

Measurement of the τ g-2, status & perspectives

B. Oberhof LNF-INFN, Italy

Flavour Physics with High-Luminosity Experiments Workshop MIAPP, Garching, Germany November 2016

q-2

• $a_1 = (g_1 - 2)/2$ is the QFT correction to the Dirac equation

Actual value depends on the mass of the involved leptons

 SM predictions for the τ: 			а _т SM =	117324 (2)	x 10 ⁻⁸	QED
			+	47.4 (0.5)	x 10 ⁻⁸	EW
	mu	τ	+	337.5 (3.7)	x 10 ⁻⁸	HLO
aEW/aH	1/45	1/7	+	7.6 (0.2)	x 10 ⁻⁸	HHO (vac)
aEW/δaH	3	10	+	5 (3)	x 10 ⁻⁸	HHO (IbI)

- Precision test of the SM and opportunity for NP searches
- g-2 has been measured with high precision for e and μ

a_a = (1159.65218076 ± 0.00000027) x 10⁻⁶ (PDG 2014)_a

a_{...} = (1165.9209 ± 0.0006) x 10⁻⁶ (PDG 2014)_{...}

B. Oberhof - MIAPP 2016

Eidelman et al.,

JHEP03(2016)140

τ g-2 status

- What about the τ?
- Too short lifetime, have to infer on g-2 from cross-section/decays
- Current limit on PDG by DELPHi using e⁻e⁺ → e⁻e⁺τ⁻τ⁺ (assumes any deviation from tree diagram due to g-2)

-0.052 < a₁ < 0.013 at 95% CL (PDG 2014)

J. Abdallah et al. [DELPHI Collaboration], EPJ C35 159

 $e^-e^+ \rightarrow e^-e^+\tau^-\tau^+$ proposed by: F. Cornet and J.I. Illana, Phys. Rev. D 53 (1996) 118

- To be compared to SM prediction a₁=1177.21(5) x 10⁻⁶
- Model independent limits for NP:

- 0.007 < a₁ ^{NP}< 0.005 at 95% CL Gonzalez-Sprinberg, et al. Nucl. Phys. B 582 (2000) 3

τ g-2 @ B-factories

- Two different proposals in "recent" years:
- Measure g-2 in production via spin correlations of decays products:

J. Bernabeu et al., JHEP01(2009)062

• Measure g-2 in decays via leptonic radiative decays:

M. Passera et al., JHEP03(2016)140

- <u>Caution</u>: if the τ is off mass-shell what one measures is not g-2 but $F_2(q^2)$
- Most general ffγ vertex:

$$\Gamma^{\mu}(q^2) = -ieQ_f \left\{ \gamma^{\mu}F_1(q^2) + \frac{\sigma^{\mu\nu}q_{\nu}}{2m_f} \left[iF_2(q^2) + F_3(q^2)\gamma_5 \right] + \left(\gamma^{\mu} - \frac{2q^{\mu}m_f}{q^2} \right) \gamma_5 F_4(q^2) \right\}$$

• $F_2(q^2) \rightarrow a_{\tau}, q^2 \rightarrow 0$

• For
$$\mathbf{e}^- \mathbf{e}^+ \to \tau^- \tau^+ @ 1 \text{ loop}$$
 $F_2(s) = \left(\frac{\alpha}{2\pi}\right) \frac{2m_\tau^2}{s} \frac{1}{\beta} \left(\log \frac{1+\beta}{1-\beta} - i\pi\right)$, for $q^2 = s > 4m_\tau^2$

$$F_2(M_{\Upsilon}^2) = (2.65 - 2.45 i) \times 10^{-4}$$
 @ Y(4S)

τ g-2 from asymmetries

• Spin dependent cross-section for $e^-e^+ \rightarrow \tau^-\tau^+$:

$$\frac{d\sigma(\vec{s}_{+},\vec{s}_{-})}{d\Omega_{\tau^{-}}} = \frac{d\sigma^{0}(\vec{s}_{+},\vec{s}_{-})}{d\Omega_{\tau^{-}}} + \frac{d\sigma^{S}(\vec{s}_{+},\vec{s}_{-})}{d\Omega_{\tau^{-}}} + \frac{d\sigma^{SS}(\vec{s}_{+},\vec{s}_{-})}{d\Omega_{\tau^{-}}}$$

- We consider 2 body (hv) final states; integrating out $\cos\theta_{\tau^{-}}$ one gets $d^{4}\sigma^{SS} = \frac{2\pi\alpha^{2}\beta}{3s} \left[(s_{+}^{x}s_{-}^{x}) \mathcal{X}\mathcal{X} + (s_{+}^{y}s_{-}^{y}) \mathcal{Y}\mathcal{Y} + (s_{+}^{z}s_{-}^{z}) \mathcal{Z}\mathcal{Z} \right] \qquad \qquad \mathcal{X}\mathcal{X} = (2 - \beta^{2}) |F_{1}|^{2} + 4\operatorname{Re} \{F_{2}\} \\ \times \frac{d\Omega_{h^{+}}}{4\pi} \frac{d\Omega_{h^{-}}}{4\pi} Br_{+} Br_{-} \qquad \qquad \qquad \mathcal{X}\mathcal{X} = (1 - \beta^{2}) |F_{1}|^{2} + 2\operatorname{Re} \{F_{2}\} \\ \mathcal{Z}\mathcal{Z} = (1 + \beta^{2}) |F_{1}|^{2} + 2\operatorname{Re} \{F_{2}\} \end{cases}$
- Integrating out, e.g., θ_{\pm}^{*} & performing asymmetric int. on ϕ_{\pm} one gets A_{TT} :

$$d^{2}\sigma_{TT} = \frac{\pi\alpha^{2}\beta}{96s} \left[-(\alpha_{-}\alpha_{+}) \right] (\mathcal{X}\mathcal{X}) (\cos\phi_{-} \cos\phi_{+}) d\phi_{+} d\phi_{-} Br_{+} Br_{-}$$
$$A_{TT} \equiv -\frac{\alpha_{-}\alpha_{+}}{\sigma} \left(\int_{-\pi/2}^{\pi/2} d\phi_{-} - \int_{\pi/2}^{3\pi/2} d\phi_{-} \right) \left(\int_{-\pi/2}^{\pi/2} d\phi_{+} - \int_{\pi/2}^{3\pi/2} d\phi_{+} \right) d^{2}\sigma_{TT}$$
$$= -\frac{\pi\alpha^{2}\beta}{6s} \frac{\alpha_{-}\alpha_{+}}{\sigma} \left[(2-\beta^{2}) |F_{1}|^{2} + 4\operatorname{Re}\left\{F_{2}\right\} \right] Br_{+} Br_{-}$$

• Using similar techniques one can get A_{_{NN}} (asym. $\phi_{_{\pm}})$ and A_{_{LL}} (asym. $\theta_{_{\pm}}^{~*})$

$$\mathsf{A}_{\mathsf{NN}} = \frac{\pi \alpha^2 \beta}{6s} \frac{(\alpha_- \alpha_+)}{\sigma} \beta^2 |F_1|^2 Br_+ Br_- \qquad \mathsf{A}_{\mathsf{LL}} = -\frac{\pi \alpha^2 \beta}{6s} \frac{(\alpha_- \alpha_+)}{\sigma} \left[(1+\beta^2) |F_1|^2 + 2\operatorname{Re}\left\{F_2\right\} \right] Br_+ Br_-$$

τ g-2 from asymmetries (2)

• With a similar approach, one can define $A_{LT} \sim Re\{F_2\}$ (asym. int. on $\cos\theta_{\tau-}$) and $A_N \sim Im\{F_2\}$ (from linear x-sec term, asym. int. on $\cos\theta_{\tau-}$)

• Expected sensitivities for (excl.) $\tau \rightarrow hv$, $h=\pi$, ρ , 100% eff. (?), (no syst.):

		E X P E R I M E N T (ab = attobarn = $10^{-18}b$)			
			Super B/Flavour Factory		
		Babar+Belle	(1 yr. running)	(5 yrs. running)	
$\operatorname{Re}\left\{F_{2} ight\}$	Correlations	$2ab^{-1}$	$15ab^{-1}$	$75ab^{-1}$	
	TTLT	$7.6 imes10^{-5}$	$2.8 imes 10^{-5}$	$1.2 imes 10^{-5}$	
	LLLT	$5.2 imes 10^{-5}$	$1.9 imes 10^{-5}$	$8.5 imes 10^{-6}$	
	NNLT	$5.1 imes 10^{-5}$	$1.8 imes 10^{-5}$	$8.3 imes 10^{-6}$	
	Global	$2.9 imes10^{-5}$	$1.1 imes 10^{-5}$	$4.7 imes 10^{-6}$	
$\operatorname{Im} \{F_2\}$ (from ref. [10])	Normal single- $ au$ Asymm.	$2.1 imes 10^{-5}$	$7.8 imes 10^{-6}$	$3.5 imes 10^{-6}$	

τ g-2 from asymmetries: issues

• Main assumption to extract F₂ from asymmetries: being on top of the

resonance boxes and interference can be neglected

$$\frac{d\sigma}{d\cos\theta_{\tau^{-}}} = \frac{\pi \ \alpha^2}{2s} \beta \left[(2 - \beta^2 \sin^2\theta_{\tau^{-}}) \ |F_1(s)|^2 + 4 \ \operatorname{Re}\left\{F_2(s)\right\} \right] \\ \times Br(\tau^- \to h^-\nu_{\tau}) \ Br(\tau^+ \to h^+\bar{\nu}_{\tau})$$

$$H(M_{\Upsilon}^2) = \frac{1}{2s} \left[H(M_{\Upsilon}^2) + \frac{1}$$

Enhancement to res. amplitude

$$M_{\Upsilon}^2) = \frac{4\pi \alpha Q_b^2}{M_{\Upsilon}^2} \frac{\left|F_{\Upsilon} \left(M_{\Upsilon}^2\right)\right|^2}{i\Gamma_{\Upsilon}M_{\Upsilon}} = -i\frac{3}{\alpha}Br\left(\Upsilon \to e^+e^-\right)$$

• From simulation it can be seen that this is not quite true

• Can we somehow account for box diagrams in order to use this method?

g-2 from radiative τ decays

• Dates back to an idea by Laursen et al.

Radiation zeros and a test for the g value of the τ lepton Laursen, Samuel, Sen, PRD29 (1984) 2652 M. L. Laursen,* Mark A. Samuel, and Achin Sen Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (Received 21 November 1983)

Take advantage of "radiation zero"

- Only sensitive to large values of g-2 ($N_{evt} \sim a_{T}^{2}$)
- Recently M. Passera et al. suggested to use an effective lagrangian approach and full NLO QED corrections and fit on full phase-space

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + c_a \frac{e}{4\Lambda} \mathcal{O}_a - c_d \frac{i}{2\Lambda} \mathcal{O}_d, \qquad \qquad \mathcal{O}_a = \bar{\tau} \sigma_{\mu\nu} \tau F^{\mu\nu}, \\ \mathcal{O}_d = \bar{\tau} \sigma_{\mu\nu} \gamma_5 \tau F^{\mu\nu}. \\ \text{B. Oberhof - MIAPP 2016}$$

Study of the tau g-2 via its

g-2 from radiative τ decays (2)

• Radiative τ decays recently measured by BaBar, only other

measurement on PDG (and only existing for electron channel) by CLEO

- CLEO 2000: T. Bergfeld et al., PRL 84 (2000) 830
- BABAR 2015: PRD 91, 051103 (2015)
- Fael & Passera 2015: NLO calculation, JHEP 07 (2015) 153, arXiv:1602.00457 [hep-ph]
- 3.5 σ discrepancy between BABAR 2015 and NLO calculation, to be investigated

From M. Passera'a talk @ Belle2 Italian Meeting

Experimentally τ → μvvγ relatively easy to measure τ → evvγ more complicated due to bremsstrahlung photons with similar signature as signal (@ BaBar hard-cut m_{iγ} > 0.14 GeV/c²)

g-2 from radiative τ decays (3)

• Due to selection requirements most sensitive PS region is lost

B. Oberhof - MIAPP 2016

Summary

- a_τ is very poorly known experimentally
- Use of spin correlations is attractive but effect of boxes has to be accounted → not usable yet. Possible?
- Radiative decays might be a viable way → detailed studies have to be performed and better detector performance is required
- Belle2 should finally measure **a**₁!
- Some work from both theory and experiment is required

Asymmetries ref. frame

Fig. 2. Coordinate system for h^{\pm} production from the τ^{\pm} .

B. Oberhof - MIAPP 2016

Double real soft photon

Inclusive and exclusive branching ratios at NLO

The branching ratio of radiative μ and τ leptonic decays for a minimum photon energy ω_0 :

$${\cal B}(\omega_0) \propto \int d\Phi_4 \left(d\Gamma_{
m LO} + d\Gamma_{
m virt}
ight) + \int d\Phi_5 d\Gamma_{\gamma\gamma}$$

- B^{Exc}(ω₀): only one γ of energy ω > ω₀, additional second soft photon ω' < ω₀.
 B^{Exc}(ω₀) = ■
- $\mathcal{B}^{\mathrm{Inc}}(\omega_0)$: at least one γ of energy $\omega > \omega_0$.

$$\mathcal{B}^{ ext{Inc}}\left(\omega_{0}
ight)=oldsymbol{ ext{Inc}}+oldsymbol{ ext{Inc}}$$

M. Passera Padova 31.05.2016

8

Double real soft photon

B.R. of radiative $ au$ leptonic decays ($\omega_0=$ 10 MeV)				
	$ au o e ar{ u} u \gamma$	$ au o \mu ar u u \gamma$		
$\mathcal{B}_{\scriptscriptstyle extsf{LO}}$	$1.834 imes10^{-2}$	$3.663 imes 10^{-3}$		
$\mathcal{B}_{_{ m NLO}}^{ m Inc}$	$-1.06(1)_n(10)_N imes 10^{-3}$	$-5.8(1)_n(2)_N imes 10^{-5}$		
$\mathcal{B}_{_{ m NLO}}^{ m Exc}$	$-1.89(1)_n(19)_N imes 10^{-3}$	$-9.1(1)_n(3)_N imes 10^{-5}$		
$\mathcal{B}^{ t{Inc}}$	$1.728(10)_{ m th}(3)_ au imes 10^{-2}$	$3.605(2)_{ m th}(6)_ au imes 10^{-3}$		
$\mathcal{B}^{\mathrm{Exc}}$	$1.645(19)_{ m th}(3)_ au imes 10^{-2}$	$3.572(3)_{ m th}(6)_ au imes 10^{-3}$		
$\mathcal{B}^{\dagger}_{\scriptscriptstyle\mathrm{EXP}}$	$1.847(15)_{ m st}(52)_{ m sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$		

 $(n): ext{ numerical errors} \ (N): ext{ uncomputed NNLO corr.} \ \sim (lpha/\pi) \ln r \ln(\omega_0/M) imes {\cal B}_{
m NLO}^{
m Exc/Inc}$

[†] BaBar, PRD 91 (2015) 051103; B. Oberhof, arXiv:1502.01810. (th): combined $(n) \oplus (N)$ (τ) : experimental error of τ lifetime: $\tau_{\tau} = 2.903(5) \times 10^{-13} \text{ s}$

Fael, Mercolli and MP, 1506.03416 (JHEP 2015) Fael and MP, 1602.00457

M. Passera Padova 31.05.2016

9

SM contributions to g-2

