Mixing & CP Violation in Charm From LHCb perspective

Jolanta Brodzicka, University of Manchester

Flavour Physics with High-Luminosity Experiments Munich, November 2016

Outline

- Why is charm special?
- Where and how is charm studied?
- Introduction to mixing and CPV
- Recent results from LHCb
- Future opportunities and limitations
- Summary

Is there any New Physics?

• Loop processes are promising for NP searches

 Before we find NP it would be good to measure mixing parameters and observe any CPV

Why is charm special?

- Complementary to strange and beauty sectors
- Unique access to system with up-type quarks
- Down-type quarks in loops: different New Particles?
- But...
- In SM rare charm processes are very suppressed
- QCD 'corrections' are large (usually disadvantageous)
- Thus we need
- Large/clean data samples
- Precise estimation of SM contribution (penguin size)

"Everything is smaller in charm"

Mat Charles at CKM2014

Charm samples

Pros & cons of charm experiments

· LHCb

☑ large x-section

busy environment, nontrivial triggers

 \blacksquare decays with γ 's and neutrinos difficult

 \blacksquare D flight distance~10mm, $\sigma(t)$ ~0.1× τ_D

☑ magnet polarity reversed periodically

☑ asymmetric production of charm/anti-charm

• Belle/BaBar

🗹 clean environment

 \square good for neutrals & decays with neutrinos □ D flight distance~200µm, σ (t)~0.5× τ _D

· BESIII/Cleo-c

☑ background-free charm

 \blacksquare charm not boosted \Rightarrow no time measurement

LHCb changes & will change more

- LHCb Run-1 (2010-2012) Collected 3 fb⁻¹ Finalizing charm analyses. Still more to come
- LHCb Run-2 (2015-2018) Collect 5 fb⁻¹ (2 fb⁻¹ already collected) Improved triggers & computing. First results (charm x-section)
- LHCb Run-3, Run-4 (2021-2023, 2026-2029)

•

Quick Introduction for non-charmers

Basics of mixing

• Flavour eigenstates $D^0[c\bar{u}] \bar{D}^0[c\bar{u}] \neq mass$ eigenstates $D_1 D_2[m_{1,2} \Gamma_{1,2}]$ $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle \quad |p|^2 + |q|^2 = 1$

• Probability that initial flavour unchanged/changed at time t

What's behind x and y?

Short distance

mixing @ quark level

- $b \log \sim V_{ub} V_{cb} (m_b/m_W)^2$
- s & d cancel in SU(3) limit (m_s=m_d)
- No significant x measurement yet
- Large uncertainties in SM mixing rate ⇒ difficult to identify NP
- NP can increase x, does not affect y
- LQCD calculations finally happening (coupled channels with 2-body final states) See M.Hansen talk @ 6th LHCb Implications Workshop

Jolanta@MIAPP

Long distance

mixing via final-state interactions

difficult to calculate

What charm UT tells us?

- If the CKM matrix elements complex ⇒ CPV exists ⇒ UT triangles
- Triangle openness indicates how large CPV expected

• D triangle ⇒ tiny CPV in preferred decays, larger CPV in rare decays

CPV

ndirect

CP Violation: Types and Observables In decays $|\overline{D} \rightarrow \overline{f}|^2 \neq |\overline{D} \rightarrow \overline{f}|^2 \Rightarrow |\overline{A}_{\overline{f}}/A_{\overline{f}}|^2 \neq 1$

- Difference in rates for particles and antiparticles
- Depends on decay mode

In mixing
$$|\overline{D}^0 \rightarrow \overline{D}^0|^2 \neq |\overline{D}^0 \rightarrow D^0|^2 \Rightarrow |q/p| \neq 1$$

In interference between $|\overline{D}^0 \rightarrow \overline{D}^0 \rightarrow f|^2 \neq |\overline{D}^0 \rightarrow D^0 \rightarrow f|^2$ mixing and decays $|\overline{D}^0 \rightarrow f|^2 \neq |\overline{D}^0 \rightarrow f|^2$

 $\Rightarrow \phi = \arg(q/p) \neq 0$

- Difference in rates as function of D⁰ decay-time
- Independent of decay mode
- Final states accessible for both D^0 and \overline{D}^0

Mixing & indirect CPV

- Universal = don't depend on decay mode
- The way they are probed depends on decay mode
- Only in D⁰

Recent results from LHCb + BaBar

- $D^0 \rightarrow K\pi$, LHCb
- $D^0 \rightarrow K \pi \pi \pi$, LHCb
- $D^0 \rightarrow \pi \pi \pi^0$, BaBar
- $D^0 \rightarrow K_S \pi \pi$, LHCb
- A_{Γ} , LHCb

How to get flavour of D⁰?

• Tag flavour at the production (then mixing changes flavour)

Prompt charm pp→D*±

- D tagged with soft-pion charge
- D^{*±} reconstructed with high purity

secondary charm pp→B→D

- D tagged with muon charge
- Not as pure, mis-tag ~few%

Doubly-tagged secondary charm pp→B→D*±

Prompt/secondary charm & related issues

- Both samples used at LHCb ⇒ full coverage of D decay time
- Distorted decay time of prompt D
- Lifetime-unbiased triggers in Run-2

• Non-trivial prompt/sec separation

May bias lifetime
 IP
 B
 D
 h⁻
 h⁺
 h⁺

$D^0 \& D^0$ mix since 2013

LHCB-PAPER-2016-033 prompt: PRL111, 251801(2013)

Mixing from WS/RS $D^0 \rightarrow K\pi$

- With secondary charm, doubly tagged
- WS & RS signal yields in t bins ⇒

$$R(t) = \frac{N_{WS}}{N_{RS}}(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$R_D = \frac{BR(CS \ D^0 \to K\pi)}{BR(CF \ D^0 \to K\pi)} \left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} \cos\delta_{K\pi} & \sin\delta_{K\pi}\\ -\sin\delta_{K\pi} & \cos\delta_{K\pi}\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right)$$

- $\delta_{K\pi}$: CF/CS strong phase; from Cleo-c/BESIII
- $R^{\pm}(t)$ for D produced as D^0/\overline{D}^0
- CPV if x, y, R_D differ for two flavours
- No evidence for CPV
- Prompt & secondary combination
- 20% improvement from sec charm

$$R_D = (3.53 \pm 0.05) \times 10^{-3}$$
$$y' = (5.2 \pm 0.8) \times 10^{-3}$$
$$x'^2 = (3.6 \pm 4.3) \times 10^{-5}$$

New mixing with $D^0 \rightarrow K \pi \pi \pi$

New mixing with
$$D^0 \rightarrow K\pi\pi$$

WS: $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$ RS: $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$, pion-tagged
 $R(t) = \frac{N_{WS}}{N_{RS}}(t) \simeq R_D^{K3\pi} + \sqrt{R_D^{K3\pi}R_{coh}} y'\frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$
Rates integrated over 5D Phase Space \Rightarrow dilution

- \Rightarrow averaged strong phase and R_{coh} coherence factor $A_{K^{-}3\pi}(\mathbf{r})A_{K^{+}3\pi}(\mathbf{r})\,d\mathbf{r} \Rightarrow R_{coh}e^{-i\delta_{K3\pi}}$
- R_{coh} ~0 phase variation; R_{coh} ~1 resonances in phase 6×10^{-3} LHCb 5.5 WS/RS $t(D)/\tau$ Data Unconstrained Mixing-constrained No-mixing 3.5 3 8 10 12 2 4 6

 t/τ

Jolanta@MIAPP

Measurement w/o PS integration expected to have large sensitivity

JHEP 04, 033 (2016)

$D^0 \rightarrow K_S \pi \pi$, t-dep. Dalitz, model independent

- $D^0 \rightarrow K_S \pi \pi$ is a golden mode for mixing
- Binned approach to Dalitz
- Strong phases & fractions from Cleo-c
- Fit t(D) with data driven acceptance

- This is with 2011 data: 180K signal K_S decayed inside vertex detector
- Ongoing for 2012 data: ~2M prompt+sec Also K_s decayed outside vertex detector
 Jolanta@MIAPP

Belle: 1.2M signal

$$x = (0.56 \pm 0.19^{+0.04}_{-0.08}, 0.08)\%$$

$$y = (0.30 \pm 0.15^{+0.04}_{-0.05}, 0.07})\%$$
PRD89 091103 (2014)

•20

LHCB-CONF-2016-009 LHCB-CONF-2016-010 A_{Γ} : quest for indirect CPV

- Indirect CPV in SM is small: ~10⁻⁴
- Easiest via A_{Γ} = asymmetry of 'effective' lifetimes of CP eigenstates $A_{\Gamma} = \frac{\tau(\overline{D}^0 \to h^+ h^-) - \tau(D^0 \to h^+ h^-)}{\tau(\overline{D}^0 \to h^+ h^-) + \tau(D^0 \to h^+ h^-)} \simeq -A_{CP}^{\text{indirect}}$
- Binned approach: asymmetry of yields in t(D) bins

Unbinned approach (via effective lifetimes) gives similar results
Jolanta@MIAPP

- Mixing established; x still not significant
- No evidence of indirect CPV
- Need data from BelleII and LHCb upgrade

Future sensitivities

A.Davis talk@ 6th LHCb Implications Workshop

- Current WA + Run-1 measurements as baseline
- Assume \sqrt{N} scaling of statistical and systematic errors

Opportunities & Limitations

- Multi-body decays to exploit $D^0 \rightarrow K3\pi$, 4π , $K_S\pi\pi\pi^0$,
- Phase Space modeling ⇒ model uncertainty
- Huge statistics ⇒ naïve approach to dynamics description fails
- Using external input on strong phases is a future?
- Must get more from c-Factories data *"Synergy of LHCb and BESIII physics programmes"* LHCb-PUB-2016-025
- Technicalities to control
- Reliable and large MC (CPU consuming)
- t(D) acceptance, Phase Space acceptance and their correlations
- Prompt/secondary charm separation w/o biasing t(D)
- K and π detection asymmetries and their time dependence

Direct CPV

- Depends on decay mode
- Needs two amplitudes with different weak & strong phases
 ⇒ SCS decays with Tree + Penguin
- Penguin in charm is tiny (no t-quark in loop)
 ⇒ in SM direct CPV ≤10⁻³÷10⁻²
- Not observed yet

Recent LHCb results

- · 2-body decays
 - ΔA_{CP}
 - $A_{CP}(D^0 \rightarrow K^+K^-)$
 - $A_{CP}(D_{(s)}^+ \rightarrow \eta' \pi^+)$
- Multibody decays
 - $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- $b \log \sim V_{ub} V_{cb} (m_b/m_W)^2$
- s & d cancel in SU(3)_f limit

'Extra' asymmetries to account for

- Production asymmetry
- pp: $\sigma(\Lambda_c^+) > \sigma(\Lambda_c^-) \Rightarrow \sigma(D^+) < \sigma(D^-)$ to compensate (asym~1%)
- $e^+e^- \rightarrow \gamma/Z^*$ interference \Rightarrow FB asymmetry
- Detection asymmetries ($K^+ vs K^-$, $\pi^+ vs \pi^-$)
- different interactions with detector material: $\sigma(pK^-) > \sigma(pK^+)$
- Correct with control modes (CP symmetric)

PRL 116, 191601 (2016)

$$\Delta A_{CP} = A_{CP} (D^0 \rightarrow K^+ K^-) - A_{CP} (D^0 \rightarrow \pi^+ \pi^-)$$
Run-1 prompt

• Sensitive & simple

$$\Delta A_{CP} \simeq \left[A_{CP}^{\text{direct}}(KK) - A_{CP}^{\text{direct}}(\pi\pi) \right] + \frac{\Delta \langle t \rangle}{\tau_D} A_{CP}^{\text{indirect}}$$

- 2012 evidence: $\Delta A_{CP} = (-0.8 \pm 0.2 \pm 0.1)\%$
- In SM $|\Delta A_{CP}^{direct}| \le 0.6\%$
- $\Delta A_{CP} \& A_{\Gamma} \text{ results} \Rightarrow \text{fit } \Delta A_{CP}^{\text{direct}} \& A_{CP}^{\text{indirect}}$

arXiv:1610.09476

 $_{PP}(D^0 \rightarrow K^+K^-) \& A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

- Individual A_{CP}(KK), pion-tagged sample • $A_{CP}(K^+K^-) = (0.14 \pm 0.15 \pm 0.10)\%$
- Combine with $\Delta A_{CP} \Rightarrow$

$$A_{CP}(\pi^+\pi^-) = A_{CP}(K^+K^-) - \Delta A_{CP} = (0.24 \pm 0.15 \pm 0.11)\%$$

Combine with results from muon-tagged sample JHEP07, 041 (2014) LHCb combination

Both A_{CP} 's consistent with zero

LHCB-PAPER-2016-041

 A_{CP} in $D_{(s)}^+ \rightarrow \eta' \pi^+$

- Charged D_(s) = flavour 'self-tagged' by pion charge
- $\eta' \rightarrow \pi^+ \pi^- \gamma$ photon in final state \Rightarrow large background

• 3^{rd} uncertainty: Belle input on A_{CP} in control modes $D^+ \rightarrow K_S \pi^+ \& D_s^+ \rightarrow \phi \pi^+$ • Jolanta@MIAPP

ost precise lery important A _{CP} in two-body SCS decays										
	LHCb	Belle	BaBar	BESIII						
Mode		A _{CP} [%]								
$D^0 \rightarrow K^+ K^-$	$+0.04 \pm 0.12 \pm 0.10$	$-0.32 \pm 0.21 \pm 0.09$	$+0.00 \pm 0.34 \pm 0.13$							
$D^0 \rightarrow \pi^+ \pi^-$	$+0.07 \pm 0.14 \pm 0.11$	$+0.55 \pm 0.36 \pm 0.09$	$-0.24 \pm 0.52 \pm 0.22$							
$D^0 \rightarrow K_s K_s$	$-2.9 \pm 5.2 \pm 2.2$	$+0.00 \pm 1.53 \pm 0.17$								
$D^0 \rightarrow \pi^0 \pi^0$		$-0.03 \pm 0.64 \pm 0.10$								
$D^0 \rightarrow K_s \eta$		$+0.54 \pm 0.51 \pm 0.16$								
$D^0 \rightarrow K_s \eta'$		$+0.98 \pm 0.67 \pm 0.14$		New						
$D^+ \rightarrow K_s K^+$	$+0.03 \pm 0.17 \pm 0.14$	$+0.08 \pm 0.28 \pm 0.14$	$+0.46 \pm 0.36 \pm 0.25$	$-1.5 \pm 2.8 \pm 1.6$						
$D^+ \rightarrow K_L K^+$				$-3.0 \pm 3.2 \pm 1.2$						
$D^+ \rightarrow \varphi \pi^+$	$-0.04 \pm 0.14 \pm 0.14$	$+0.51 \pm 0.28 \pm 0.05$								
$D^+ \rightarrow \eta \pi^+$	Nous	$+1.74 \pm 1.13 \pm 0.19$								
$D^+ \rightarrow \eta' \pi^+$	$-0.61 \pm 0.72 \pm 0.55 \pm 0.12$	$-0.12 \pm 1.12 \pm 0.17$								
$D_s^+ \rightarrow K_s \pi^+$	$+0.38 \pm 0.46 \pm 0.17$	$+5.45 \pm 2.50 \pm 0.33$	$+0.3 \pm 2.0 \pm 0.3$							

Jolanta@MIAPP

http://www.slac.stanford.edu/xorg/hfag/charm •31

Comments on direct CPV searches

- Precision down to 0(10⁻³), still no evidence
 Will improve ~6 times with Run-4 data (by 2030)
- Exploit correlations between modes related through Isospin or U-spin \Rightarrow ~model independent test of SM, model dependent test of NP e.g. SM sum rules: $A(D^+ \rightarrow \pi^+ \pi^0) - \overline{A}(D^+ \rightarrow \pi^+ \pi^0) = 0$ $\frac{1}{\sqrt{2}}A(\pi^+\pi^-) + A(\pi^0\pi^0) - \frac{1}{\sqrt{2}}\overline{A}(\pi^+\pi^-) - \overline{A}(\pi^0\pi^0) = 0$
- Study charm baryons 1st evidence for CPV in baryons (in $\Lambda_b \rightarrow p3\pi$) arXiv:1609:05216
- Rare decays: CPV in SM at a few % level $D^0 \rightarrow \varrho \gamma, \varphi \gamma, K^* \gamma (BF \sim 10^{-4} \div 10^{-5})$ Belle arXiv:1603.03257 $D^0 \rightarrow \pi \pi l^+ l^-, KK l^+ l^- (FCNC, BF \sim 10^{-12})$

```
PLB 728 (2014) 585
PLB 740 (2015) 158
```

CPV in multi-body decays

- Strong phases vary in phase space ⇒ local asymmetries
- Model independent methods: test if data consistent with no-CPV
- \Rightarrow binned χ^2 (S_{CP} method, aka Miranda method)

LHCB-PAPER-2016-044 Search for CPV in D⁰ \rightarrow 4 π with Energy Test

- Statistical comparison of two distributions
- Test statistics: based on distances of event pairs
- Compare with T distribution for no CPV case (randomize D flavour)
- 5-dim phase space: $m^2(\pi\pi)$, $m^2(\pi\pi\pi) \Rightarrow \mathbf{P}$ -even
- Use triple-product sign to access **P-odd** CPV

Opportunities & Limitations

- Measurement of CPV in multi-body decays requires amplitude analysis ⇒ model dependent D⁰→K_sKπ: LHCb PRD93 052018 (2016)
- 4-body decays offer access to P-odd amplitudes
- CPV in P-even ampl.: A_{CP}~sin∆φ_{weak} sin∆φ_{strong}
 CPV in P-odd ampl.: A_{CP}~sin∆φ_{weak} cos∆φ_{strong} ← complementary
- Triple-product method (a.k.a T-odd) sensitive to P-odd CPV
 D⁰→KKππ: LHCb JHEP10 (2014) 005, D⁺→K_SKππ: BaBar PRD84 031103 (2011)
- Technicalities to control
- Reliable MC for Phase Space acceptance
- Detection asymmetries with CF decays as control modes (assume no CPV or include extra uncertainty)

Summary

- Still analyzing LHCb Run-1 data
- Increasing precision on x&y mixing parameters
- x still not measured well
- Indirect CPV searches with precision up to 10⁻⁴
- Huge effort in searching for CPV in charm decays
- Sensitivity up to 10⁻³, still no evidence
- How small can be CPV in SM?
- Charm needs
 BelleII & LHCb upgrade

Backups

•

LHCb detector

Track types at LHCb

LHCB-PAPER-2016-033 prompt: PRL111, 251801(2013) $WS/RS D^0 \rightarrow K\pi$. Various fits

Parameter	DT+prompt combination	Prompt alone					
	No CPV						
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067					
$x'^{2}[10^{-5}]$	3.6 ± 4.3	5.5 ± 4.9					
$y'[10^{-3}]$	5.23 ± 0.84	4.80 ± 0.94					
χ^2/NDF	96.594/111						
	No Direct CPV						
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067					
$x'^{2+}[10^{-5}]$	4.9 ± 5.0	6.4 ± 5.6					
$y'^+[10^{-3}]$	5.14 ± 0.91	4.80 ± 1.08					
$x'^{2-}[10^{-5}]$	2.4 ± 5.0	4.6 ± 5.5					
$y'^{-}[10^{-3}]$	5.32 ± 0.91	4.8 ± 1.08					
χ^2/NDF	96.147/109						
All CPV Allowed							
$R_D^+[10^{-3}]$	3.474 ± 0.081	3.545 ± 0.095					
$x'^{2+}[10^{-5}]$	1.1 ± 6.5	4.9 ± 7.0					
$y'^+[10^{-3}]$	5.97 ± 1.25	5.10 ± 1.38					
$R_D^{-}[10^{-3}]$	3.591 ± 0.081	3.591 ± 0.090					
$x'^{2-}[10^{-5}]$	6.1 ± 6.1	6.0 ± 6.8					
$y'^{-}[10^{-3}]$	4.50 ± 1.21	4.50 ± 1.39					
χ^2/NDF	94.960/108						

PRL 111, 251801 (2013)

CPV from WS/RS $D^0 \rightarrow K\pi$

- Prompt sample, Run-1
- 2-dim confidence regions for measured x² and y²

• Translated into CPV

$$A_{CP}^{direct} = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-} = (-0.7 \pm 1.9)\%$$
$$x^{\pm'} = \left|\frac{q}{p}\right|^{\pm 1} (x'\cos\phi \pm y'\sin\phi)$$
$$0.75 < |q/p| < 1.24 \ @68\% \ CL$$
$$y^{\pm'} = \left|\frac{q}{p}\right|^{\pm 1} (y'\cos\phi \mp x'\sin\phi)$$

WS/RS D⁰ \rightarrow K3 π

- Constrain x&y from WA
- Get averaged strong phase & coherence factor

 $D^0 \rightarrow Ks\pi\pi$

• Prob in i-bin
$$\mathcal{P}_{D^0}(i;t) = \int_i \mathcal{P}_{D^0}(m_{12}^2, m_{13}^2, t) \, \mathrm{d}m_{12}^2 \, \mathrm{d}m_{13}^2$$

$$= \Gamma e^{-\Gamma t} \left[T_i - \Gamma t \sqrt{T_i T_{-i}} \left\{ y c_i + x s_i \right\} \right]$$

$$\mathcal{P}_{\bar{D}^0}(i;t) = \Gamma e^{-\Gamma t} \left[T_{-i} - \Gamma t \sqrt{T_i T_{-i}} \left\{ y c_i - x s_i \right\} \right]$$

• Integrals of rate and interference over i-bin

$$T_{i} \equiv \int_{i} |\mathcal{A}_{D^{0}}|^{2} dm_{12}^{2} dm_{13}^{2},$$
$$X_{i} \equiv \frac{1}{\sqrt{T_{i}T_{-i}}} \int_{i} \mathcal{A}_{D^{0}}^{\star} \mathcal{A}_{\bar{D}^{0}} dm_{12}^{2} dm_{13}^{2}$$

strong phases

 $c_i \equiv \operatorname{Re}(X_i),$ $s_i \equiv -\operatorname{Im}(X_i)$

To do: t-dependent Dalitz

- Access to amplitudes (CF, DCS and CP-eigenstates) \Rightarrow strong phases and interferences \Rightarrow direct access to x, y, q/p
- Rates for D^0 and \underline{D}^0 assuming no DCPV:

 $+(|\mathcal{A}_f|$

 $+2\Re(\frac{q}{n})$

 $+(|\mathcal{A}_{\bar{f}}|$

 $m^{2}(K_{s}\pi^{+}) vs m^{2}(K_{s}\pi^{-})$

- Belle $K_s \pi \pi$: 1.2M ٠ LHCb prompt + μ -tag: ~2M
- t-dep. Dalitz possible for $D^0 \rightarrow K_s K K D^0 \rightarrow \pi \pi \pi^0$

$$\begin{aligned} |\mathcal{M}(f,t)|^{2} &= \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_{f}|^{2} + |\frac{q}{p}|^{2} |\mathcal{A}_{\bar{f}}|^{2}) \cosh(\Gamma y t) \\ &+ (|\mathcal{A}_{f}|^{2} - |\frac{q}{p}|^{2} |\mathcal{A}_{\bar{f}}|^{2}) \cos(\Gamma x t) \\ &+ 2\Re(\frac{q}{p}\mathcal{A}_{\bar{f}}\mathcal{A}_{f}^{*}) \sinh(\Gamma y t) - 2\Im(\frac{q}{p}\mathcal{A}_{\bar{f}}\mathcal{A}_{f}^{*}) \sin(\Gamma x t) \\ &+ (|\mathcal{A}_{\bar{f}}|^{2} - |\frac{p}{q}|^{2} |\mathcal{A}_{f}|^{2}) \cos(\Gamma x t) \\ &+ (|\mathcal{A}_{\bar{f}}|^{2} - |\frac{p}{q}|^{2} |\mathcal{A}_{f}|^{2}) \cos(\Gamma x t) \\ &+ 2\Re(\frac{p}{q}\mathcal{A}_{f}\mathcal{A}_{\bar{f}}^{*}) \sinh(\Gamma y t) - 2\Im(\frac{p}{q}\mathcal{A}_{f}\mathcal{A}_{\bar{f}}^{*}) \sin(\Gamma x t) \\ \end{aligned} \end{aligned}$$
Belle PRD89 091103 (2014)
$$x = \left(5.6 \pm 1.9^{+0.4 + 0.6}_{-0.8 - 0.8}\right) \times 10^{-3} \\ y = \left(3.0 \pm 1.5^{+0.4 + 0.3}_{-0.5 - 0.7}\right) \times 10^{-3} \\ |q/p| = 0.90^{+0.16 + 0.05 + 0.06}_{-0.15 - 0.04 - 0.05} \\ \arg(q/p) = \left(-6 \pm 11 \pm 3^{+3}_{-4}\right)^{\circ} \end{aligned}$$

$D^0 \rightarrow K_S \pi \pi$ phases from Cleo-c

TABLE X: Values of $F_{(-)i}$ (%) measured from the flavor-tagged $D^0 \to K_S^0 \pi^+ \pi^-$ data for the equal $\Delta \delta_D$ binning derived from the Belle model. Predicted values from the BABAR 2008 model of $D^0 \to K^0_S \pi^+ \pi^-$ are also given.

	i	F_i (%)		F_{-i} (%)				
		Measured F	Predicted	l Measured	Predicted		Binned parameters from BaBa	ar 2010 model
	1	16.5 ± 0.5	16.5	8.8 ± 0.4	8.0			
	2	7.7 ± 0.4	7.6	2.0 ± 0.2	1.6	s _		BaBar 2010 model
	3	9.8 ± 0.4	10.2	3.2 ± 0.2	2.8	1		CLEO data
	4	3.0 ± 0.2	3.0	1.3 ± 0.1	1.2	_	0	
	5	8.0 ± 0.4	9.2	4.0 ± 0.3	4.6	0.5		
	6	7.1 ± 0.3	7.3	1.8 ± 0.2	1.7	0.5		
	7	9.9 ± 0.4	10.0	1.6 ± 0.2	1.3			
	8	12.4 ± 0.4	12.2	2.9 ± 0.2	2.6	o		
						_		
red values of c_i and s_i for the different $D^0 \to K_S^0 \pi^+ \pi^-$ binnings.						_0.5		$\overline{}$ /
	Equal $\Delta \delta_D$ Belle			_0.5				
		c_i		s_i				
	0.7	$710 \pm 0.034 \pm 0.034$	0.038 - 0	0.013 ± 0.097	± 0.031	-1		
	0.4	$481 \pm 0.080 \pm 0.000$	0.070 - 0	0.147 ± 0.177	± 0.107	Ē,		
	0.0	$008 \pm 0.080 \pm 0.080$	0.087 0	0.938 ± 0.120	± 0.047		-1 -0.5 0	0.5 1 C.
	-0.7	$757 \pm 0.099 \pm 0$	0.065 0	0.386 ± 0.208	± 0.067			d _o
	-0.8	$884 \pm 0.056 \pm 0.000$	0.054 - 0	0.162 ± 0.130	± 0.041			
	-0/	$162 \pm 0.100 \pm 0$	0 082 -0	1616 ± 0.188	+0.052			

TABLE XVI: Measur

 $0.402 \pm 0.100 \pm 0.082$ - $-0.010 \pm 0.100 \pm 0.002$ $0.106 \pm 0.105 \pm 0.100 - 1.063 \pm 0.174 \pm 0.066$ $0.365 \pm 0.071 \pm 0.078 - 0.179 \pm 0.166 \pm 0.048$

CPV in multibody decays (2)

- Model dependent: Dalitz analysis (still mainly from Cleo and BaBar) $\Rightarrow A_{CP}$ for contributing resonances \Rightarrow test SM with sum rules e.g. for amplitudes in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ $\left[A(\rho^+\pi^-) + A(\rho^-\pi^+) + 2A(\rho^0\pi^0)\right] - \left[\overline{A}(\rho^+\pi^-) + \overline{A}(\rho^-\pi^+) + 2\overline{A}(\rho^0\pi^0)\right] = 0$

$$\overline{A}_T \equiv \frac{\Gamma_{\overline{D}^0}(-\overline{C}_T > 0) - \Gamma_{\overline{D}^0}(-\overline{C}_T < 0)}{\Gamma_{\overline{D}^0}(-\overline{C}_T > 0) + \Gamma_{\overline{D}^0}(-\overline{C}_T < 0)}$$

$$a_{CP}^{T-odd} = \frac{1}{2} \left(A_T - \overline{A}_T \right)$$
$$a_{CP}^{T-odd} \left(D^0 \rightarrow KK\pi\pi \right) = \left(0.18 \pm 0.29 \pm 0.04 \right) \%$$

