightarrow B \rightarrow D$

- D tagged with muon charge
- Not as pure, mis-tag $\sim f e w \%$

Doubly-kagged secondary charm $p p \rightarrow B \rightarrow D^{* \pm}$

Prompt/secondary charm \& related issues

- Both samples used at $\mathrm{LHCb} \Rightarrow$ full coverage of D decay time
- Distorted decay time of prompt D
- Lifetime-unbiased triggers in Run-2

- Non-trivial prompt/sec separation
- May bias lifetime

$\mathrm{D}^{0} \& \mathrm{D}^{0}$ mix since 2013

- $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}=$Wrong-Sign, $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}=$Right-Sign

- WS/RS rate as a function of D^{0} decay time

Cabibbo
Suppressed

Cabibbo
Favoured
$R(t)=\frac{N_{W S}}{N_{R S}}(t) \approx R_{D}+\sqrt{R_{D}} y^{\prime} \frac{t}{\tau}+\frac{x^{\prime 2}+y^{\prime 2}}{4}\left(\frac{t}{\tau}\right)^{2}$
Decay CS/CF
Interference Mixing \& Decay
Mixing

$\sim 1000 \times \tau\left(\mathrm{D}^{0}\right)$ needed to see full oscillation!

LHCB-PAPER-2016-033 prompt: PRL111, 251801(2013)

Mixing from WS/RS $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$

- With secondary charm, doubly tagged
- WS \& RS signal yields in t bins \Rightarrow

$$
R(t)=\frac{N_{W S}}{N_{R S}}(t) \approx R_{D}+\sqrt{R_{D} y^{\prime}} \frac{t}{\tau}+\frac{x^{\prime 2}+y^{\prime 2}}{4}\left(\frac{t}{\tau}\right)^{2}
$$

$\left.R_{D}=\frac{B R(C S}{B R(C F} D^{0} \rightarrow K \pi\right) \quad\binom{x^{\prime}}{\left.y^{\prime} \rightarrow K \pi\right)}=\left(\begin{array}{cc}\cos \delta_{K \pi} & \sin \delta_{K \pi} \\ -\sin \delta_{K \pi} & \cos \delta_{K \pi}\end{array}\right)\binom{x}{y}$

- $\delta_{\text {Kл }}$: CF/CS strong phase; from Cleo-c/BESIII
- $\mathrm{R}^{ \pm}(\mathrm{t})$ for D produced as $\mathrm{D}^{0} / \overline{\mathrm{D}}^{0}$
- CPV if x, y, R_{D} differ for two flavours
- No evidence for CPV
- Prompt \& secondary combination
- 20% improvement from sec charm

$$
\begin{gathered}
R_{D}=(3.53 \pm 0.05) \times 10^{-3} \\
y^{\prime}=(5.2 \pm 0.8) \times 10^{-3} \\
x^{\prime 2}=(3.6 \pm 4.3) \times 10^{-5}
\end{gathered}
$$

New mixing with $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi \pi$

${ }^{\times 10^{3}} \Delta \mathrm{~m}=\mathrm{M}\left(\mathrm{D}^{0} \pi^{+}\right)-\mathrm{M}(\mathrm{K} 3 \pi)$

- WS: $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+} \pi^{-}$RS: $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$, pion-tagged

$$
R(t)=\frac{N_{W S}}{N_{R S}}(t) \simeq R_{D}^{K 3 \pi}+\sqrt{R_{D}^{K 3 \pi}} R_{c o h} y^{\prime} \frac{t}{\tau}+\frac{x^{\prime 2}+y^{\prime 2}}{4}\left(\frac{t}{\tau}\right)^{2}
$$

- Rates integrated over 5D Phase Space \Rightarrow dilution \Rightarrow averaged strong phase and $\mathrm{R}_{\mathrm{coh}}$ coherence factor $\int A_{K^{-}-3 \pi}(\mathbf{r}) A_{K^{+} 3 \pi}(\mathbf{r}) d \mathbf{r} \Rightarrow R_{\text {coh }} e^{-i \delta_{K 3 \pi}}$
- $\mathrm{R}_{\mathrm{coh}} \sim 0$ phase variation; $\mathrm{R}_{\mathrm{coh}} \sim 1$ resonances in phase

$$
\begin{aligned}
& R_{c o h} y^{\prime}=(0.3 \pm 1.8) \times 10^{-3} \\
& \left(x^{\prime 2}+y^{\prime 2}\right) / 4=(4.8 \pm 1.8) \times 10^{-5}
\end{aligned}
$$

- Measurement w/o PS integration expected to have large sensitivity

$\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$, t-dependent Dalitz analysis

- Measure how Phase Space evolves with time x Need model to describe resonances $\varrho(770) \rightarrow \pi \pi$ dominate
\checkmark Access to interfering amplitudes and phases, no coherence factor dilution, direct access to $\mathbf{x \& y}$
- Rate for D produced at $\mathrm{t}=0$ as D^{0}

$$
\begin{aligned}
\mathcal{P}\left[D^{0}(\text { Dalitz; })\right] \propto e^{-\Gamma t}\left\{\left|A_{f}\right|^{2}[\cosh (y \Gamma t)+\cos (x \Gamma t)]\right. & \leftarrow \text { decay } D^{0} \rightarrow f^{1} \\
& +\left|\frac{q}{p} \bar{A}_{f}\right|^{2}[\cosh (y \Gamma t)-\cos (x \Gamma t)] \quad \text { emixing } D^{0} \rightarrow \overline{D^{0}} \rightarrow f \\
& \left.-2 \Re\left(\frac{q}{p} A_{f}^{*} \bar{A}_{f}\right) \sinh (y \Gamma t)-2 \Im\left(\frac{q}{p} A_{f}^{*} \bar{A}_{f}\right) \sin (x \Gamma t)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& x=(1.5 \pm 1.2 \pm 0.6) \% \\
& y=(0.2 \pm 0.9 \pm 0.5) \% \\
& \tau_{D}=(410.2 \pm 3.8) \mathrm{fs}
\end{aligned}
$$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi \pi$, t-dep. Dalitz, model independent

- $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{s} \pi \pi$ is a golden mode for mixing
- Binned approach to Dalitz
- Strong phases \& fractions from Cleo-c
- Fit $\mathrm{t}(\mathrm{D})$ with data driven acceptance

- This is with 2011 data: 180K signal K_{S} decayed inside vertex detector
- Ongoing for 2012 data: ~2M prompt+sec

Also K_{S} decayed outside vertex detector

Belle: 1.2M signal

$$
\begin{gathered}
x=\left(0.56 \pm 0.19_{-0.08-0.08}^{+0.04+0.06}\right) \% \\
y=\left(0.30 \pm 0.15_{-0.05-0.07}^{+0.04+0.03}\right) \% \\
\text { PRD89 } 091103(2014)
\end{gathered}
$$

${ }^{\text {LHCB-CONF-2016-010 }} \mathrm{A}_{\Gamma}$: quest for indirect CPV

- Indirect CPV in SM is small: $\sim 10^{-4}$
- Easiest via $\mathrm{A}_{\Gamma}=$ asymmetry of 'effective' lifetimes of CP eigenstates

$$
A_{\Gamma}=\frac{\tau\left(\bar{D}^{0} \rightarrow h^{+} h^{-}\right)-\tau\left(D^{0} \rightarrow h^{+} h^{-}\right)}{\tau\left(\bar{D}^{0} \rightarrow h^{+} h^{-}\right)+\tau\left(D^{0} \rightarrow h^{+} h^{-}\right)} \simeq-A_{C P}^{\text {indirect }}
$$

- Binned approach: asymmetry of yields in $\mathrm{t}(\mathrm{D})$ bins

- Unbinned approach (via effective lifetimes) gives similar results

$\mathrm{A}_{\Gamma}:$ status

- Run-1 (2011+2012)

$$
\begin{gathered}
A_{\Gamma}(K K)=(-0.030 \pm 0.032 \pm 0.014) \% \\
A_{\Gamma}(\pi \pi)=(+0.046 \pm 0.058 \pm 0.016) \%
\end{gathered}
$$

- Sensitivity $O\left(10^{-4}\right)$

Limited by statistics

- A_{Γ} in terms of basic parameters

$$
A_{\Gamma}=\frac{1}{2}\left[\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi-\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) x \sin \phi\right]
$$

CPV in mix-decay $\quad \begin{aligned} & \text { LHCb } 2015 \mathrm{KK}+\pi \pi \\ & \mu \text {-tag, Run-1 }\end{aligned}$ in mixing inkerference
\Rightarrow sensitivity to q / p depends on x

2011 data

Mixing \& indirect CPV from global fit

$$
x=(0.37 \pm 0.16) \% \quad y=\left(0.66_{-0.10}^{+0.07}\right) \%
$$

$$
\begin{array}{|l|}
|q / p|=0.91_{-0.08}^{+0.12} \\
\phi \equiv \arg (q / p)=-9.4_{-9.8}^{+11.9} \mathrm{deg}
\end{array}
$$

- No evidence of indirect CPV
- Need data from BelleII and LHCb upgrade

Future sensitivities

- Current WA + Run-1 measurements as baseline
- Assume $\sqrt{ } \mathrm{N}$ scaling of statistical and systematic errors

	Run	$x\left[10^{-3}\right]$	$y\left[10^{-3}\right]$	$\left\|\frac{q}{p}\right\|\left[10^{-3}\right]$	$\phi[\mathrm{mrad}]$
	Projected 2016 HFAG WA	1.39	0.90	80	156
	1	1.10	0.78	65	119
	2	0.81	0.58	47	83
	3	0.32	0.24	17	32
	4	0.20	0.14	11	19
$200 \times$ Run-1 y	ds 5 5	0.07	0.05	5	7

Opportunities \& Limitations

- Multi-body decays to exploit $\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi, 4 \pi, \mathrm{~K}_{\mathrm{s}} \pi \pi \pi^{0}$,
- Phase Space modeling \Rightarrow model uncertainty
- Huge statistics \Rightarrow naïve approach to dynamics description fails
- Using external input on strong phases is a future?
- Must get more from c-Factories data
"Synergy of LHCb and BESIII physics programmes" LHCb-PUB-2016-025
- Technicalikies to control
- Reliable and large MC (CPU consuming)
- $t(D)$ acceptance, Phase Space acceptance and their correlations
- Prompt/secondary charm separation w/o biasing t(D)
- K and π detection asymmetries and their time dependence

Direct CPV

- Depends on decay mode
- Needs two amplitudes with different weak \& strong phases
\Rightarrow SCS decays with Tree + Penguin
- Penguin in charm is tiny (no t-quark in loop)
\Rightarrow in SM direct CPV $\leq 10^{-3} \div 10^{-2}$
- Not observed yet

Recent LHCD resulls

- 2-body decays
- $\Delta \mathrm{A}_{\mathrm{CP}}$
- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)$
- $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}_{(\mathrm{s})}{ }^{+} \rightarrow \eta^{\prime} \pi^{+}\right)$
- Mullibody decays
- $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

'Extra' asymmetries to account for

- Production asymmetry
- pp: $\sigma\left(\Lambda_{\mathrm{c}}^{+}\right)>\sigma\left(\Lambda_{\mathrm{c}}^{-}\right) \Rightarrow \sigma\left(\mathrm{D}^{+}\right)<\sigma\left(\mathrm{D}^{-}\right)$to compensate (asym~1\%)
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma / \mathrm{Z}^{*}$ interference \Rightarrow FB asymmetry
- Debection a symmebries (K^{+}vs K^{-}, π^{+}vs π^{-})
- different interactions with detector material: $\sigma\left(\mathrm{pK}^{-}\right)>\sigma\left(\mathrm{pK}^{+}\right)$
- Correct with conkrol modes (CP symmetric)

PRL 116, 191601 (2016)

$$
\Delta \mathrm{A}_{\mathrm{CP}}=\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)-\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)
$$

- Sensitive \& simple

$$
\Delta A_{C P} \simeq\left[A_{C P}^{\text {direct }}(K K)-A_{C P}^{\text {direct }}(\pi \pi)\right]+\frac{\Delta\langle t\rangle}{\tau_{D}} A_{C P}^{\text {indirect }}
$$

- 2012 evidence: $\Delta \mathrm{A}_{\mathrm{CP}}=(-0.8 \pm 0.2 \pm 0.1) \%$
- In SM $\mid \Delta \mathrm{A}_{\mathrm{CP}}$ direct $\mid \leq 0.6 \%$
- $\Delta \mathrm{A}_{\mathrm{CP}} \& \mathrm{~A}_{\Gamma}$ results \Rightarrow fit $\Delta \mathrm{A}_{\mathrm{CP}}{ }^{\text {direct }} \& \mathrm{~A}_{\mathrm{CP}}{ }^{\text {indirect }}$

$\Delta A_{C P}=(-0.10 \pm 0.08 \pm 0.03) \%$
Most precise!
HFAG average:

$$
\begin{aligned}
& \Delta A_{C P}^{\text {direct }}=(-0.14 \pm 0.07) \% \\
& A_{C P}^{\text {indirect }}=(0.06 \pm 0.04) \%
\end{aligned}
$$

$\mathrm{A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right) \& \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)$

- Individual $\mathrm{A}_{\mathrm{CP}}(\mathrm{KK})$, pion-tagged sample

$$
A_{C P}\left(K^{+} K^{-}\right)=(0.14 \pm 0.15 \pm 0.10) \%
$$

- Combine with $\Delta \mathrm{A}_{\mathrm{CP}} \Rightarrow$

$$
A_{C P}\left(\pi^{+} \pi^{-}\right)=A_{C P}\left(K^{+} K^{-}\right)-\Delta A_{C P}=(0.24 \pm 0.15 \pm 0.11) \%
$$

- Combine with results from muon-tagged sample JHEP07, 041 (2014)
\Rightarrow LHCb combination
- Both A_{CP} 's consistent with zero

A_{CP} in $\mathrm{D}_{(\mathrm{s})}{ }^{+} \rightarrow \eta^{\prime} \pi^{+}$

- Charged $\mathrm{D}_{(\mathrm{s})}=$ flavour 'self-tagged' by pion charge
- $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ photon in final state \Rightarrow large background

$$
\begin{aligned}
& \mathcal{A}_{C P}\left(D^{ \pm} \rightarrow \eta^{\prime} \pi^{ \pm}\right)=(-0.61 \pm 0.72 \pm 0.55 \pm 0.12) \% \\
& \mathcal{A}_{C P}\left(D_{s}^{ \pm} \rightarrow \eta^{\prime} \pi^{ \pm}\right)=(-0.82 \pm 0.36 \pm 0.24 \pm 0.27) \%
\end{aligned}
$$

\leftarrow SCS
$\leftarrow C F$

- $3^{\text {rd }}$ uncertainty: Belle input on A_{CP} in control modes $\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{S}} \pi^{+} \& \mathrm{D}_{\mathrm{s}}^{+} \rightarrow \varphi \pi^{+}$

Most precise very important

A_{CP} in two-body SCS decays

Mode	$\mathbf{A}_{\mathrm{CP}}[\%]$			
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$	$+0.04 \pm 0.12 \pm 0.10^{\text {New }}$	$-0.32 \pm 0.21 \pm 0.09$	$+0.00 \pm 0.34 \pm 0.13$	
$\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}$	$+0.07 \pm 0.14 \pm 0.1 \mathrm{New}^{\text {ew }}$	$+0.55 \pm 0.36 \pm 0.09$	$-0.24 \pm 0.52 \pm 0.22$	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$	$-2.9 \pm 5.2 \pm 2.2$	$+0.00 \pm 1.53 \pm 0.17$		
$\mathrm{D}^{0} \rightarrow \pi^{0} \pi^{0}$		$-0.03 \pm 0.64 \pm 0.10$		
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \eta$		$+0.54 \pm 0.51 \pm 0.16$		
$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \eta^{\prime}$		$+0.98 \pm 0.67 \pm 0.14$		
$\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}^{+}$	$+0.03 \pm 0.17 \pm 0.14$	$+0.08 \pm 0.28 \pm 0.14$	$+0.46 \pm 0.36 \pm 0.25$	$-1.5 \pm 2.8 \pm 1.6$
$\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{L}} \mathrm{K}^{+}$				
$\mathrm{D}^{+} \rightarrow \phi \pi^{+}$	$-0.04 \pm 0.14 \pm 0.14$	$+0.51 \pm 0.28 \pm 0.05$		
$\mathrm{D}^{+} \rightarrow \eta \pi^{+}$		$+1.74 \pm 1.13 \pm 0.19$		
$\mathrm{D}^{+\rightarrow \eta^{\prime} \pi^{+}}$	$-0.61 \pm 0.72 \pm 0.55 \pm 0.12$	$-0.12 \pm 1.12 \pm 0.17$		
$\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+}$	$+0.38 \pm 0.46 \pm 0.17$	$+5.45 \pm 2.50 \pm 0.33$	$+0.3 \pm 2.0 \pm 0.3$	
\bullet Jolanta@MIAPP		http://www.slac.stanford.edu/xorg/hfag/charm		

Comments on direct CPV searches

- Precision down to $0\left(10^{-3}\right)$, still no evidence Will improve ~ 6 times with Run-4 data (by 2030)
- Exploil correlations between modes related through Isospin or U-spin $\Rightarrow \sim$ model independent test of SM, model dependent test of NP e.g. SM sum rules: $\quad A\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)-\bar{A}\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)=0$

$$
\frac{1}{\sqrt{2}} A\left(\pi^{+} \pi^{-}\right)+A\left(\pi^{0} \pi^{0}\right)-\frac{1}{\sqrt{2}} \bar{A}\left(\pi^{+} \pi^{-}\right)-\bar{A}\left(\pi^{0} \pi^{0}\right)=0
$$

- Study charm baryons
$1^{\text {st }}$ evidence for CPV in baryons (in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} 3 \pi$) arXiv:1609:05216
- Rare decays: CPV in SM at a few \% level $\mathrm{D}^{0} \rightarrow \mathrm{o} \gamma, \phi \gamma, \mathrm{K}^{*} \gamma\left(\mathrm{BF} \sim 10^{-4} \div 10^{-5}\right)$ Belle arXiv:1603.03257 $\mathrm{D}^{0} \rightarrow \pi \pi \mathrm{l}^{+}{ }^{-}, \mathrm{KKl}^{+}{ }^{-}\left(\mathrm{FCNC}, \mathrm{BF} \sim 10^{-12}\right)$

CPV in multi-body decays

- Strong phases vary in phase space \Rightarrow local asymmetries
- Model independent methods: test if data consistent with no-CPV
\Rightarrow binned $\chi^{2}\left(\mathrm{~S}_{\mathrm{CP}}\right.$ method, aka Miranda method)

$$
\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}
$$

$$
p \text {-value }=50 \div 100 \%
$$

\Rightarrow unbinned (Energy Test)

$$
\begin{aligned}
S_{C P}^{i} & =\frac{N^{i}\left(D^{+}\right)-\alpha N^{i}\left(D^{-}\right)}{\sqrt{N^{i}\left(D^{+}\right)+\alpha^{2} N^{i}\left(D^{-}\right)}} \alpha=\frac{N\left(D^{+}\right)}{N\left(D^{-}\right)} \\
\chi^{2} & =\sum\left(S_{C P}^{i}\right)^{2}
\end{aligned}
$$

\leftarrow Significance of asymmetry in Dalitz bins

$$
\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}
$$

$$
p \text {-value }=2 \div 5 \%
$$

\leftarrow Significance of local asymmetry for each event

LHCB-PAPER-2016-044

Search for CPV in $\mathrm{D}^{0} \rightarrow 4 \pi$ with Energy Test

- Statistical comparison of two distributions
- Test statistics: based on distances of event pairs
- Compare with T distribution for no CPV case (randomize D flavour)
- 5-dim phase space: $\mathrm{m}^{2}(\pi \pi), \mathrm{m}^{2}(\pi \pi \pi) \Rightarrow \mathbf{P}$-even
- Use triple-product sign to access P-odd CPV $\quad T=\left\langle d_{i j}\right\rangle_{D D}+\left\langle d_{i j}\right\rangle_{\bar{D} \bar{D}}-\left\langle d_{i j}\right\rangle_{D \bar{D}}$

- Jolanta@MIAPP

Marginally consistent with no CPV (~2.7 $\sigma)$

$$
\begin{array}{c|c}
\text { II } & \text { IV }^{\mathrm{D} \mathrm{C}}{ }_{\mathrm{T}}<0
\end{array} \overline{\mathrm{D}}^{-\overline{\mathrm{C}}_{\mathrm{T}}<0}
$$

$$
C_{T} \equiv \vec{p} \pi^{+} \cdot\left(\vec{p} \pi^{+} \times \vec{p} \pi^{-}\right)
$$

Opportunities \& Limitations

- Measurement of CPV in multi-body decays requires amplitude analysis \Rightarrow model dependent $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{5} \mathrm{~K} \pi$: LHCb PRD93 052018 (2016)
- 4-body decays offer access to P-odd amplitudes
- CPV in P-even ampl.: $\mathrm{A}_{\mathrm{CP}} \sim \sin \Delta \phi_{\text {weak }} \sin \Delta \phi_{\text {strong }}$ CPV in P-odd ampl.: $\mathrm{A}_{\mathrm{CP}} \sim \sin \Delta \phi_{\text {weak }} \cos \Delta \phi_{\text {strong }} \nleftarrow$ complementary
- Triple-product method (a.k.a T-odd) sensitive to P-odd CPV
$\mathrm{D}^{0} \rightarrow \mathrm{KK} \pi \pi$: LHCb JHEP10 (2014) 005, $\mathrm{D}^{+} \rightarrow \mathrm{K}_{s} \mathrm{~K} \pi \pi$: BaBar PRD84 031103 (2011)
- Technicalities to control
- Reliable MC for Phase Space acceptance
- Detection asymmetries with CF decays as control modes (assume no CPV or include extra uncertainty)

Summary

- Still analyzing LHCb Run-1 data
- Increasing precision on $x \& y$ mixing parameters
- x still not measured well
- Indirect CPV searches with precision up to 10^{-4}
- Huge effort in searching for CPV in charm decays
- Sensitivity up to 10^{-3}, still no evidençe
- How small can be CPV in SM?
yeesss!... FOUND ONE!...

Backups

LHCb detector

Track types at LHCb

LHCB-PAPER-2016-033 prompt: PRL111, 251801(2013)
WS/RS $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$. Various fits

Parameter	DT+prompt combination	Prompt alone
No CPV		
$R_{D}\left[10^{-3}\right]$	3.533 ± 0.054	3.568 ± 0.067
$x^{\prime 2}\left[10^{-5}\right]$	3.6 ± 4.3	5.5 ± 4.9
$y^{\prime}\left[10^{-3}\right]$	5.23 ± 0.84	4.80 ± 0.94
χ^{2} / NDF	$96.594 / 111$	

	No Direct CPV	
$R_{D}\left[10^{-3}\right]$	3.533 ± 0.054	3.568 ± 0.067
$x^{2+}\left[10^{-5}\right]$	4.9 ± 5.0	6.4 ± 5.6
$y^{\prime+}\left[10^{-3}\right]$	5.14 ± 0.91	4.80 ± 1.08
$x^{\prime 2-}\left[10^{-5}\right]$	2.4 ± 5.0	4.6 ± 5.5
$y^{\prime-}\left[10^{-3}\right]$	5.32 ± 0.91	4.8 ± 1.08
χ^{2} / NDF	$96.147 / 109$	

	All CPV Allowed	
$R_{D}^{+}\left[10^{-3}\right]$	3.474 ± 0.081	3.545 ± 0.095
$x^{\prime 2+}\left[10^{-5}\right]$	1.1 ± 6.5	4.9 ± 7.0
$y^{\prime+}\left[10^{-3}\right]$	5.97 ± 1.25	5.10 ± 1.38
$R_{D}^{-}\left[10^{-3}\right]$	3.591 ± 0.081	3.591 ± 0.090
$x^{\prime 2-}\left[10^{-5}\right]$	6.1 ± 6.1	6.0 ± 6.8
$y^{\prime-}\left[10^{-3}\right]$	4.50 ± 1.21	4.50 ± 1.39
χ^{2} / NDF	$94.960 / 108$	

CPV from WS/RS $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$

- Prompt sample, Run-1
- 2-dim confidence regions for measured $\mathrm{x}^{\prime 2}$ and y^{\prime}

- Translated into CPV

$$
\begin{aligned}
A_{C P}^{\text {direct }} & =\frac{R_{D}^{+}-R_{D}^{-}}{R_{D}^{+}+R_{D}^{-}}=(-0.7 \pm 1.9) \% \\
x^{ \pm \prime} & =\left|\frac{q}{p}\right|^{ \pm 1}\left(x^{\prime} \cos \phi \pm y^{\prime} \sin \phi\right) \\
y^{ \pm \prime} & =\left|\frac{q}{p}\right|^{ \pm 1}\left(y^{\prime} \cos \phi \mp x^{\prime} \sin \phi\right)
\end{aligned}
$$

$0.75<|q / p|<1.24 @ 68 \% C L$

WS/RS D ${ }^{0} \rightarrow \mathrm{~K} 3 \pi$

- Constrain $x \& y$ from WA
- Get averaged strong phase \& coherence factor

$\mathrm{D}^{0} \rightarrow \mathrm{~K} s \pi \pi$

- Prob in i-bin

$$
\begin{aligned}
\mathcal{P}_{D^{0}}(i ; t) & =\int_{i} \mathcal{P}_{D^{0}}\left(m_{12}^{2}, m_{13}^{2}, t\right) \mathrm{d} m_{12}^{2} \mathrm{~d} m_{13}^{2} \\
& =\Gamma e^{-\Gamma t}\left[T_{i}-\Gamma t \sqrt{T_{i} T_{-i}}\left\{y c_{i}+x s_{i}\right\}\right] \\
\mathcal{P}_{\bar{D}^{0}}(i ; t) & =\Gamma e^{-\Gamma t}\left[T_{-i}-\Gamma t \sqrt{T_{i} T_{-i}}\left\{y c_{i}-x s_{i}\right\}\right]
\end{aligned}
$$

- Integrals of rate and interference over i-bin

$$
\begin{aligned}
& T_{i} \equiv \int_{i}\left|\mathcal{A}_{D_{0} 0}\right|^{2} \mathrm{~d} m_{12}^{2} \mathrm{~d} m_{13}^{2}, \\
& X_{i} \equiv \frac{1}{\sqrt{T_{i} T_{-i}}} \int_{i} \mathcal{A}_{D_{0}^{0}}^{*} \mathcal{A}_{\mathcal{D}^{0}} \mathrm{~d} m_{12}^{2} \mathrm{~d} m_{13}^{2}
\end{aligned}
$$

- strong phases

$$
\begin{aligned}
c_{i} & \equiv \operatorname{Re}\left(X_{i}\right), \\
s_{i} & \equiv-\operatorname{Im}\left(X_{i}\right)
\end{aligned}
$$

To do: t-dependent Dalitz

- Access to amplitudes (CF, DCS and CP-eigenstates)
\Rightarrow strong phases and interferences \Rightarrow direct access to $x, y, q / p$
- Rates for D^{0} and $\underline{\mathrm{D}}^{0}$ assuming no DCPV:
 $m^{2}\left(K_{s} \pi^{+}\right)$vs $m^{2}\left(K_{s} \pi^{-}\right)$
- Belle $\mathrm{K}_{\mathrm{s}} \pi \pi$: 1.2 M LHCb prompt $+\mu$-tag: $\sim 2 \mathrm{M}$
- t-dep. Dalitz possible for $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \mathrm{KK} \quad \mathrm{D}^{0} \rightarrow \pi \pi \pi^{0}$

$$
\begin{aligned}
& |\mathcal{M}(f, t)|^{2}=\frac{e^{-\Gamma t}}{2}\left\{\left(\left|\mathcal{A}_{f}\right|^{2}+\left|\frac{q}{p}\right|^{2}\left|\mathcal{A}_{\bar{f}}\right|^{2}\right) \cosh (\Gamma y t)\right. \\
& \quad+\left(\left|\mathcal{A}_{f}\right|^{2}-\left|\frac{q}{p}\right|^{2}\left|\mathcal{A}_{\bar{f}}\right|^{2}\right) \cos (\Gamma x t) \\
& \left.\quad+2 \Re\left(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}{ }^{*}\right) \sinh (\Gamma y t)-2 \Im\left(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}{ }^{*}\right) \sin (\Gamma x t)\right\} \\
& |\overline{\mathcal{M}}(f, t)|^{2}=\frac{e^{-\Gamma t}}{2}\left\{\left(\left|\mathcal{A}_{\bar{f}}\right|^{2}+\left|\frac{p}{q}\right|^{2}\left|\mathcal{A}_{f}\right|^{2}\right) \cosh (\Gamma y t)\right. \\
& \quad+\left(\left|\mathcal{A}_{\bar{f}}\right|^{2}-\left|\frac{p}{q}\right|^{2}\left|\mathcal{A}_{f}\right|^{2}\right) \cos (\Gamma x t) \\
& \left.\left.\quad+2 \Re\left(\frac{p}{q} \mathcal{A}_{f} \mathcal{A}_{\bar{f}}{ }^{*}\right) \sinh (\Gamma y t)-2 \Im\left(\frac{p}{q} \mathcal{A}_{f} \mathcal{A}_{\bar{f}^{*}}^{*}\right) \sin (\Gamma x t)\right\}\right)
\end{aligned}
$$

Belle PRD89 091103 (2014)

$$
\begin{aligned}
& x=\left(5.6 \pm 1.9_{-0.8-0.8}^{+0.4+0.6}\right) \times 10^{-3} \\
& y=\left(3.0 \pm 1.5_{-0.5}^{+0.4+0.3}-0.7\right. \\
& |q / p|=0.90_{-0.15}^{+0.16+0.0 .04}+0.0 .05 \\
& \arg (q / p)=\left(-6 \pm 11 \pm 3_{-4}^{+3}\right)^{\circ}
\end{aligned}
$$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi \pi$ phases from Cleo-c

TABLE X: Values of $F_{(-) i}(\%)$ measured from the flavor-tagged $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$data for the equal $\Delta \delta_{D}$ inning derived from the Belle model. Predicted values from the BABAR 2008 model of $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$are also given.

i	$F_{i}(\%)$		$F_{-i}(\%)$	
	Measured Predicted		Measured	Predicted
1	16.5 ± 0.5	16.5	8.8 ± 0.4	8.0
2	7.7 ± 0.4	7.6	2.0 ± 0.2	1.6
3	9.8 ± 0.4	10.2	3.2 ± 0.2	2.8
4	3.0 ± 0.2	3.0	1.3 ± 0.1	1.2
5	8.0 ± 0.4	9.2	4.0 ± 0.3	4.6
6	7.1 ± 0.3	7.3	1.8 ± 0.2	1.7
7	9.9 ± 0.4	10.0	1.6 ± 0.2	1.3
8	12.4 ± 0.4	12.2	2.9 ± 0.2	2.6

TABLE XVI: Measured values of c_{i} and s_{i} for the different $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$binnings.
Equal $\Delta \delta_{D}$ Belle

\[

\]

Binned parameters from BaBar 2010 model

CPV in multibody decays (2)

- Model dependent: Dalitz analysis (still mainly from Cleo and BaBar)
$\Rightarrow \mathrm{A}_{\mathrm{CP}}$ for contributing resonances
\Rightarrow test SM with sum rules e.g. for amplitudes in $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\left[A\left(\rho^{+} \pi^{-}\right)+A\left(\rho^{-} \pi^{+}\right)+2 A\left(\rho^{0} \pi^{0}\right)\right]-\left[\bar{A}\left(\rho^{+} \pi^{-}\right)+\bar{A}\left(\rho^{-} \pi^{+}\right)+2 \bar{A}\left(\rho^{0} \pi^{0}\right)\right]=0
$$

- Triple-product asymmetries for 4-body; complementary to other methods

$$
\begin{aligned}
& \left.\Rightarrow \text { Triple products for } \mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{+} \pi \pi^{-}: \begin{array}{l}
C_{T} \equiv \vec{p}_{K_{+}+} \cdot\left(\vec{p}_{\pi+} \times \vec{p}_{\pi-}\right) \text { for } D^{0} \\
\Rightarrow \text { T-odd asymmetries } \\
\bar{C}_{T} \equiv \vec{p}_{K-} \cdot\left(\vec{p}_{\pi-} \times \vec{p}_{\pi+}\right) \text { for } \bar{D}^{0} \\
A_{T} \equiv \frac{\Gamma_{D^{0}}\left(C_{T}>0\right)-\Gamma_{D^{0}}\left(C_{T}<0\right)}{\Gamma_{D^{0}}\left(C_{T}>0\right)+\Gamma_{D^{0}}\left(C_{T}<0\right)} \\
\bar{A}_{T} \equiv \frac{\Gamma_{\bar{D}^{0}}\left(-\bar{C}_{T}>0\right)-\Gamma_{\bar{D}^{0}}\left(-\bar{C}_{T}<0\right)}{\Gamma_{\bar{D}^{0}}\left(-\bar{C}_{T}>0\right)+\Gamma_{\bar{D}^{0}}\left(-\bar{C}_{T}<0\right)}
\end{array}\right] \quad \begin{array}{c}
a_{C P}^{T-\text { odd }} \equiv \frac{1}{2}\left(A_{T}-\bar{A}_{T}\right) \\
a_{C P}^{T-\text { odd }}\left(D^{0} \rightarrow K K \pi \pi\right)=(0.18 \pm 0.29 \pm 0.04) \%
\end{array}
\end{aligned}
$$

