A few comments on $b \rightarrow c \tau \nu$ decays

Martin Jung

MIAPP programme
"Flavour physics with high-luminosity experiments" 11th November 2016, Munich

Experimental Situation for $b \rightarrow c \tau \nu 2016$

Importance of semi-leptonic decays:

- SM: Determination of $\left|V_{i j}\right|(7 / 9)$

4 Minimal hadronic input, improvable!

- NP: Relative to tree, τ least constrained

contours: 68% CL
filled: 95(68)\% CL

4 recent $R\left(D^{(*)}\right)$ analyses :

- $R\left(D^{*}\right)$ from LHCb [1506.08614]
- Belle update + new measurement (had./sl tag) [1507.03233,1603.06711], τ-polarization $+R\left(D^{*}\right)(\tau \rightarrow$ had $)$ [1608.06391]
44.0σ tension [HFAG]
Further $b \rightarrow c \tau \nu$ inputs:
- Differential rates from Belle, BaBar
- $b \rightarrow X_{c} \tau \nu$ by LEP
- Total width of B_{c}

SM predictions

Strategy for SM predictions: $V_{c b}$ cancels, for FF's combine data and theoretical input from LQCD/HQET
$B \rightarrow D: 2$ form factors $f_{+, 0}$

- Data from $B \rightarrow D \ell \nu$ determines shape of $f_{+}\left(q^{2}\right)$
- LQCD input required for f_{0} : fit HPQCD + FNAL/MILC + use relation $f_{+}(0)=f_{0}(0)$ [Bigi/Gambino'16]
$\rightarrow R(D)=0.301 \pm 0.003$
$B \rightarrow D^{*}: 4$ form factors $V, A_{0,1,2}$
- Data from $B \rightarrow D^{*} \ell \nu$ determines $3 / 4$ (with HQET input \rightarrow CLN)
- HQET relation used for A_{0} [Falk/Neubert'92] plus enhanced uncertainty [Fajfer/Kamenik]
$\rightarrow R\left(D^{*}\right)=0.252 \pm 0.003$
- LQCD for non-maximal recoil underway

(Very) good control, effect too large to be in CLN relations

Charged scalars in $b \rightarrow c \tau \nu$

A charged scalar generally results in ($g_{L, R}^{q_{u} q_{d}}$ complex)

$$
\mathcal{L}_{H}^{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{q_{u} q_{d}}\left[\bar{q}_{u}\left(g_{L}^{q_{u} q_{d} /} \mathcal{P}_{L}+g_{R}^{q_{u} q_{d} l} \mathcal{P}_{R}\right) q_{d}\right]\left[/ \mathcal{P}_{L} \nu_{l}\right]
$$

4 Model-independent subclass as long as $g_{L, R}^{q_{u} q_{d} I}$ general

$$
\delta^{c b l} \equiv \frac{\left(g_{L}^{c b l}+g_{R}^{c b l}\right)\left(m_{B}-m_{D}\right)^{2}}{m_{l}\left(\bar{m}_{b}-\bar{m}_{c}\right)}
$$

Can trivially explain $R\left(D^{(*)}\right)$! Exclusion possible with specific flavour structure or more $b \rightarrow c \tau \nu$ observables!

$b \rightarrow c \tau \nu$ data and scalar NP

$R(D), R\left(D^{*}\right):$

- $R(D)$ compatible with SM at $\sim 2 \sigma$
- Preferred scalar couplings from $R\left(D^{*}\right)$ huge

$b \rightarrow c \tau \nu$ data and scalar NP

Differential rates:

- compatible with SM and NP
- already now constraining, especially in $B \rightarrow D \tau \nu$
- exclude 2nd real solution in $\delta_{c b}^{\tau}$

$b \rightarrow c \tau \nu$ data and scalar NP

Total width of B_{c} :

- $B_{c} \rightarrow \tau \nu$ is an obvious $b \rightarrow c \tau \nu$ transition
\rightarrow not measurerable in foreseeable future
\rightarrow can oversaturate total width of B_{c} ! [X.Li+'16]
- Excludes second real solution in $\Delta_{c b}^{\tau}$ plane

$b \rightarrow c \tau \nu$ data and scalar NP

τ polarization:

- So far not constraining (shown: $\Delta \chi^{2}=1$)
- Differentiate NP models: with scalar NP [Celis/MJ/Li/Pich'13]

$$
X_{2}^{D^{(*)}}\left(q^{2}\right) \equiv R_{D^{(*)}}\left(q^{2}\right)\left[A_{\lambda}^{D(*)}\left(q^{2}\right)+1\right]=X_{2, S M}^{D^{(*)}}\left(q^{2}\right)
$$

Consistent explanation in 2 HDM s possible, flavour structure?

$b \rightarrow c \tau \nu$ data and scalar NP

Consistent explanation in 2HDMs possible, flavour structure?

Generic features and issues in 2HDMs

Charged Higgs possible as explanation of $b \rightarrow c \tau \nu$ data... However, generically $\Delta R\left(D^{*}\right)<\Delta R(D)$

Generic feature: Relative influence larger in leptonic decays!

- No problem in $b \rightarrow c \tau \nu$ since $B_{c} \rightarrow \tau \nu$ won't be measured
- Large charm coupling required for $R\left(D^{*}\right)$
\leftrightarrows Embedding $b \rightarrow c \tau \nu$ into a viable model complicated!
$\leftrightarrows D_{d, s} \rightarrow \tau, \mu \nu$ kill typical flavour structures with $g \sim m$
\leftrightarrows Only fine-tuned models survive all (semi-)leptonic constraints
$b \rightarrow$ sll very complicated to explain with scalar NP
$\rightarrow 2 \mathrm{HDM}$ alone tends to predict $b \rightarrow$ sll to be QCD-related
$b \bar{b} \rightarrow(H, A) \rightarrow \tau^{+} \tau^{-}$poses a severe constraint [Faroughy+'16] 2HDMs strongly prefer a smaller value for $R\left(D^{*}\right)$!

Other models and model-independent observations

Semi-model-independent approaches: put $S_{L, R}$ or $V_{L, R}$:
EFT above the EW scale $\rightarrow V_{R}$ coupling lepton-flavour universal! [Cirigliano+'09,Catà/MJ'15,Camalich-Martin+'15]
Exception: EW symmetry non-linearly realized [Catà/MJ'15]
Large $R\left(D^{*}\right)$ possible with NP in $V_{L}\left(\hat{R}(X)=R(X) / R(X)_{S M}\right)$:

- trivial prediction: $\hat{R}(D)=\hat{R}\left(D^{*}\right)=R\left(\Lambda_{c}\right)=\ldots$

$$
\hat{R}(D) \stackrel{\exp }{=} 1.33 \pm 0.16, \hat{R}\left(D^{*}\right) \stackrel{\exp }{=} 1.23 \pm 0.07
$$

- can be related to anomaly in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$modes
- Suppression of light-lepton couplings less generic
- $\hat{R}\left(X_{c}\right)=0.99 \pm 0.10$ measured by LEP

4 Generally $R\left(D^{*}\right)$ vs. $R\left(X_{c}\right)$: no space for $B \rightarrow D^{* *} \tau \nu$ [Ligeti+'15]

- Models with $\left(\bar{Q} \gamma^{\mu} t^{A} Q\right)\left(\bar{L} \gamma^{\mu} t^{A} L\right)$ create $\tau \rightarrow \mu \bar{\nu} \nu$ on 1-loop!
\rightarrow violates generically $\Gamma(\tau \rightarrow \mu \bar{\nu} \nu) / \Gamma(\mu \rightarrow e \bar{\nu} \nu)$-bound! [Feruglio+'16]
\rightarrow Issue for LQ models, models with a W^{\prime} [e.g. Isidori+'15]
- Again $b \bar{b} \rightarrow X \rightarrow \tau^{+} \tau^{-}$poses a severe constraint [Faroughy+'16]

Back-up slides

A hierarchy of scales

A long-sought new particle...

A hierarchy of scales

A long-sought new particle...

but again everything looks like the Standard Model!

4 Apparently hierarchy between the electroweak and NP scales!

A hierarchy of scales

A long-sought new particle...

but again everything looks like the Standard Model! (almost)

4 Apparently hierarchy between the electroweak and NP scales!

Higgs EFT(s)

EFT approach at the electroweak scale:
\checkmark SM particle content
\checkmark SM gauge group
? Embedding of h
? Power-counting
\rightarrow Formulate NLO

Linear embedding of h :

- h part of doublet H
- Appropriate for weaklycoupled NP
- Power-counting: dimensions
\rightarrow Finite powers of fields

Non-linear embedding of h :

- h singlet, U Goldstones
- Appropriate for stronglycoupled NP
- Power-counting: loops ($\sim \chi \mathrm{PT}$)
\rightarrow Arbitrary powers of $h / v, \phi$

Non-linear EFT generalizes linear EFT, LO κ framework

Flavour EFTs for semi-leptonic decays

At scales $\mu \ll v, M_{W}$:
Construct EFT from $\psi_{f}, F_{\mu \nu}, G_{\mu \nu}$, gauge group $S U(3)_{C} \times U(1)_{\mathrm{em}}$

Generically:

1. All coefficients independent
2. Coefficients for other processes unrelated (e.g. $\tau \leftrightarrow e, \mu$)

Implications of HEFT for the flavour-EFTs? [Cata/MJ'15]
Differences between linear and non-linear realization?
\rightarrow Separate operators specific for non-linear HEFT
Previous work (linear EFT) e.g. [D'Ambrosio+'02,Cirigliano+'09,Alsonso+'14]

A word of caution: flavour hierarchies have to be considered!
4 Mostly relevant when SM is highly suppressed, e.g. for EDMs

Implications of the Higgs EFT for flavour [Cata/MJ $\left.{ }^{\prime} 15\right]$

 $\mathbf{q} \rightarrow \mathbf{q}^{\prime} \ell \ell:$- Tensor operators absent in linear EFT for $d \rightarrow d^{\prime} \ell \ell$ [Alonso+'14]
\rightarrow Present in general! (already in linear EFT for $u \rightarrow u^{\prime} \ell \ell$)
- Scalar operators: linear EFT $C_{S}^{(d)}=-C_{P}^{(d)}, C_{S}^{\prime(d)}=C_{P}^{\prime(d)}$ [Alonso+'14]
\rightarrow Analogous for $u \rightarrow u^{\prime} \ell \ell$, but no relations in general!
$\mathbf{q} \rightarrow \mathbf{q}^{\prime} \ell \nu:$
- All operators are independently present already in the linear EFT
- However: Relations between different transitions:
$C_{V_{R}}$ is lepton-flavour universal [see also Cirigliano+'09]
Relations between charged- and neutral-current processes, e.g.
$\sum_{U=u, c, t} \lambda_{U_{S}} C_{S_{R}}^{(U)}=-\frac{e^{2}}{8 \pi^{2}} \lambda_{t s} C_{S}^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!
4 Surprising, since no Higgs is involved
\rightarrow Difficult differently [e.g. Barr+, Azatov+'15]

Implications of the Higgs EFT for Flavour: $q \rightarrow q^{\prime} \ell \ell$

$$
\begin{array}{rlrl}
\mathcal{L}_{\text {eff }}^{b \rightarrow s \ell \ell} & =\frac{4 G_{F}}{\sqrt{2}} \lambda_{t s} \frac{e^{2}}{(4 \pi)^{2}} \sum_{i}^{12} C_{i}^{(d)} \mathcal{O}_{i}^{(d)}, \quad \lambda_{t s}=V_{t b} V_{t s}^{*}, \quad \text { with } \\
\mathcal{O}_{7}^{(\prime)} & =\frac{m_{b}}{e}\left(\bar{s} \sigma^{\mu \nu} P_{R(L)} b\right) F_{\mu \nu}, & & \\
\mathcal{O}_{9}^{(\prime)} & =\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right) \bar{\gamma}^{\mu} l, & \mathcal{O}_{10}^{(\prime)}=\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right) \bar{I}_{\gamma^{\mu}} \gamma_{\gamma_{5} l}, \\
\mathcal{O}_{s}^{(\prime)} & =\left(\bar{s} P_{R(L)} b\right) \bar{I}, & \mathcal{O}_{P}^{(\prime)}=\left(\bar{s} P_{R(L)} b\right) \bar{I}_{\gamma_{5} I}, \\
\mathcal{O}_{T} & =\left(\bar{s} \sigma_{\mu \nu} b\right) \overline{\bar{I}} \sigma^{\mu \nu} l, & \mathcal{O}_{T 5}=\left(\bar{s} \sigma_{\mu \nu} b\right) \overline{\bar{I}} \sigma^{\mu \nu} \gamma_{5} l .
\end{array}
$$

Generalized matching from HEFT yields:

- No changes for photon penguin, insensitive to EWSB
- Additional contributions in $C_{9,10}^{(\prime)}$ (but linear EFT already general)
- Tensor operators absent in linear EFT for $d \rightarrow d^{\prime} \ell \ell$ [Alonso+'14] 4 Present in general! (already in linear EFT for $u \rightarrow u^{\prime} \ell \ell$)
- Scalar operators: linear EFT $C_{S}^{(d)}=-C_{P}^{(d)}, C_{S}^{(d)}=C_{P}^{(d)}$ [Alonso+'14]
\rightarrow Analogous for $u \rightarrow u^{\prime} \ell \ell$, but no relations in general!

Implications of the Higgs EFT for Flavour: $q \rightarrow q^{\prime} \ell \nu$

$b \rightarrow c \tau \nu$ transitions (SM: $C_{V_{L}}=1, C_{i \neq V_{L}}=0$):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{b \rightarrow c \tau \nu} & =-\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{j}^{5} c_{j} \mathcal{O}_{j}, & & \text { with } \\
\mathcal{O}_{V_{L, R}} & =\left(\bar{c} \gamma^{\mu} P_{L, R} b\right) \bar{\tau} \gamma_{\mu} \nu, & & \mathcal{O}_{S_{L, R}}=\left(\bar{c} P_{L, R} b\right) \bar{\tau} \nu \\
\mathcal{O}_{T} & =\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right) \bar{\tau} \sigma_{\mu \nu} \nu . & &
\end{aligned}
$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions:
$C_{V_{R}}$ is lepton-flavour universal [see also Cirigliano+'09]
Relations between charged- and neutral-current processes, e.g.
$\sum_{U=u, c, t} \lambda_{U_{S}} C_{S_{R}}^{(U)}=-\frac{e^{2}}{8 \pi^{2}} \lambda_{t s} C_{S}^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Interpretation

Lessons:

- When assuming a linear EFT:

Simplifications of model-indepent analyses

- However: Relations do not hold model-independently
$4 S U(2)_{L} \times U(1)_{Y}$ together with linear embedding

Flavour physics can help to distinguish between embeddings!
\rightarrow Surprising, since no Higgs is involved
\rightarrow Difficult differently [e.g. Barr+, Azatov+'15]

- Key operators $\mathcal{O}_{Y_{i}}$: 4f-operators with Goldstone fields
\leftrightarrows Hypercharges of fermions alone do not sum to 0
\rightarrow Appear in linear EFT at dimension 8

Operator basis

$$
\begin{aligned}
& \hat{\tau}_{3}=U \tau_{3} U^{\dagger}, \hat{\tau}_{ \pm}=U \frac{1}{2}\left(\tau_{1} \pm i \tau_{2}\right) U^{\dagger}, L_{\mu} \equiv i U D_{\mu} U^{\dagger} \\
& \mathcal{O}_{X 1,2}=g^{\prime} \bar{q} \sigma^{\mu \nu} U P_{ \pm} r B_{\mu \nu}, \quad \mathcal{O}_{X 3,4}=g \bar{q} \sigma^{\mu \nu} U P_{ \pm} r\left\langle\hat{\tau}_{3} W_{\mu \nu}\right\rangle \\
& \mathcal{O}_{X 1,2}^{\prime}=g^{\prime} \bar{r} P_{ \pm} U^{\dagger} \sigma^{\mu \nu} q B_{\mu \nu}, \quad \mathcal{O}_{X 3,4}^{\prime}=g \bar{r} P_{ \pm} U^{\dagger} \sigma^{\mu \nu} q\left\langle\hat{\tau}_{3} W_{\mu \nu}\right\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\mathcal{O}_{V 1}=\bar{q} \gamma^{\mu} q\left\langle\hat{\tau}_{3} L_{\mu}\right\rangle, & \mathcal{O}_{V 2}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} q\left\langle\hat{\tau}_{3} L_{\mu}\right\rangle, \\
\mathcal{O}_{V 3}=\bar{u} \gamma^{\mu} u\left\langle\hat{\tau}_{3} L_{\mu}\right\rangle, & \mathcal{O}_{V 4}=\bar{d} \gamma^{\mu} d\left\langle\hat{\tau}_{3} L_{\mu}\right\rangle, \\
\mathcal{O}_{V 5}=\bar{q} \gamma^{\mu} \hat{\tau}_{+} q\left\langle\hat{\tau}_{-} L_{\mu}\right\rangle, & \mathcal{O}_{V 6}=\bar{u} \gamma^{\mu} d\left\langle\hat{\tau}_{-} L_{\mu}\right\rangle, \\
\mathcal{O}_{V 7}=\bar{l} \gamma^{\mu} \hat{\tau}_{-} l\left\langle\hat{\tau}_{+} L_{\mu}\right\rangle, & \\
\mathcal{O}_{L L 1}=\bar{q} \gamma^{\mu} q \bar{l} \gamma_{\mu} l, & \mathcal{O}_{L L 2}=\bar{q} \gamma^{\mu} \tau^{j} q \bar{l} \gamma_{\mu} \tau^{j} I, \\
\hat{\mathcal{O}}_{L L 3}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} q \bar{l} \gamma_{\mu} l, & \hat{\mathcal{O}}_{L L 4}=\bar{q} \gamma^{\mu} q \bar{l} \gamma_{\mu} \hat{\tau}_{3} l, \\
\hat{\mathcal{O}}_{L L 5}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} q \bar{l} \gamma_{\mu} \hat{\tau}_{3} l, & \hat{\mathcal{O}}_{L L 6}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} / \bar{l} \gamma_{\mu} \hat{\tau}_{3} q \\
\hat{\mathcal{O}}_{L L 7}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} / \bar{l} \gamma_{\mu} q, &
\end{array}
$$

Operator basis II

$$
\begin{aligned}
& \mathcal{O}_{L R 1}=\bar{q} \gamma^{\mu} q \bar{e} \gamma_{\mu} e, \\
& \mathcal{O}_{\text {LR2 }}=\bar{u} \gamma^{\mu} u \overline{1}_{\gamma_{\mu}} I, \\
& \mathcal{O}_{L R 3}=\bar{d} \gamma^{\mu} d \bar{l}_{\gamma_{\mu}} I, \\
& \hat{\mathcal{O}}_{L R 5}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} q \bar{e} \gamma_{\mu} e, \\
& \hat{\mathcal{O}}_{\text {LR } 6}=\bar{u} \gamma^{\mu} u \overline{\tau_{\mu}} \hat{\tau}_{3} I, \\
& \hat{\mathcal{O}}_{L R T}=\bar{d} \gamma^{\mu} d{ }^{\boldsymbol{I}} \gamma_{\mu} \hat{\tau}_{3} / \text {, } \\
& \mathcal{O}_{R R 1}=\bar{u} \gamma^{\mu} u \bar{e} \gamma_{\mu} e, \\
& \mathcal{O}_{R R 2}=\bar{d} \gamma^{\mu} d \bar{e} \gamma_{\mu} e . \\
& \mathcal{O}_{L R 4}=\bar{q} \gamma^{\mu} / \bar{e} \gamma_{\mu} d, \\
& \hat{\mathcal{O}}_{L R 8}=\bar{q} \gamma^{\mu} \hat{\tau}_{3} / \bar{e} \gamma_{\mu} d, \\
& \mathcal{O}_{S 1}=\epsilon_{i j} i^{i}{ }^{i} \bar{q}^{j} u, \\
& \mathcal{O}_{S 2}=\epsilon_{i j} \bar{J}^{i} \sigma^{\mu \nu} e \bar{q}^{j} \sigma_{\mu \nu} u, \\
& \hat{\mathcal{O}}_{S 3}=\bar{q} U P_{+} r \bar{l} U P_{-} \eta, \\
& \hat{\mathcal{O}}_{S 4}=\bar{q} \sigma_{\mu \nu} U P_{+} r \bar{r} \sigma^{\mu \nu} U P_{-} \eta, \\
& \hat{\mathcal{O}}_{S 5}=\bar{q} \hat{\tau}_{-} U r i \hat{\tau}_{+} U_{\eta}, \\
& \hat{\mathcal{O}}_{Y 1}=\bar{q} U P_{-} \bar{I} U P_{-} \eta, \\
& \hat{\mathcal{O}}_{Y 2}=\bar{q} \sigma_{\mu \nu} U P_{-} r \overline{I^{\mu \nu}} U P_{-} \eta, \\
& \hat{\mathcal{O}}_{Y 3}=\bar{I} U P_{-} \eta \bar{r} P_{+} U^{\dagger} q, \quad \hat{\mathcal{O}}_{Y 4}=\bar{I} U P_{-} r \bar{r} P_{+} U^{\dagger}!.
\end{aligned}
$$

Flavor family indices have been omitted.

Matching for $b \rightarrow s \ell \ell$ transitions

$$
\mathcal{N}_{\mathrm{NC}}^{(d)}=\frac{4 \pi^{2}}{e^{2} \lambda_{t s}} \frac{v^{2}}{\Lambda^{2}}
$$

$$
\begin{gathered}
\delta C_{7(d)}^{(\prime)}=\frac{8 \pi^{2}}{m_{b} \lambda_{t s}} \frac{v^{2}}{\Lambda^{2}}\left[c_{X 2}^{(\prime)}+c_{X 4}^{(\prime)}\right] \\
\delta C_{7(u)}^{(\prime)}=\frac{8 \pi^{2}}{m_{c} \lambda_{b u}} \frac{v^{2}}{\Lambda^{2}}\left[c_{X 1}^{(\prime)}+c_{X 3}^{(\prime)}\right] \\
\delta C_{9,10}^{(q)}=\mathcal{N}_{\mathrm{NC}}^{(q)}\left[\left(C_{L R}^{(q)} \pm C_{L L}^{(q)}\right) \pm 4 g_{V, A} \frac{\Lambda^{2}}{v^{2}} C_{V L}^{(q)}\right] \\
C_{9,10}^{\prime(q)}=\mathcal{N}_{\mathrm{NC}}^{(q)}\left[\left(C_{R R}^{(q)} \pm C_{R L}^{(q)}\right) \pm 4 g_{V, A} \frac{\Lambda^{2}}{v^{2}} C_{V R}^{(q)}\right]
\end{gathered}
$$

$$
C_{L L}^{(d)}=c_{L L 1}+c_{L L 2}-\hat{c}_{L L 3}-\hat{c}_{L L 4}+\hat{c}_{L L 5}+\hat{c}_{L L 6}-\hat{c}_{L L 7}
$$

$$
C_{R R}^{(d)}=c_{R R 2}, \quad C_{L R}^{(d)}=c_{L R 1}-\hat{c}_{L R 5}, \quad C_{R L}^{(d)}=c_{L R 3}-\hat{c}_{L R 7}
$$

$$
C_{V L}^{(d)}=c_{V 1}-c_{V 2}, C_{V R}^{(d)}=c_{V 4}
$$

$b \rightarrow s \ell \ell$ matching continued

$$
\begin{array}{ll}
C_{S, P}^{(d)}=\mathcal{N}_{\mathrm{NC}}^{(d)}\left[\pm c_{S}^{(d)}+\hat{c}_{Y 1}\right], & C_{S, P}^{(d)}=\mathcal{N}_{\mathrm{NC}}^{(d)}\left[c_{S}^{(d)} \pm \hat{c}_{Y 1}^{\prime}\right], \\
C_{T}^{(d)}=\mathcal{N}_{\mathrm{NC}}^{(d)}\left[\hat{c}_{Y 2}+\hat{c}_{Y 2}^{\prime}\right], & C_{T 5}^{(d)}=\mathcal{N}_{\mathrm{NC}}^{(d)}\left[\hat{c}_{Y 2}-\hat{c}_{Y 2}^{\prime}\right],
\end{array}
$$

where $c_{S}^{(\prime)(d)}=2\left(\hat{c}_{L R 8}^{(\prime)}-c_{L R 4}^{(\prime)}\right)$.

Matching for $b \rightarrow c \ell \nu$ transitions

$$
\begin{aligned}
C_{V_{L}} & =-\mathcal{N}_{\mathrm{CC}}\left[C_{L}+\frac{2}{v^{2}} c_{V 5}+\frac{2 V_{c b}}{v^{2}} c_{V 7}\right] \\
C_{V_{R}} & =-\mathcal{N}_{\mathrm{CC}}\left[\hat{C}_{R}+\frac{2}{v^{2}} c_{V 6}\right] \\
C_{S_{L}} & =-\mathcal{N}_{\mathrm{CC}}\left(c_{S 1}^{\prime}+\hat{c}_{S 5}^{\prime}\right) \\
C_{S_{R}} & =2 \mathcal{N}_{\mathrm{CC}}\left(c_{L R 4}+\hat{c}_{L R 8}\right) \\
C_{T} & =-\mathcal{N}_{\mathrm{CC}}\left(c_{S 2}^{\prime}+\hat{c}_{S 6}^{\prime}\right)
\end{aligned}
$$

where $\mathcal{N}_{\mathrm{CC}}=\frac{1}{2 V_{c b}} \frac{v^{2}}{\Lambda^{2}}, C_{L}=2 c_{L L 2}-\hat{c}_{L L 6}+\hat{c}_{L L 7}$ and $\hat{C}_{R}=-\frac{1}{2} \hat{c}_{Y_{4}}$.

The differential distributions $d \Gamma\left(B \rightarrow D^{(*)} \tau \nu\right) / d q^{2}$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68\% CL (bins highly correlated):

Grey: NP fit including $R(D)$
Red: SM fit (distributions only)
Green: Allowed by $R(D)$, excluded by distribution

- Need better experimental precision, ideally $d R(D) / d q^{2}$
- Parts of NP parameter space clearly excluded

The differential distributions $d \Gamma\left(B \rightarrow D^{(*)} \tau \nu\right) / d q^{2}$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68\% CL (bins highly correlated):

Grey: NP fit including $R\left(D^{*}\right)$
Red: SM fit (distributions only)
Green: Allowed by $R\left(D^{*}\right)$, excluded by distribution

- Need better experimental precision, ideally $d R\left(D^{*}\right) / d q^{2}$
- Not very restrictive at the moment

BR measurements and isospin violation

Isospin asymmetries test NP with $\Delta I=1,3 / 2$ (e.g. $b \rightarrow s \bar{u} u$) Again: relevant due to high precision and small NP

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \rightarrow B^{+} B^{-}$vs. $B^{0} \bar{B}^{0}$
- LHCb: normalization mode, usually obtained from B factories Assumptions entering this normalization:
- PDG: assumes $r_{+0} \equiv \Gamma\left(\Upsilon \rightarrow B^{+} B^{-}\right) / \Gamma\left(\Upsilon \rightarrow B^{0} \bar{B}^{0}\right) \equiv 1$
- LHCb: assumes $f_{u} \equiv f_{d}$, uses $r_{+0}^{\mathrm{HFAG}}=1.058 \pm 0.024$

Both approaches problematic: [MJ'16 [1510.03423]]

- Potential large isospin violation in $\Upsilon \rightarrow B B$ [Atwood/Marciano'90]
- Measurements in r_{+0}^{HFAG} assume isospin in exclusive decays

4 This is one thing we want to test!
\rightarrow Avoiding this assumption yields $r_{+0}=1.027 \pm 0.037$
\rightarrow Isospin asymmetry $B \rightarrow J / \psi K: A_{I}=-0.009 \pm 0.024$
Improvement necessary for high-precision BRs
$\rightarrow B \rightarrow J / \Psi K$ can be used to determine f_{u} / f_{d} !

Other models and model-independent observations

LFV possibly related to LFNU \Rightarrow NP typically not in mass basis
4 Rotation to mass basis induces LFV [Glashow+,Bhattacharya+'14,...]

- LFV B decays additionally motivated!
- Strong constraints from LFV processes However...
- "typically" does not mean "necessarily"

4 diagnonal mass matrix possible

- Examples: [Altmannshofer+'14,Celis+'15 \Rightarrow]

LQ models ok as templates, but UV-embedding complicated $(p \rightarrow X)$
4 light LQ very complicated with simple groups [e.g. Doršner+'16]
\rightarrow more complicated groups can work, but many more d.o.f.!
Models with $\left(\bar{Q} \gamma^{\mu} t^{A} Q\right)\left(\bar{L} \gamma^{\mu} t^{A} L\right)$ create $\tau \rightarrow \mu \bar{\nu} \nu$ on 1-loop!
\leftrightarrows violates generically $\Gamma(\tau \rightarrow \mu \bar{\nu} \nu) / \Gamma(\mu \rightarrow e \bar{\nu} \nu)$-bound! [Feruglio+'16]
4 Issue for LQ models, models with a W^{\prime} [e.g. Isidori+'15]

