DIAMOND BEAM MONITOR AND LUMINOSITY MEASUREMENTS

October 2018

Jožef Stefan Institute Boštjan Maček

OVERVIEW

- luminosity readout system
- data format & available information
- system tests
- collected data & analysis
- conclusion

SYSTEM OVERVIEW

SYSTEM OVERVIEW

SIGNAL FORMATION

HitBus

• **analog circuitry:** pixels are completely independent and each has its own timeover-threshold circuit

• two outputs:

- HitOr is common for all pixels in the chip (one output signal per chip), but contribution from each pixel can be masked
- **HitOut** is used for final digitisation

MAIN CHALLENGE

- long ToT signals (1-16 BCs) cause digital pileup
- no problem at low luminosity, but with increasing $<\mu>$ pile-up dominates over statistical error
- two direct handles possible:
 - different ToT calibration (same charge = shorter pulse)
 - reducing probability for HitOr signal by enabling smaller umber of pixels (coupled with noise)

HITBUS

7

- transparent for luminosity measurement
- simply streams the the HitOr data on 320MHz link
- stream BPM encoded to provide robustness
 - align bit HI H3 25 ns
- has two such streams independent stream
- data streamed out of detector to the counting room
- has other modes of operation

DATA RECEPTION

DEAD-TIME MONITORING

Luminosity algorithms

LUMINOSITY

COMBINING SENSORS

Luminosity algorithms

- logic can be uploaded without FW modification
- any combinatorial logic expression with up to 12 inputs possible
- 4 luminosity algorithms available on each FPGA

LUMINOSITY MAPS

- 4 luminosity maps matches the number of algorithms
- histograms both 'live' and 'hit' signals for all BCIDs
- extra info:
 - Orbit counter
 - error checking circuit with the counter
 - unique ID
- no dead-time during the readout
- I 6-bit accumulating counters limits the readout to rates higher than 0.3 Hz

S-LINK

SOFTWARE WORLD

- A dedicate software was developed for readout and processing of the data
- general purpose framework CatShell
 - <u>https://gitlab.cern.ch/bmacek/CatShell</u>
- DbmShell for DBM specific infrastructure parts
 - <u>https://gitlab.cern.ch/bmacek/DbmShell</u>
 - DBM hardware specifics
- common lumi infrastructure LumiShell
 - <u>https://gitlab.cern.ch/bmacek/LumiShell</u>
 - luminosity processing

PC

DATA & TESTS

CLOSE LOOK AT THE DATA

TESTING THE SYSTEM

- first testing is always with internal number generator, instead of HitOr
- s pattern of repetitive digital pulses is re-played in a same manner on each ORBIT

ANALYSIS

ALGORITHM SETUP-I

- running only side C
- only HB-34 used
- for first data an inclusive set of algorithms was configured

M3

*special setup: live-algorithms modified (pinpointing data, no measurement)

normally: live if all live (and) — special: live if either live (or)

RUN WITHOUT FE

- first collision run: DBM was un-configured (data tag: 2018_09_23_12_43_01)
- expected to see nothing hits observed

	Algorithms					
0	0 everything					
Т.	single module					
6	M3					
7	M4					

730: [24001,	0],[24001,	0],[24001,	0],[24001,	0],[24001,	0],
1735: [24001,	0],[24001,	0],[24001,	0],[24001,	0],[24001,	0_,
740: [24001,	O],[24001,	O],[24001,	0],[24001,	O],[24001,	Ο],
1745:	24001,	0],[24001,	0],[24001,	0],[24001,	O],[24001,	O],
1750: [24001,],[24000,	0],[24000,	0],[24000,	0],[24001,	O],
1755: [24001,	0],[24001,	/],[24001,	0],[24001,	0],[24001,	O],
760: [24001,	0],[24001,	0],[24001,	0],[24001,	O],[24001,	O],
1765: [24001,	0],[24001,	0],[24001,	0],[24001,	0],[24001,	O],
770: [24001,	0],[24001,	0],[24001,	0],[24001,	0],[24001,	O],
			/							

hit - 3 BC long

RUN WITHOUT FE

Algorithms

single module

everything

0

L

6

7

M3

M4

- first collision run: DBM was un-configured (data tag: 2018_09_23_12_43_01)
- expected to see nothing hits observed

Orbit number	Algorithms	BCID	Length
2089983080	0,1,7	861	
2091495143	0,6	863	?
2094879284	0,6	398	?
2101023540	0,6	2188	?
2104119669	0,6	2188	? BCIDs repeat !!
2105583730	0,6	863	? -
2107047791	0,6	339	_? some systematics
2109831907	0,6	2188	?
2111991997	0,1,7	1750	3

RUN WITH FE

• a single BCID=2400 chosen, algorithm 6 = M3 telescope

• recording containing two runs (data tag: 2018_09_24_13_24_51)

ALGORITHM SETUP-2

- running only side C only HB-34 used
- so far: M3 give some signal, M4 no signal
- trying to reduce acceptance less inclusive algorithms

FPGA	Stream	Map	Algorithm	Logic	
South	0	0	0	or*(FE6, FE7, FE8) - one telescope (M3)	
				FE6 - single module	
		0	6	FE7 - single module	
			7	FE8 - single module	

*no special setup: first measurements

- recording containing two runs (data tag: 2018_09_25_17_00_17)
- interesting because has 9 isolated collision bunches

from ATLAS data

- comparison with official ATLAS lumi statement
- nice correlation of values for first data
- summary page • overestimating at higher lumi bunches ? mu_vis r~0.93 2.5 err = 0.031.5 r~0.61 0.5 3500 σ 500 1000 1500 2000 2500 3000 BCID

closer look at individual BCs

correlation between the two following BCID

r(BCID)/r(BCID-I)

• single run with 2544 colliding bunches (data tag: 2018_09_25_22_48_03)

ALGORITHM SETUP-3

- running only side C only HB-34 used
- so far: M3 give some signal, M4 no signal, FE8 does not contribute

FPGA	Stream	Map	Algorithm	Logic	
South	0	0	0	FE6 - single module	
				FE7 - single module	
	I	0	6	or(FE6, FE7) - or	
			7	and(FE6, FE7) - and	

- DBM was un-configured (data tag: 2018_09_27_16_38_52)
- no atlas recording, DBM un-configured, but beam present

Orbit number	Algorithm	BCID	Length
1815471296	6,7	3526	1
1816311331	6,	3354	
1816839353	6, I	3282	1
1818831436	6, I	3116	1
1819071446	6, I	1654	
1819215452	6,1	942	1
1819695472	6,1	230	1
1820487505	6,1	422	1
1821591551	6,1	574	1
1821975567	6,1	4 4	
1822143574	6, I	1786	
1822215577	6,	2426	1
1822671596	6, 1	2758	1
1823391626	6,1	1802	
1823847645	6,1	1590	1
1824375667	6,1	1750	1
1826127740	6,1	822	
1826991776	6,1	1818	1
1827039778	6,1	346	1
1828935857	6,	2442	1
1829775892	6, 1	50	
1832127990	6,1	2170	
1833280038	6, 1	1790	

Orbit number	Algorithm	BCID	Length
1833832061	6, 1	3434	1
1834264079	6,1	1990	
1834528090	6, 1	810	
1834912106	6, 1	2370	
1835512131	6, 1	1138	
1836520173	6, 1	1078	
1836760183	6, 1	1762	
1836904189	6, 1	3298	
1862369250	6, 1	2802	
1865393376	6, 1	2268	
1866449420	6, 1	1994	

Algorithms					
0	single module F6				
I	single module F7				
6	or				
7	and				

• two ATLAS runs (data tag: 2018_09_28_22_57_05)

Algorithms

0 single module F6I single module F7

6

or

• testing the real-time lumi algorithm reconfiguration

CHANGE OF MASK I.

- saturation due to HitOr mask that is too inclusive
- more selective mask should increase the live-time fraction of the detector
- in absence of more data/information a random subset of already included pixels chosen
- number of contributing pixels reduced by factor ~10

- single run with 2544 colliding bunches (data tag: 2018_10_02_07_48_48)
- mask change well pronounced in the results •
- first sensible lumi measurement

same level of 'live' fraction

• actual lumi data (mu-corrected)

- consistency comparison between the algorithms
- algo0 = FE6 taken as a reference

 ratio should be independent of BCID and time

39

- estimating noise
- looking at the abort gap and fitting: exp+C

algo	λ	const.
FE6	(1.26±0.13)*10 ⁻²	(1.06±0.03)*10-3
FE7	(1.06±0.10)*10 ⁻²	(0.92±0.16)*10-3
or	(1.16±0.08)*10 ⁻²	(2.04±0.18)*10 ⁻³
and	/	/

- decay constants consistent
- individual modules noise level consistent
- or gives \sim 2 times higher noise

- time evolution for two runs
- FE6 experiences problems from time to time

2. some configuration on FE changes (observed multiple times on FE6, FE10)

time

ALGORITHM SETUP-4

M3

- running only side C only HB-34 used
- so far: M3 give some signal, FE8 does not contribute, FE10 recovered

- FIO as a new input to the algorithms
- functional as others

- **0** single module FE6
- I single module FE7
- 6 single module FEI0
- 7 or of two

check of FEIO data

44

CHANGE OF MASK 2.

- Iumi data available, but no estimate how optimal
- estimates show a further reduction would be beneficial
- factor ~4 chosen

• comparison of algorithms within run 2

- run 2 used for comparing algorithm consistency
- algo0 = F6 taken as a reference

```
ratio= lumi(algo X)
lumi(algo 0)
```

 ratio should be independent of BCID and time

- comparison of statistical errors for a single reading
- main drive of change is the effective area
- statistical error estimated on mu_vis

- knowledge of the stat. errors so far
- for single module algorithms we are in the right region
- for combinations of 2 modules we should not increase the size much
- reducing the active area?
 - estimating that would not help
 - measured rate is decreasing already so we would start losing statistics

area	error
]	3,0%
2	2,4%
4	2,8%
8	10%

correct area for this level of understanding

ALGORITHM SETUP-5

- running only side C only HB-34 used
- so far: M3 give some signal, FE10 recovered, high level of live fraction

FPGA	Stream	Map	Algorithm	Logic	
South	0	0	0	FE7 - single module	
				FEIO - single module	
	I	0	6	or(FE7, FE10) - or	
			7	and(FE7, FE10) - and	

- comparison of AND and OR algorithm
- algorithm consistency can not be checked because of different mu-correction for 'AND'

• 'AND' algorithm data

OTHER

• a time constant in the detector response observed

CONCLUSION

- Iuminosity readout system operational and reliable - no issues in 3 weeks of usage
- configuration iterated to a sensible working point
- no absolute calibration obtained
- some systematic issues remaining more data and configurations would be needed

SAMPLE DATA

sample

BACKUP

ORIENTEERING WITH SIMULATION

- full ATLAS simulation up to hit-level used
- low pT minimum bias sample of 10₇ events :

Drobobilition

mc14_13TeV.119995.Pythia8_A2MSTW2008LO_minbias_inelastic_low.merge.HITS.e3038_s2045_s2008

Tobabilities						
< µ >	Cpx (plane 0)	Срх				
0.01	0.00133 9	0.00197 9				
0.1	0.01331 9	0.01962 I				
I	0.12544 8	0.17973 7				
5	0.48882 8	0.62880 I				
10	0.73828 6	0.86176				
20	0.93176 5	0.98077 8				

58

T-STREAM POINT OFVIEW

- interested in number of tracks
- probability for event with given number of tracks in one telescope:

Number of telescopes hit per event

no apparent problems with this measurement approach

one could fit the distribution to get the number of pp collisions

H-STREAM POINT OF VIEW

- interested in number of planes or telescopes hit (single HitOr signal provided)
- probability for event with given number of telescopes hit:

Number of telescopes

shows saturation at high luminosity

all telescopes hit, meaning that consecutive bunch collisions will result in HitOr='1'

H-STREAM MASK AREA

BCID distance between the hits for plane 0 of CPX

SIMULATED RATE

- rate of observed events for 0-counting (empty events fraction)
- statistical error significantly better for start of the bunch train

- extreme case
- masking of pixels provides means to make DBM saturation free also for highest luminosity
- biggest challenge will be to make detector fast + precise due to statistical error

SIMULATED DEAD-TIME

- dead time defined as fraction of time where HitOr is constant and equals 'I'
- rise time on beginning of bunch train depends on ToT calibration

- statistical significant fluctuation of dead-time
- pattern more pronounced
 when we near saturation region
- will reduce in real life, because
 Landau charge distribution has
 not been taken into account

DEAD-TIME FRACTION

- statistics reduction can be a problem for DBM
- we might need to adapt mask according to expected luminosity
 - not a robust system
 - unfortunately a quick set of a mask within a feedback loop might not be doable + it costs time

EFFICIENCY

- efficiency for HitOr is a function of active area
- determined for 0-counting algorithm:

r=e^{-<μ> ε}

- with simulated rate and knowledge about true $<\mu>$ one can determine ϵ
- this can be used as first estimation of calibration