EFT, global analyses, model (in)dependence, and all that

Marco Ciuchini INFN

- EFT vs NP models: the UTA example
- From H_{eff} to SMEFT: $C_7 C_{9/10}$ global analysis
- HEPfit: a tool for combining direct and indirect constraints on HEP models

Standard Model as an EFT

When does this construction work?

i) Scale separation

There must be a NP scale much larger than the EW scale (and of the scale of the process) at least one scale is there: the Plank scale

challenged: e.g. Salvio, Strumia, 1403.4226

ii) Full knowledge of the low-energy physics
 The particle content below the NP scale is known,
 i.e. all low-energy d.o.f.'s are included in the EFT
 challenged: feebly coupled light particles
 (dark sectors, portal, etc.)

Top-down or bottom-up?

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = \frac{1}{\Lambda^2} \sum_i C_i Q_i$$

<u>Top-down</u>: a NP correlation pattern in enforced on the WC's and then looked for in the data

<u>Bottom-up</u>: only low-energy correlations are enforced, data fix WCs', hopefully showing additional patterns

Both approaches require the effective theory

Specific NP model

nore correlated

less

general

- \textit{C}_{i} and Λ are fully

calculable in terms of

the model parameters

more

: general

correlated

Model-independent analysis

- the free parameters are C_i/Λ^2
- Λ cannot be determined

A well-known example: NP in the UT

The UT analysis is mainly driven by ∆F=2 transitions and usually done using SM amplitudes

NP can be include with an increasing degree of model-dependence:

Step 0: Phenomenological parametrization

- Step 1: EFT analysis
- Step 2: Explict model (MSSM)

Marco Ciuchini

O- Phenomenological parametrization(s)

B_d and B_s mixing amplitudes (2+2 real parameters):

$A_q e^{2i\phi_q} = C_{B_q} e^{2i\phi_{B_q}} A_q^{SM} e^{2i\phi_{q}} =$	$\left(1+\frac{A_q^{NP}}{A_q^{SM}}e^{2i(\phi_q^{NP}-\phi_q^{SM})}\right)$	$A_q^{SM} e^{2i\phi_q^{SM}}$
---	---	------------------------------

Tree		ρ,η	Cd	φ _d	C _s	φ₅	$C_{\epsilon K}$
processes	γ (DK)	Х					
•	V_{ub}/V_{cb}	х					
	Δm_d	х	Х				
1.02	ACP (J/Ψ K)	Х		Х			
1↔5 family	ACP ($D\pi(\rho)$, $DK\pi$)	Х		Х			
lanniy	A _{SL}		X	Х			
	α (ρρ,ρπ,ππ)	Х		Х			
	A _{CH}		Х	Х	Х	Х	
	$\tau(\mathbf{B}s), \Delta\Gamma_s/\Gamma_s$				Х	Х	
$2 \leftrightarrow 3$	Δm_s				Х		
Tamity	ASL(Bs)				Х	Х	
1⇔2	ACP (J/Ψ φ)	~X				Х	
familiy	٤	Х					Х

 $q=d,s, \phi_d^{SM}=\beta, \phi_s^{SM}=-\beta_s$

K mixing amplitude (1 real param):

$$\operatorname{Im} A_{\kappa} = C_{\varepsilon} \operatorname{Im} A_{\kappa}^{SM}$$

Marco Ciuchini

Correlations at work

assumption: negligible NP in tree decays **UT_{fit}** γ summer16 NP fit excluded by 0.5 0 correlations 0 -0.5 0.5 -0.5 0 -1 $\overline{\rho}$ in the SM fit is: $\bar{\rho} = 0.147 \pm 0.043$ $\bar{\rho} = 0.142 \pm 0.018$ $\bar{\eta} = 0.384 \pm 0.044$ $\bar{n} = 0.357 \pm 0.013$

Marco Ciuchini

Implications for the NP amplitudes

The ratio of NP/SM amplitudes is: < ~1-20% @68% prob. (5-30% @95%) in B_d mixing < ~3-15% @68% prob. (5-25% @95%) in B_s mixing

1- EFT analysis of $\Delta F=2$ transitions

The mixing amplitudes $A_q e^{2i\phi_q} = \langle \bar{M}_q | H_{\text{eff}}^{\Delta F=2} | M_q \rangle$

$H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_{i}(\mu) Q_{i}(\mu)$	$)+\sum_{i=1}^{3}\widetilde{C}_{i}(\mu)\widetilde{Q}_{i}(\mu)$
<i>i</i> =1	<i>i</i> =1
$Q_1 = \overline{q}^{lpha}_L oldsymbol{\gamma}_{\mu} b^{lpha}_L \overline{q}^{eta}_L oldsymbol{\gamma}^{\mu} b^{eta}_L$	(SM/MFV)
$Q_2 {=} \overline{q}^lpha_R b^lpha_L \ \overline{q}^eta_R b^eta_L$	$Q_{3} \!=\! \overline{q}^{lpha}_{R} b^{eta}_{L} \ \overline{q}^{eta}_{R} b^{eta}_{L}$
$Q_4 {=} \overline{q}^lpha_R b^lpha_L \ \overline{q}^eta_L b^eta_R$	$Q_{5}{=}\overline{q}_{R}^{lpha}b_{L}^{eta}\;\overline{q}_{L}^{eta}b_{R}^{eta}$
$\widetilde{Q}_1 \!=\! \overline{q}^lpha_R \gamma_\mu b^lpha_R \overline{q}^eta_R \gamma^\mu b^eta_R$	
$\widetilde{Q}_2 = \overline{q}_L^{lpha} b_R^{lpha} \ \overline{q}_L^{eta} b_R^{eta}$	$\widetilde{Q}_3 = \overline{q}_L^{lpha} b_R^{eta} \ \overline{q}_L^{eta} b_R^{eta}$

C_i(Λ) are extracted from data: * one by one, "barring accidental cancellations" * all together, safer but trickier

Parameter	95% allowed range
_	(GeV^{-2})
$\mathrm{Im}C^1_K$	$[-1.8, 2.5] \cdot 10^{-15}$
$\mathrm{Im}C_K^{\overline{2}}$	$[-1.7, 1.2] \cdot 10^{-17}$
$\mathrm{Im}C_K^3$	$[-1.7, 2.5] \cdot 10^{-16}$
$\mathrm{Im}C_K^4$	$[-3.0, 4.3] \cdot 10^{-18}$
$\mathrm{Im}C^5_K$	$[-5.5, 8.1] \cdot 10^{-17}$
$\mathrm{Im}C_D^1$	$[-1.4, 2.0] \cdot 10^{-14}$
${ m Im} C_D^2$	$[-2.5, 1.7] \cdot 10^{-15}$
${ m Im} C_D^3$	$[-2.4, 3.5] \cdot 10^{-14}$
${ m Im} C_D^4$	$[-5.2, 7.7] \cdot 10^{-16}$
$\mathrm{Im}C_D^5$	$[-5.3, 7.9] \cdot 10^{-15}$
$ C^1_{B_d} $	$< 1.4 \cdot 10^{-12}$
$ C_{B_d}^2 $	$< 3.2 \cdot 10^{-13}$
$ C_{B_d}^3 $	$< 1.2 \cdot 10^{-12}$
$ C_{B_d}^4 $	$< 1.0 \cdot 10^{-13}$
$ C_{B_{d}}^{5} $	$< 2.9 \cdot 10^{-13}$
$ C^{1}_{B_{s}} $	$< 2.3 \cdot 10^{-11}$
$ C_{B_{s}}^{2} $	$< 5.0 \cdot 10^{-12}$
$ C^3_{B_s} $	$< 1.9 \cdot 10^{-11}$
$ C_{B_s}^4 $	$< 1.7 \cdot 10^{-12}$
$ C_{B_{s}}^{5} $	$< 4.6 \cdot 10^{-12}$

Marco Ciuchini

2- MSSM: gluino-squark contributions

Gabbiani et al., hep-ph/9604387

Page 12

Facts about the SMEFT

- See talks by Bobeth, Gonzalez-Alonso, and Straub
 2499 operators (59 operators considering only flavour-diagonal and family-universal) built out of SU(2)×U(1) multiplets (including the Higgs doublet)
 It allows for studying SM processes at large (e.g.
 - EWPO, Higgs couplings, flavour, ...)Buchmuller & Wyler;
Grzadkowski et al;
- Once matched onto the usual weak H_{eff}, it induces additional contraints and correlations on the WC's

CAVEAT:

- LHC may still prove that Λ is <u>not</u> much larger than Λ_{FW}
- No additional constraint on the H_{eff} WC's if the EWSB is not linearly realized

EWSB and low-energy processes

It is another floor added to the tower of EFT's built going from low to high energies (or vice versa). As energy much larger than the EW scale, the EW symmetry is restored.

It is found that low-energy processes are sensitive to the details of EWSB (!!!) Catà, Jung, arXiv:1505.05804

For instance, if studying $b \rightarrow s \ \ell \ t$ transitions, it is found that the Wilson coefficient of the operator $(\bar{s}\sigma_{\mu\nu}b) \ \bar{l}\sigma^{\mu\nu}l$ is non-vanishing, then not only the presence of NP is established, but also the non-standard character of the EWSB is ascertained

EFT global analysis

Altmannshofer, Straub., arXiv:1411.3161

* $\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mu \mu$ * $\mathbf{B} \rightarrow \mathbf{X}_{\varsigma} \gamma$ * $B_{\varsigma} \rightarrow \phi \mu \mu$ * R_v * $\mathbf{B} \rightarrow \mathbf{K}^* \gamma$

Hurth et al., arXiv:1603.00865

point to an O(1) correction to the WC of $Q_9^{\mu} = \bar{s}_L \gamma_{\alpha} b_L \bar{\mu} \gamma^{\alpha} \mu$

Descotes-Genon et al., arXiv:1605.06059

If LFU is induced by NP coupled to the 3rd generation at a scale much larger than the weak scale, in the SMEFT there are 2 four-fermion operator candidates: $Q_{L,3}'\gamma_{\mu}Q_{L,3}'L_{L,3}'\gamma^{\mu}L_{L,3}', \quad Q_{L,3}'\gamma_{\mu}\sigma^{i}Q_{L,3}'L_{L,3}'\gamma^{\mu}\sigma^{i}L_{L,3}'$ i) give typically rise to large LFV Glashow et al, arXiv:1411.0565 ii) can account for the anomalies in R_k , $R(D)\&R(D^*)$ Bhattacharya et al, arXiv:1412.7164 iii) RGE running in SMEFT produces 0.8 LFV corrections to the Vll vertices and induces large purely leptonic FV transitions, which 0.4 $\blacksquare R_K^{\nu\nu}$ and $R_{D(*)}^{\mu/e}$ \blacksquare LFV τ decays disfavour a common explanation $R_{\tau}^{\tau/\mu}$ 0.2Z-pole observables of the anomalies Feruglio et al, arXiv:1606.00524 All 1.00 1.05 1.10 1.15 1.20 1.25 1.301.351.40

what about RGE effects in models?

Marco Ciuchini

Flavour Physics with High-Luminosity Experiments – MIAPP – 11 November 2016

 $R_{D^{(*)}}^{\tau/\ell}$

http://hepfit.roma1.infn.it

home developers

ers samples

documentation

HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models.

Higgs Physics HEPfit can be used to study Higgs couplings and analyze data on signal strengths.

Precision Electroweak Electroweak precision observables are included in HEPfit

Flavour Physics The Flavour Physics menu in HEPfit includes both quark and lepton flavour dynamics.

BSM Physics Dynamics beyond the Standard Model can be studied by adding models in HEPfit.

Support

Support email: hepfit-support[at]roma1.infn.it. You can also connect to us through our secial network pages linked below.

The HEPfit Collaboration

Downloads

Current Version: **HEPfit** v1.0-RC1 Developer Version: **HEPfit** @ GitHub Previous Versions: Dependencies: GSL, ROOT, BOOST, BAT

The HEPfit team

Rome I&III	SISSA Trieste	Florida State University
Jorge de Blas	Giovanni Grilli di Cortona	Laura Reina
Debtosh Chowdhury	Mauro Valli	
Marco Ciuchini		Tohoku University
Otto Eberhardt	KEK	Norimi Yokozaki
Marco Fedele	Satoshi Mishima	
Enrico Franco		Lanzhou University
Ayan Paul	CERN	Fu-Sheng Yu
Luca Silvestrini	Maurizio Pierini	63

+ you!

The HEPfit philosophy

* Open source

- C++ source released under GPL available on github

* Easy to use

- CMake installation, optionally include external libraries
- configurable with few human-readable config files
- fully doxygen-ed

* Highly flexible and customizable

- includes an expanding set of models and observables
- provides interfaces to add new models and observables
- can be used for quick estimate as well as global analyses
- interfaces to the Bayesian Analysis Tools based on MCMC Caldwell et al. arXiv:0808.2552

* Fast

- optional support for MPI parallelization

Marco Ciuchini

Flavour Physics with High-Luminosity Experiments – MIAPP – 11 November 2016

http://mpp.mpg.de/bat

The HEPfit structure

courtesy of S. Mishima

Installation and usage

Download HEPfit-x.x.tar.gz from the HEPfit website - http://hepfit.roma1.infn.it, then

```
tar zxvf HEPfit-x.x.tar.gz
cd HEPfit-x.x
cmake . -DLOCAL_INSTALL_ALL=ON -DMPIBAT=ON
make
make install
```

this will also download, compile and install the required and optional libraries (ROOT, BAT, gsl, BOOST, MPI), if needed. Then, it is ready to run:

./analysis StandardModel.conf MonteCarlo.conf

getting in input two config files (or just one if you do not wish to do the MCMC statistical analysis)

StandardModel.conf

```
StandardModel
 1
   # Model parameters:
 2
   ModelParameter mtop
 3
                              173.2
                                          0.9
                                                      ٥.
                              125.6
   ModelParameter mHl
                                          0.3
                                                      0.
 4
 5
   CorrelatedGaussianParameters
                                 V1 lattice 2
 6
 7
   ModelParameter a OV
                          0.496
                                  0.067
                                          0.
   ModelParameter a 1V -2.03
                                  0.92
                                          0.
 8
 9
   1.00
           0.86
   0.86
10
           1.00
11
12
   <All the model parameters have to be listed here>
13
   # Observables:
14
15
   Observable Mw
                         Mw
                                  M {W}
                                             80.3290 80.4064 MCMC weight 80.385 0.015 0.
   Observable GammaW
                         GammaW
                                  #Gamma {W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
16
17
18
   # Correlated observables:
19
   CorrelatedGaussianObservables Zpole2 7
   Observable Alepton Alepton A_{1}
20
                                             0.143568 0.151850 MCMC weight 0.1513 0.0021
                                                                                         0.
   Observable Rbottom
                                  R {b}
21
                        Rbottom
                                             0.215602 0.215958 MCMC weight 0.21629 0.00066 0.
   Observable Rcharm
                                  R {c}
                                             0.172143 0.172334 MCMC weight 0.1721 0.0030
22
                         Rcharm
                                                                                         Ο.
   Observable AFBbottom AFBbottom A_{FB}^{b} 0.100604 0.106484 MCMC weight 0.0992
23
                                                                                  0.0016
                                                                                         Ο.
   Observable AFBcharm AFBcharm A (FB) (c) 0.071750 0.076305 MCMC weight 0.0707 0.0035
24
                                                                                         Ο.
25
   Observable Abottom Abottom A {b}
                                             0.934320 0.935007 MCMC weight 0.923
                                                                                  0.020
                                                                                          Ο.
   Observable Acharm
                                  A_{c}
                                             0.666374 0.670015 MCMC weight 0.670
26
                        Acharm
                                                                                  0.027
                                                                                         0.
27
   1.00 0.00 0.00 0.00 0.00
                                    0.09
                                          0.05
         1.00 -0.18 -0.10
28
   0.00
                             0.07 -0.08
                                            0.04
               1.00
                      0.04 -0.06
                                     0.04
29
   0.00 -0.18
                                           -0.06
                      1.00
        -0.10
               0.04
                             0.15
30
   0.00
                                    0.06
                                            0.01
31
   0.00
         0.07 -0.06
                       0.15
                             1.00
                                   -0.02
                                            0.04
   0.09 -0.08
               0.04
                       0.06 -0.02
32
                                    1.00
                                            0.11
33
   0.05
        0.04 -0.06
                       0.01 0.04
                                    0.11
                                            1.00
34
   #
   # Output correlations:
35
36
   Observable2D MwvsGammaW Mw M {W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma {W} 2.08569 2.09249
37
38
   Observable2D Bd Bsbar mumu noMCMC noweight
   Observable BR Bdmumu
                              BR(B_{d}#rightarrow#mu#mu)
39
                                                           1. -1. 1.05e-10
                                                                              Ο.
                                                                                   Ο.
   Observable BRbar Bsmumu BR(B {s}#rightarrow#mu#mu)
                                                         1. -1. 3.65e-9
                                                                                   0.
40
                                                                              0.
41
   Observable2D S5 P5 noMCMC noweight
42
   BinnedObservable S 5
                              S 5
                                     1. -1. 0.
                                                 0.
                                                           4.
43
                                                      Ο.
                                                                6.
                                     1. -1. 0.
                    P 5
                              P 5
                                                  0.
                                                      0.
44
   BinnedObservable
45
46
   # Including other configuration files
47
   IncludeFile Flavour.conf
```

Marco Ciuchini

StandardModel.conf

```
1 StandardModel
 2 # Model parameters:
    ModelParameter mtop
                               173.2
                                           0.9
                                                       0.
  3
                               125.6
    ModelParameter mHl
                                           0.3
                                                       0.
  4
 5
    CorrelatedGaussianParameters
                                  V1 lattice 2
  6
 7
    ModelParameter a OV
                           0.496
                                   0.067
                                           0.
    ModelParameter a 1V
                         -2.03
                                   0.92
                                           0.
  8
 9
    1.00
            0.86
    0.86
10
            1.00
 11
12
    <All the model parameters have to be listed here>
13
    # Observables:
 14
15
    Observable Mw
                          Mw
                                   M {W}
                                              80.3290 80.4064 MCMC weight 80.385 0.015 0.
    Observable GammaW
                          GammaW
                                   #Gamma {W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
16
17
18
    # Correlated observables:
19
    CorrelatedGaussianObservables Zpole2 7
20
    Observable Alepton Alepton A_{1}
                                              0.143568 0.151850 MCMC weight 0.1513 0.0021
                                                                                           0.
 21
    Observable Rbottom
                         Rbottom
                                              0.215602 0.215958 MCMC weight 0.21629 0.00066 0.
                                   R_{b}
    Observable Rcharm
                                   R {c}
                                              0.172143 0.172334 MCMC weight 0.1721 0.0030
22
                          Rcharm
                                                                                           Ο.
23
    Observable AFBbottom AFBbottom A (FB)^{b} 0.100604 0.106484 MCMC weight 0.0992
                                                                                   0.0016
                                                                                           Ο.
    Observable AFBcharm AFBcharm A (FB) (c) 0.071750 0.076305 MCMC weight 0.0707 0.0035
 24
                                                                                           Ο.
25
    Observable Abottom Abottom A {b}
                                              0.934320 0.935007 MCMC weight 0.923
                                                                                   0.020
                                                                                           Ο.
                                   A_{c}
                                              0.666374 0.670015 MCMC weight 0.670
    Observable Acharm
26
                         Acharm
                                                                                   0.027
                                                                                           Ο.
27
    1.00
         0.00 0.00
                        0.00 0.00
                                     0.09
                                             0.05
          1.00 -0.18 -0.10
28
    0.00
                              0.07 -0.08
                                             0.04
                1.00
                        0.04 -0.06
                                      0.04
29
    0.00 -0.18
                                            -0.06
         -0.10
                0.04
 30
    0.00
                       1.00
                               0.15
                                     0.06
                                             0.01
          0.07 -0.06
                        0.15
                              1.00
                                    -0.02
 31
    0.00
                                             0.04
    0.09 -0.08
                0.04
                        0.06 -0.02
 32
                                     1.00
                                             0.11
 33
    0.05
         0.04 -0.06
                        0.01 0.04
                                     0.11
                                             1.00
 34
    #
    # Output correlations:
 35
36
    Observable2D MwvsGammaW Mw M {W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma {W} 2.08569 2.09249
 37
    . . .
 38
    Observable2D Bd Bsbar mumu noMCMC noweight
    Observable
                BR Bdmumu
                               BR(B {d}#rightarrow#mu#mu)
 39
                                                             1. -1. 1.05e-10
                                                                               Ο.
                                                                                    Ο.
    Observable BRbar Bsmumu BR(B {s}#rightarrow#mu#mu)
                                                           1. -1. 3.65e-9
                                                                                    0.
40
                                                                               0.
41
    Observable2D S5 P5 noMCMC noweight
 42
    BinnedObservable S 5
                               S 5
                                      1. -1. 0.
                                                   Ο.
                                                        0.
 43
                                                             4.
                                                                  6.
                     P 5
                               P 5
                                      1. -1. 0.
                                                   0.
                                                        0.
 44
    BinnedObservable
 45
 46
    # Including other configuration files
 47
    IncludeFile Flavour.conf
```

Marco Ciuchini

StandardModel.conf

```
StandardModel
   # Model parameters:
   ModelParameter mtop
                               173.2
                                           0.9
                                                       ٥.
                               125.6
   ModelParameter mHl
                                           0.3
                                                       0.
   CorrelatedGaussianParameters
                                  V1 lattice 2
    ModelParameter a OV
                           0.496
                                   0.067
                                           0.
   ModelParameter a 1V
                         -2.03
                                   0.92
                                           0.
   1.00
           0.86
   0.86
10
           1.00
11
12
   <All the model parameters have to be listed here>
13
   # Observables:
14
15
   Observable Mw
                         Mw
                                   M {W}
                                              80.3290 80.4064 MCMC weight 80.385 0.015 0.
   Observable GammaW
                         GammaW
                                   #Gamma {W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
16
17
18
   # Correlated observables:
19
   CorrelatedGaussianObservables Zpole2 7
20
   Observable Alepton
                         Alepton A_{1}
                                              0.143568 0.151850 MCMC weight 0.1513 0.0021
                                                                                           0.
21
   Observable Rbottom
                         Rbottom
                                              0.215602 0.215958 MCMC weight 0.21629 0.00066 0.
                                   R_{b}
   Observable Rcharm
                                   R {c}
                                              0.172143 0.172334 MCMC weight 0.1721
22
                         Rcharm
                                                                                   0.0030
                                                                                           Ο.
23
   Observable AFBbottom AFBbottom A (FB)^{b} 0.100604 0.106484 MCMC weight 0.0992
                                                                                   0.0016
                                                                                           Ο.
   Observable AFBcharm AFBcharm A (FB) (c) 0.071750 0.076305 MCMC weight 0.0707
                                                                                   0.0035
24
                                                                                           Ο.
25
   Observable Abottom Abottom A {b}
                                              0.934320 0.935007 MCMC weight 0.923
                                                                                   0.020
                                                                                           Ο.
                                   A_{c}
                                              0.666374 0.670015 MCMC weight 0.670
   Observable Acharm
26
                         Acharm
                                                                                   0.027
                                                                                           Ο.
27
   1.00
        0.00 0.00
                        0.00 0.00
                                    0.09
                                             0.05
         1.00 -0.18 -0.10
28
   0.00
                              0.07
                                    -0.08
                                             0.04
                        0.04 -0.06
29
   0.00 -0.18
                1.00
                                      0.04
                                            -0.06
                0.04
30
   0.00
        -0.10
                      1.00
                              0.15
                                     0.06
                                             0.01
         0.07 -0.06
                        0.15
                              1.00
                                    -0.02
31
   0.00
                                             0.04
   0.09 -0.08
               0.04
                        0.06 -0.02
32
                                     1.00
                                             0.11
33
   0.05
        0.04 -0.06
                        0.01
                               0.04
                                     0.11
                                             1.00
34
   #
   # Output correlations:
35
36
   Observable2D MwvsGammaW Mw M {W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma {W} 2.08569 2.09249
37
38
   Observable2D Bd Bsbar mumu noMCMC noweight
   Observable
                BR Bdmumu
                               BR(B {d}#rightarrow#mu#mu)
39
                                                            1. -1. 1.05e-10
                                                                               Ο.
                                                                                    Ο.
   Observable BRbar Bsmumu BR(B {s}#rightarrow#mu#mu)
                                                            1. -1. 3.65e-9
                                                                                    0.
40
                                                                                0.
41
   Observable2D S5 P5 noMCMC noweight
42
   BinnedObservable
                      S 5
                               S 5
                                      1. -1. 0.
                                                   ο.
                                                        0.
43
                                                             4.
                                                                  6.
                                      1. -1. 0.
                      P 5
                               P 5
                                                   0.
                                                        0.
                                                             4.
44
   BinnedObservable
45
46
   # Including other configuration files
47
   IncludeFile Flavour.conf
```

Marco Ciuchini

StandardModel.conf

```
StandardModel
 1
    # Model parameters:
 2
   ModelParameter mtop
                               173.2
 3
                                           0.9
                                                       ٥.
                               125.6
   ModelParameter mHl
                                           0.3
                                                       0.
 5
    CorrelatedGaussianParameters
                                  V1 lattice 2
 6
 7
    ModelParameter a OV
                           0.496
                                   0.067
                                           0.
    ModelParameter a 1V -2.03
                                   0.92
                                           0.
 8
 9
   1.00
           0.86
   0.86
10
           1.00
11
12
    <All the model parameters have to be listed here>
13
   # Observables:
14
    Observable Mw
                         Mw
                                   M {W}
                                              80.3290 80.4064 MCMC weight 80.385 0.015 0.
16
17
    Observable GammaW
                         GammaW
                                   #Gamma {W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
18
   # Correlated observables:
19
   CorrelatedGaussianObservables Zpole2 7
    Observable Alepton Alepton A_{1}
                                              0.143568 0.151850 MCMC weight 0.1513 0.0021
                                                                                           0.
21
22
23
24
25
26
27
28
   Observable Rbottom
                                   R {b}
                                              0.215602 0.215958 MCMC weight 0.21629 0.00066 0.
                         Rbottom
   Observable Rcharm
                         Rcharm
                                   R {c}
                                              0.172143 0.172334 MCMC weight 0.1721 0.0030
                                                                                           Ο.
   Observable AFBbottom AFBbottom A_{FB}^{b} 0.100604 0.106484 MCMC weight 0.0992
                                                                                   0.0016
                                                                                           Ο.
   Observable AFBcharm AFBcharm A (FB) (c) 0.071750 0.076305 MCMC weight 0.0707 0.0035
                                                                                           Ο.
    Observable Abottom Abottom A {b}
                                              0.934320 0.935007 MCMC weight 0.923
                                                                                   0.020
                                                                                           Ο.
   Observable Acharm
                                   A_{c}
                                              0.666374 0.670015 MCMC weight 0.670
                                                                                   0.027
                         Acharm
                                                                                           Ο.
   1.00 0.00 0.00 0.00 0.00
                                    0.09
                                           0.05
   0.00
         1.00 -0.18 -0.10
                             0.07 -0.08
                                             0.04
29
30
                1.00
                      0.04 -0.06
                                     0.04
   0.00 -0.18
                                            -0.06
                      1.00
   0.00 -0.10
                0.04
                              0.15
                                    0.06
                                             0.01
31
    0.00
         0.07 -0.06
                      0.15
                             1.00 -0.02
                                             0.04
32
33
    0.09 -0.08
               0.04
                        0.06 -0.02
                                             0.11
                                    1.00
   0.05 0.04 -0.06
                        0.01 0.04
                                    0.11
                                             1.00
34
   #
35
   # Output correlations:
36
   Observable2D MwvsGammaW Mw M {W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma {W} 2.08569 2.09249
37
38
   Observable2D Bd Bsbar mumu noMCMC noweight
39
    Observable BR Bdmumu
                               BR(B_{d}#rightarrow#mu#mu)
                                                            1. -1. 1.05e-10
                                                                               Ο.
                                                                                    Ο.
40
   Observable BRbar Bsmumu BR(B {s}#rightarrow#mu#mu)
                                                           1. -1. 3.65e-9
                                                                                    0.
                                                                               0.
41
    Observable2D S5 P5 noMCMC noweight
4
   BinnedObservable S 5
                               S 5
                                      1. -1. 0.
                                                       0.
                                                   Ο.
                                                             4.
                                                                 6.
                                      1. -1. 0.
44 BinnedObservable
                      P_2
                               P_2
                                                   Ο.
                                                       0.
                                                             4.
                                                                 6.
45
46
   # Including other configuration files
47
   IncludeFile Flavour.conf
```

Marco Ciuchini

StandardModel.conf

```
StandardModel
 1
   # Model parameters:
 2
   ModelParameter mtop
                               173.2
                                           0.9
                                                       0.
 3
                               125.6
   ModelParameter mHl
                                           0.3
                                                       0.
 5
   CorrelatedGaussianParameters
                                  V1 lattice 2
 6
 7
   ModelParameter a 0V
                           0.496
                                   0.067
                                           0.
   ModelParameter a 1V
                         -2.03
                                   0.92
                                           0.
 8
 9
   1.00
           0.86
   0.86
10
           1.00
11
12
    <All the model parameters have to be listed here>
13
   # Observables:
14
15
   Observable Mw
                         Mw
                                   M {W}
                                              80.3290 80.4064 MCMC weight 80.385 0.015 0.
   Observable GammaW
                         GammaW
                                   #Gamma {W} 2.08569 2.09249 MCMC weight 2.085 0.042 0.
16
17
18
   # Correlated observables:
19
   CorrelatedGaussianObservables Zpole2 7
   Observable Alepton
20
                         Alepton A_{1}
                                              0.143568 0.151850 MCMC weight 0.1513 0.0021
                                                                                            0.
   Observable Rbottom
21
                         Rbottom
                                              0.215602 0.215958 MCMC weight 0.21629 0.00066 0.
                                   R_{b}
   Observable Rcharm
                                   R {c}
                                              0.172143 0.172334 MCMC weight 0.1721
22
                         Rcharm
                                                                                    0.0030
                                                                                            Ο.
23
   Observable AFBbottom AFBbottom A (FB)^{b} 0.100604 0.106484 MCMC weight 0.0992
                                                                                    0.0016
                                                                                            Ο.
   Observable AFBcharm AFBcharm A (FB) (c) 0.071750 0.076305 MCMC weight 0.0707
24
                                                                                    0.0035
                                                                                            Ο.
25
   Observable Abottom
                         Abottom A {b}
                                              0.934320 0.935007 MCMC weight 0.923
                                                                                    0.020
                                                                                            Ο.
                                   A_{c}
                                              0.666374 0.670015 MCMC weight 0.670
   Observable Acharm
26
                         Acharm
                                                                                    0.027
                                                                                            0.
27
   1.00
        0.00 0.00
                        0.00
                             0.00
                                     0.09
                                             0.05
         1.00 -0.18 -0.10
28
   0.00
                               0.07
                                    -0.08
                                             0.04
                        0.04 -0.06
                                      0.04
29
   0.00
        -0.18
                1.00
                                            -0.06
         -0.10
                0.04
30
   0.00
                       1.00
                               0.15
                                     0.06
                                             0.01
31
         0.07 -0.06
                        0.15
                              1.00
                                    -0.02
   0.00
                                             0.04
   0.09 -0.08
                0.04
                        0.06 -0.02
32
                                     1.00
                                             0.11
33
   0.05
        0.04 -0.06
                        0.01
                               0.04
                                     0.11
                                             1.00
34
   #
   # Output correlations:
35
36
   Observable2D MwvsGammaW Mw M {W} 80.3290 80.4064 noMCMC noweight GammaW #Gamma {W} 2.08569 2.09249
37
38
   Observable2D Bd Bsbar mumu noMCMC noweight
   Observable
                BR Bdmumu
                               BR(B {d}#rightarrow#mu#mu)
39
                                                             1. -1. 1.05e-10
                                                                                Ο.
                                                                                     Ο.
   Observable BRbar Bsmumu BR(B {s}#rightarrow#mu#mu)
                                                             1. -1. 3.65e-9
                                                                                     0.
40
                                                                                0.
41
   Observable2D S5 P5 noMCMC noweight
42
   BinnedObservable
                      S 5
                               S 5
                                      1. -1. 0.
                                                        0.
43
                                                   Ο.
                                                             4.
                                                                  6.
                      P 5
                                      1. -1. 0.
                                                   0.
                                                        0.
44
   BinnedObservable
                               P 5
                                                             4.
45
46 # Including other configuration files
47 IncludeFile Flavour.conf
```

Marco Ciuchini

HEPfit model-observable matrix

	SM	THDM	MSSM	H_{eff}		SM	THDM	MSSM	L _{EWSB}	SMEFT
∆F=2 amp's	X	0	0	0	EWPO + LEP2	×	Х		×	Х
$B\to\tau\nu$	×	Х	0	0	H→VV, H→ff μ's	x	Х	0		X
$B_{s/d} o \mu \mu$	0	0	0	0	direct searches		Х	0		
rare K decays	0			0	LFV ℓ _i → ℓ _j γ, 3ℓ _j			×		
$B \to X_{s} \gamma$	Х	×	0	0	X: done					
$\begin{array}{c} B \to V \ \gamma \\ B \to P/V\ell\ell \end{array}$	X			0	O: in progress					
$B \rightarrow X_{s} \ell \ell$	0			0	more to come					
$B \rightarrow PP,PV$	0			0	(L-R 1	nod	el, al	igned	THD)M,)

Here's what you get

Marco Ciuchini

More studies with HEPfit on the way

- * SMEFT analysis of EWPO and Higgs $\mu 's$
- * global EFT analysis of radiative B decays
- * analysis of MSSM with generic flavour structure
- * phenomenological study of the aligned THDM
- * full-fledged NP UTA and $\Delta F=2$ EFT analysis

What about your next phenomenological analysis? And your next background study?

http://hepfit.roma1.infn.it

Marco Ciuchini

*

Outlook

errors predicted from Look at the future Belle II + LHCb upgrade M. Bona, ICHEP 2016 J J **UT**fit γ moderate future SM fit 0.5 0.5 V_{ub} V_{cb} 0 $\sigma(\beta) \sim 0.2^{\circ}$ $\sigma(\mathsf{B}_{\mathrm{K}}) \sim 0.1\%$ -0.5 -0.5 **UT**fit $\sigma(\gamma) \sim 0.9^{\circ}$ $\sigma(f_B\sqrt{B}_B) \sim 0.5\%$ moderate $\sigma(V_{cb}) \sim 1.1\%$ future SM fit $\sigma(V_{ub}) \sim 2.2\%$ 0.5 -0.5 -0.5 0 0.5 0 -1 $\overline{\rho}$ D errors from tree-only fit on ρ and η : errors from 5-constraint fit on ρ and η : $\sigma(\rho) = 0.008$ [currently 0.050] $\sigma(\rho) = 0.005$ [currently 0.015] $\sigma(\eta) = 0.004$ [currently 0.013] $\sigma(\eta) = 0.010$ [currently 0.035]

Marco Ciuchini

Flavour Physics with High-Luminosity Experiments – MIAPP – 11 November 2016

Page 33

Unitarity Triangle analysis: V_{ub}*V_{ud}+V_{cb}*V_{cd}+V_{tb}*V_{td}=0

UT_{fit}

summer15

 $\Delta \mathbf{m}_{\mathbf{d}}$

~10

Marco Ciuchini

J

0.5

Flavour Physics with High-Luminosity Experiments – MIAPP – 11 November 2016

Page 35

Flavour physics in the SM: rich phenomenology (FCNC suppression, mixing, CP violation, ...) but little understanding of the "why" and the "how"

$$\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm EWSB} + \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Y}$$

The Yukawa Lagrangian describes quark flavour physics in terms of 10 physical parameters:

6 masses, 3 mixing angles + 1 CPV phase

The CKM matrix in the SM

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Standard parametrization (PDG): s_{12} , s_{13} , s_{23} , δ

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

Wolfenstein parametrization: λ , A, ρ , η

$$\begin{array}{ccc} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{array} \right) + O(\lambda^4)$$

The CKM matrix in the SM

 $\begin{array}{c|c} \mathsf{d} & \mathsf{s} & \mathsf{b} \\ \mathsf{u} & 0.9743(2) & 0.2251(7) & 3.7(1) \cdot 10^{-3} e^{-i66(2)^{\circ}} \\ \mathsf{c} & -0.2250(7) e^{i0.035(1)^{\circ}} & 0.9734(2) e^{-i0.0019(1)^{\circ}} & 4.26(7) \cdot 10^{-2} \\ \mathsf{t} & 8.7(1) \cdot 10^{-3} e^{-i22(1)^{\circ}} & -4.16(6) \cdot 10^{-2} e^{i1.04(4)^{\circ}} & 0.99910(2) \end{array} \right)$

Standard parametrization (PDG): s_{12} , s_{13} , s_{23} , δ

$$s_{12} = 0.2250 \pm 0.0007$$
 $s_{23} = (4.229 \pm 0.057) \times 10^{-2}$
 $s_{13} = (3.68 \pm 0.10) \times 10^{-3}$ $\delta = (65.9 \pm 2.0)^{\circ}$

Wolfenstein parametrization: λ , A, ρ , η

2	u = 0.2250 ± 0.0007	A = 0.833 ± 0.012
F	$p = 0.157 \pm 0.014$	η = 0.352 ± 0.011

SM results

Summer 2016 0.5 <u>SM</u> determination of the Unitarity Triangle 0 $V_{ub}^{*}V_{ud} + V_{cb}^{*}V_{cd} + V_{tb}^{*}V_{td} = 0$ -0.5 $R_{\mu} e^{i \gamma} + R_{+} e^{-i \beta} = 1$ $R_{...} = 0.372 \pm 0.013$ $R_{+} = 0.917 \pm 0.022$ $\gamma = (65.8 \pm 1.9)^{\circ}$ $\beta = (22.11 \pm 0.76)^{\circ}$ $\alpha = (92.0 \pm 2.0)^{\circ}$

η = 0.343 ± 0.011

ρ

	SM predict	ions:	B _d & K	
	Measurement	%	Prediction	Pull(σ)
sin2β	0.680±0.023	3.4	0.724±0.028	8 +1.2
γ [°]	70.5±5.7	8	65.3±2.0	< 1
α[°]	94.2±5.0	5	91.0±2.5	< 1
V _{cb} ·10 ³	41.7±1.0	2	42.6±0.7	< 1
$ V_{cb} _{incl}$.10	³ 42.0±0.6	1	** **	< 1
$ V_{cb} _{excl}$.10) ³ 40.0±1.1	3		+1.7
V _{ub} ·10 ³	3.73±0.21	6	3.66±0.12	< 1
$ V_{ub} _{incl}$.10	³ 4.40±0.22	5	** **	-3.0
$ V_{ub} _{excl}$.10) ³ 3.61±0.13	4		< 1
ε _κ ·10 ³	2.228±0.011	0.5	2.03±0.18	-1.1
$BR(B \rightarrow \tau \nu) \cdot \mathbf{I}$	10 ⁻⁴ 1.06±0.20	20	0.81±0.06	-1.3

V_{cb} & V_{ub}

- * data favour inclusive V_{cb} and exclusive V_{ub}
- no clear evidence to inculpate a theoretical method (a suspect: V_{ub} inclusive)
- * difficult to explain ^{0.0} with NP (right-handed 0.00 currents are not viable _{0.0} in a SU(2)XU(1) invariant effective field theory)

SM predictions: B_s

Measurement % Prediction Pull (σ)

- $\Delta m_{s} [ps^{-1}] = 17.757 \pm 0.021 \quad 0.1 \quad 17.7 \pm 0.9 \quad < 1$
 - 0.94±0.94 100 1.04±0.03 <1
 - 7.2 0.154±0.012 +1.9

0.124±0.009

Marco Ciuchini

 $\beta_{s}[^{\circ}]$

 $\Delta I_{s}/I_{s}$

Deviations from the SM to keep an eye on

Deviations from the SM to keep an eye on

Marco Ciuchini

Flavour Physi

Marco Ciuchini

If LFU is induced by NP coupled to the 3rd generation at a scale much larger than the weak scale, in the effective theory, one gets

 $Q_{L,3}^{\prime}\gamma_{\mu}Q_{L,3}^{\prime}L_{L}^{\prime}\gamma^{\mu}L_{L}^{\prime}, \quad Q_{L,3}^{\prime}\gamma_{\mu}\sigma^{i}Q_{L,3}^{\prime}L_{L}^{\prime}\gamma^{\mu}\sigma^{i}L_{L}^{\prime},$

i) can account for the anomalies in R_K, R(D)/R(D*)
 ii) give typically rise to large LFV

 Glashow et al., arXiv:1411.0565
 Bhattacharya et al., arXiv:1412.7164
 iii) running effects produce large corrections to the V{{
 vertices and induce purely leptonic LFV transitions

Feruglio et al., arXiv:1606.00524

Explicit models face more severe contraints, still there are viable proposals:

* non-minimal scalar leptoquarks

Becirevic et al., arXiv:1608.08501

* triplet heavy gauge bosons

*

Greljo et al., arXiv:1506.01705

sample user codes for MCMC

to implement your own statistical analysis

14

Number of chains NChains 96 # ## Max iterations in prerun PrerunMaxIter 100000 # ## Analysis iterations Iterations 1000000 # ## Write Markov Chain false WriteChain # ## Use a particular seed #Seed 0 # ## Find mode with Minuit FindModeWithMinuit false # ## Calculate the evidence (total normalization) CalculateNormalization false # ## Print all marginalized plots PrintAllMarginalized true # ## Print correlation matrix **PrintCorrelationMatrix** false # ## Print knowledge update plots PrintKnowledgeUpdatePlots false # ## Print parameter plots PrintParameterPlot false # ## Use ordering of parameters in the MonteCarlo run OrderParameters false