Semi-leptonic *B* decays with tau $B \rightarrow \overline{D}^{(*)} \tau^+ \nu_{\tau}$

Anže Zupanc

Jožef Stefan Institute and University of Ljubljana

Physics Motivation

Semi-tauonic *B* decays are sensitive probes of New Physics. NP could impact:

- Branching fraction
- tau, D* polarisations
- Properties of NP can be inferred also by looking at various kinematic properties of the decay (momenta, ...)

NP effects can be different for D and D* modes.

```
\begin{split} \text{Effective Lagrangian for } b &\to c \tau \bar{\nu} \\ & \underset{\text{SM}}{\text{SM}} \\ -\mathcal{L}_{\text{eff}} = & \boxed{2\sqrt{2}G_F V_{cb}(1+C_{V_1})\mathcal{O}_{V_1}} \quad \mathcal{O}_{V_1} = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_L} \\ & +C_{V_2} \mathcal{O}_{V_2} \quad \text{RH-current} \quad \mathcal{O}_{V_2} = \bar{c}_R \gamma^\mu b_R \, \bar{\tau}_L \gamma_\mu \nu_L \\ & +C_{S_1} \mathcal{O}_{S_1} \quad \text{2HDM (Type-II)} \quad \mathcal{O}_{S_1} = \bar{c}_L b_R \, \bar{\tau}_R \nu_L \\ & +C_S_2 \mathcal{O}_{S_2} \quad \text{2HDM} \quad \mathcal{O}_{S_2} = \bar{c}_R b_L \, \bar{\tau}_R \nu_L \\ & +C_T \mathcal{O}_T \quad \text{Tensor} \quad \mathcal{O}_T = \bar{c}_R \sigma^{\mu\nu} b_L \, \bar{\tau}_R \sigma_{\mu\nu} \nu_L \end{split}
```


Ratio of branching fractions

$$R_{D^{(*)}} := \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

- benefits from cancelations
 - Vcb
 - hadronic matrix elements (theory)
 - experimental systematics

SM prediction

 $R(D) = 0.300 \pm 0.008$ $R(D^*) = 0.252 \pm 0.003$

H. Na et al., Phys.Rev.D 92, 054410 (2015)

S.Fajfer, J.F.Kamenik, and I.Nisandzic, Phys.Rev.D85(2012) 094025

Kinematics of the decay

Kinematics of $B \to D^* \tau \nu$ can be described for example with $q^2, \ \cos \theta_{D^*}, \ \cos \theta_W, \ \cos \theta_{\tau}$

Kinematics of the decay $q^2 = (p_\tau + p_\nu)^2$

Kinematics of the decay

 $p_{\ell(\tau)}^*, p_{D^*}^*$

Tau polarisation

Examples of correlations between τ and D^* polarization and BF ratio (R(D^(*)));

M.Tanaka, R.Watanabe Phys. Rev. D87 (2013), 034028

$$P_{\tau} = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

 Γ^{\pm} denotes the decay rate of $\bar{B} \to D^{(*)} \tau^- \bar{\nu}_{\tau}$ with a τ helicity of $\pm 1/2$.

SI	N	prediction		
P_{τ} =	_	0.325 ± 0.009	for	$\bar{B} \rightarrow D \tau^- \bar{\nu}_{\tau}$
$P_{ au}$ =	=	-0.497 ± 0.013	for	$\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$

 $f_L(q^2)$ D^* polarisation fraction in $\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}$

SM contributions in all plots shown in BLUE, red and black show SM + various NP

Experimental strategies

B-factories

•

- multiple neutrinos prevent to fully measure/determine the decay's kinematics
- exploit unique experimental setup
 - detector hermetically encloses the interaction point
 - knowledge of initial state and known production process

 $e^+e^- \to \Upsilon(4S) \to B_{\rm comp}\overline{B}_{\rm sig}$

The companion *B* meson reconstruction

• Hadronic: sum of exclusive hadronic decays provides $B \to \overline{D}^{(*)}n\pi, \ \overline{D}^{(*)}D^{(*)}K, \ \overline{D}_s^{(*)}D^{(*)}, \ J/\psi Kn\pi$ p(B_{sig})

Untagged/Inclusive: sum all tracks/clusters not used for B_{sig} reconstruction

Experimental status

Experiment	Mode	Technique	Observables
BaBar [PRL109, 101802; PRD88, 072012]	$B \to \overline{D}^{(*)} \tau \nu_{\tau}$ $\tau \to \ell \overline{\nu}_{\ell} \nu_{\tau}$	Hadronic	R(D), R(D*), q ²
Belle [PRL99,191807; PRD82,072005;]	$\begin{split} B \to \overline{D}^{(*)} \tau \nu_\tau \\ \tau \to \ell \overline{\nu}_\ell \nu_\tau \end{split}$	Inclusive	Br
Belle [PRD92,072014]	$B \to \overline{D}^{(*)} \tau \nu_{\tau}$ $\tau \to \ell \overline{\nu}_{\ell} \nu_{\tau}$	Hadronic	R(D), R(D*), q², p _l *
Belle [PRD94, 072007]	$B^0 \to D^{*-} \tau \nu_\tau$ $\tau \to \ell \overline{\nu}_\ell \nu_\tau$	Semi-leptonic	R(D*), p* _I , p* _{D*}
Belle [arXiv:1608.06391]	$B \to \overline{D}^* \tau \nu_\tau$ $\tau \to \pi \nu_\tau, \ \rho \nu_\tau$	Hadronic	R(D*), Ρ _τ
LHCb [PRL115,111803]	$B^0 \to D^{*-} \tau \nu_\tau$ $\tau \to \mu \overline{\nu}_\mu \nu_\tau$		R(D*)

Experimental results

R(D) and R(D*) combination

Y.SATO@ICHEP'16

The difference with the SM predictions is at >4 σ level!

New Physics contributions? $R(D^{(*)})$

Model dependent analysis (type-II 2HDM)

- kinematics of the decays depend on NP model and its free parameters
 - difference in kinematics difference in efficiency and fitted distributions

BaBar@Hadronic($\tau \rightarrow I$)

New Physics contributions? $R(D^{(*)})$

Model dependent analysis (type-II 2HDM)

- kinematics of the decays depend on NP model and its free parameters
 - difference in kinematics —> difference in efficiency and fitted distributions

New Physics contributions?

Model independent analysis

- examine the impact of each operator
 - difference in kinematics difference in efficiency and fitted distributions

New Physics contributions? $R(D^{(*)})$

Model independent analysis

- examine the impact of each operator
 - difference in kinematics —> difference in efficiency and fitted distributions

New Physics contributions? $R(D^{(*)})$

Model independent analysis

- examine the impact of each operator

Belle@Semileptonic($\tau \rightarrow I$)

New Physics contributions?

Model dependent analysis (type-II 2HDM)

New Physics contributions?

New Physics contributions? $|p_{\ell}^*|, |p_{D^*}^*|$

Model independent analysis

Tau Polarimeters (hadronic decays)

 ν_{τ}

 W^*

 $\hat{\theta}_{hel}(au)$

- $\cos \theta_{hel}(\tau)$ distribution in (quasi)2-body decays $\tau \to M \nu_{\tau}$
- τ polarization measurment based on $\cos \theta_{hel}(\tau)$ distribution:

$$rac{d\Gamma}{d\cos heta_{hel}(au)} \sim rac{1}{2}(1+lpha P_{ au}\cos heta_{hel}(au))$$

• SM: $P_{\tau} \approx$ -0.5

Tau Polarimeters (hadronic decays)

Experimental challenges:

- due to multiple neutrinos in the final state the tau momentum can not be completely determined
- go to W rest frame, where $p_W = p_{Bsig} p_{D^*} = 0$
- in W rest frame the tau and neutrino from B decay are back-to-back, therefore:
 - magnitude of tau momentum (|p_T|) can be determined |p_r| = (q² m_r²/c²)/(2\sqrt{q²})
 direction of the tau momentum is constrained to lie on the cone
 - direction of the tau momentum is constrained to lie on the cone around the hadron daughter momentum $\cos \theta_{\tau d} = \frac{2E_{\tau}E_{\rm da} - m_{\tau}^2 - m_{\rm da}^2}{2|\boldsymbol{p}_{\tau}||\boldsymbol{p}_{\rm da}|}$

Boost in arbitrary direction on the cone to get into the tau rest frame

Decay kinematics of the $\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$ decay in the W rest frame

Results

•

- $\mathcal{R}(D^*) = 0.276 \pm 0.034(\text{stat})^{+0.029}_{-0.026}(\text{syst})$ **Preliminary** $\mathcal{R}(D^*)$ and \mathcal{P}_{τ} with Had-tag
 - 7.1σ significance including systematic uncertainty.
 - Consistent with SM prediction and other measurements.
- $\mathcal{P}_{\tau} = -0.44 \pm 0.47(\text{stat})^{+0.20}_{-0.17}(\text{syst})$

Preliminary

- First ${\cal P}_{ au}$ measurements !
- Consistent with SM prediction (-0.497 ± 0.014) within uncertainty.
- Systematics arises mainly from hadronic *B* bkg, MC statistics.

Belle II prospects

- Measurements are currently statistically limited
- Several (at the moment dominant) sources of systematic uncertainty are also statistical in nature
 - estimations of backgrounds with control samples on data, MC statistics

Experiment	Technique	R(D)	R(D*)
BaBar [PRL109, 101802; PRD88, 072012]	Hadronic	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle [PRD92,072014]	Hadronic	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$
Belle [PRD94, 072007]	Semi-leptonio	C	$0.302 \pm 0.030 \pm 0.011$
Belle [arXiv:1608.06391]	Hadronic		$0.276 \pm 0.034^{+0.029}_{-0.026}$

Hadronic B_{tag} Reconstruction at Belle II

$$\varepsilon(B_{\text{tag}}) = \sum_{i} \mathcal{B}(B \to i)\varepsilon_i$$

Full Event Interpretation algorithm:

- includes considerably more B decay modes
- training of the classifiers (one per decay mode) is fully automated
- validation with Belle data is ongoing

Expect significantly higher tagging reconstruction efficiency at Belle II!

 $\varepsilon(B_{\mathrm{tag}}^0) = 0.19\%$ Belle $\varepsilon(B_{\mathrm{tag}}^+) = 0.28\%$

Belle II $\varepsilon(B_{\text{tag}}^+) = 0.36\%$

Systematic errors

BaBar@Hadronic($\tau \rightarrow I$)

	_				
	(%)				
Source of uncertainty	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$			
Additive uncertainties	Additive uncertainties				
PDFs					
MC statistics	4.4	2.0			
$B \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	0.2	0.2			
$D^{**} \to D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5			
$\mathcal{B}(\overline{B} o D^{**} \ell^- \overline{\nu}_\ell)$	0.8	0.3			
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau})$	1.8	1.7			
$D^{**} ightarrow D^{(*)} \pi \pi$	2.1	2.6			
Cross-feed constraints					
MC statistics	2.4	1.5			
$f_{D^{**}}$	5.0	2.0			
Feed-up/feed-down	1.3	0.4			
Isospin constraints	1.2	0.3			
Fixed backgrounds					
MC statistics	3.1	1.5			
Efficiency corrections	3.9	2.3			
Multiplicative uncertainties					
MC statistics	1.8	1.2			
$\overline{B} \to D^{(*)}(\tau^-/\ell^-)\overline{\nu}$ FFs	1.6	0.4			
Lepton PID	0.6	0.6			
π^0/π^{\pm} from $D^* \to D\pi$	0.1	0.1			
Detection/Reconstruction	0.7	0.7			
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2	0.2			
Total syst. uncertainty	9.6	5.5			
Total stat. uncertainty	13.1	7.1			
Total uncertainty	16.2	9.0			

Belle@Semileptonic($\tau \rightarrow I$)

	$\mathcal{R}(D^*)$ [%]
Sources	$\ell^{ m sig}=e,\mu$
MC size for each PDF shape	2.2
PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	+1.1 -0.0
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$\substack{+1.0\\-1.7}$
PDF shape and yields of fake $D^{(*)}$	1.4
PDF shape and yields of $B \to X_c D^*$	1.1
Reconstruction efficiency ratio $\varepsilon_{ m norm}/\varepsilon_{ m sig}$	1.2
Modeling of semileptonic decay	0.2
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2
Total systematic uncertainty	$^{+3.4}_{-3.5}$

Scales with DATA statistics

Theory/External

Irreducible Requires additional studies

Belle@Hadronic($\tau \rightarrow h$)

$R(D^*)$	$P_{ au}$
$^{+7.8\%}_{-6.9\%}$	$^{+0.14}_{-0.11}$
$^{+3.5\%}_{-2.8\%}$	$^{\rm +0.13}_{\rm -0.11}$
3.0%	0.010
1.7%	0.016
2.1%	0.051
1.1%	0.003
2.4%	0.008
2.1%	0.018
1.0%	0.018
$^{+0.8\%}_{-0.0\%}$	$^{+0.016}_{-0.000}$
0.3%	0.008
0.3%	0.002
0.1%	0.018
	$R(D^*)$ +7.8% -6.9% +3.5% -2.8% 3.0% 1.7% 2.1% 1.1% 2.4% 2.1% 1.0% + 0.8% - 0.0% 0.3% 0.3% 0.1%

Tagging efficiency correction	1.4%	0.014
D [*] reconstruction	1.3%	0.007
D sub-decay branching fractions	0.7%	0.005
Number of $B\bar{B}$	0.4%	0.005
Total systematic uncertainty	$^{+10.4\%}_{-9.5\%}$	$^{+0.20}_{-0.17}$

Belle II prospects

 At least 3 independent measurements of R(D*) with similar statistical and systematic uncertainties

R(D*)

- 5 ab⁻¹: 3% (stat.) ± 2.5% (syst.)
- 50 ab⁻¹: 1% (stat.) ± 2.0% (syst.)
- At least 1 measurement of R(D)
 - 5 ab⁻¹: 6% (stat.) ± 3.9% (syst.)
 - 50 ab⁻¹: 2% (stat.) ± 2.5% (syst.)
- At least 1 measurement of P_{τ}
 - 5 ab⁻¹: 0.18 (stat.) ± 0.08 (syst.)
 - 50 ab⁻¹: 0.06 (stat.) ± 0.04 (syst.)
- And measurements of various kinematic spectra

Belle combination

 P_{τ}

Belle II prospects

 At least 3 independent measurements of R(D*) with similar statistical and systematic uncertainties

R(D*)

- 5 ab⁻¹: 3% (stat.) ± 2.5% (syst.)
- 50 ab⁻¹: 1% (stat.) ± 2.0% (syst.)
- At least 1 measurement of R(D)
 - 5 ab⁻¹: 6% (stat.) ± 3.9% (syst.)
 - 50 ab⁻¹: 2% (stat.) ± 2.5% (syst.)
- At least 1 measurement of P_{τ}
 - 5 ab⁻¹: 0.18 (stat.) ± 0.08 (syst.)
 - 50 ab⁻¹: 0.06 (stat.) ± 0.04 (syst.)
- And measurements of various kinematic spectra

Belle combination

 P_{τ}

Conclusions

Semi-tauonic B decays are sensitive probes of New Physics

- Rich laboratory not only to find but also to probe properties of NP
 - Close collaboration between experimentalists and theorists needed to discern NP properties
- Experimental setup of B-factories enables very rich physics program

Technique	D & т→I	D* & т→I	D & т→h	D* & т→h
Hadronic	\checkmark	~	(🗸)	
Semileptonic	?	~	?	?

• Can LHCb contribute even more?

 $\Lambda_b \to \Lambda_c \tau \nu_{\tau}, \ B_s \to D_s^{(*)} \tau \nu_{\tau}, \ B_c \to J/\psi \tau \nu_{\tau}$