Results and Future Prospects from NA62 and Other Kaon Experiments

Zuzana Kučerová
Comenius University Bratislava

On behalf of the NA62 Collaboration

01/10/2019
BEAUTY 2019, Ljubljana, Slovenia
Kaon Physics at NA62

<table>
<thead>
<tr>
<th>Type</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main goal:</td>
<td>$K^+ \rightarrow \pi^+ \nu \bar{\nu}$</td>
</tr>
<tr>
<td>Exotic searches:</td>
<td>$K^+ \rightarrow l^+ N$, $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow A' \gamma$</td>
</tr>
<tr>
<td>Heavy neutral lepton</td>
<td></td>
</tr>
<tr>
<td>Dark photon A'</td>
<td></td>
</tr>
<tr>
<td>others</td>
<td></td>
</tr>
<tr>
<td>Forbidden decays:</td>
<td>$K^+ \rightarrow \pi^- e^+ e^+$, $K^+ \rightarrow \pi^- \mu^+ \mu^+$, others</td>
</tr>
<tr>
<td>Rare decays:</td>
<td>$K^+ \rightarrow \pi^+ \mu^+ \mu^-$, $K^+ \rightarrow \pi^+ \gamma \gamma$, others</td>
</tr>
</tbody>
</table>
$K^+ \rightarrow \pi^+ \nu\bar{\nu}$ in Standard Model

- FCNC loop process - rare meson decay naturally suppressed by the GIM mech.
- Theoretically very clean (no hadronic uncertainties)
- Sensitive to contributions of physics BSM

SM prediction

$$\mathcal{B}_{SM}(K^+ \rightarrow \pi^+ \nu\bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$$

- Uncertainty coming mostly from CKM parameters ($\gamma, |V_{cb}|$)
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Experimental Status

E787/E949 (BNL),
K^+ decays at rest

NA62 (CERN),
K^+ decays in flight

 - $B_{\text{exp.}} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

 - $B_{\text{exp.}} < 14 \times 10^{-10}$ @ 95% CL
NA62 Experiment at CERN

MAIN GOAL: measure $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with precision better than 10%
Requirements: $10^{13}K$ decays, Signal acceptance $O(10\%)$, Bckg rejection $O(10^{12})$

Other physics program: LFV/LNV searches, Exotic searches, Rare decays, π^0 decays

NA62:
- 2014: Pilot run
- 2015: Commissioning run
- September 2016: full detector installation completed
- September-October 2016: first physics run
- **May-October 2017:** second physics run
- April-November 2018: third physics run

- ~200 participants, 31 institutes
Beam:
- Primary (SPS) proton beam with momentum 400 GeV/c
- 2×10^{12} protons per 3.5s spill
- Beryllium target
- Secondary positive beam with momentum ~ 75 GeV/c
- Secondary beam content:
 - K^+ (6%), π^+ (70%), p (24%)
- 2017 Intensity: 450 MHz @ GTK3
- Kaon decay rate ~ 3 MHz

Detectors:
- KTAG - Cherenkov det. for K^+ tagging
- GTK - beam spectrometer
- Decay region - 60 m long, in vacuum
- STRAW - downstream spectrometer
- CHOD - charged particle hodoscope
- LAV, IRC, SAC - photon veto
- RICH, LKr - Cherenkov detector and calorimeter for PID
- MUV3 - muon veto
Measurement Strategy

Measurement strategy:
- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ signature: one K^+ in the initial state, one π^+ and missing energy (neutrinos) in the final state
- Two kinematic signal regions
- Blind analysis
- Trigger streams (HW+SW): PNN and Control (minimum bias)

Main background processes:

<table>
<thead>
<tr>
<th>Process</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu (\gamma)$</td>
<td>0.6356</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0 (\gamma)$</td>
<td>0.2067</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^+ \pi^–$</td>
<td>0.0558</td>
</tr>
</tbody>
</table>

Keystones:
- $\mathcal{O}(100 \text{ ps})$ timing between subdetectors
- $\sim \mathcal{O}(10^3)$ kinematic background suppression
- PID background suppression (μ^+ and π^0) $> 10^7$

Main kinematic variable:

$m^2_{\text{miss}} = (P_{K^+} - P_{\pi^+})^2$
Signal selection:
- Single track topology
- K^+ and π^+ momentum reconstruction (GTK, STRAW)
- $K^+ - \pi^+$ matching
- K^+ decays in the fiducial region
- π^+ identification ($\epsilon_{\pi^+} \sim 64\%$)
- γ rejection
- Multi-track event rejection
- Upstream background suppression
- $15 \text{ GeV} < P_{\pi^+} < 35 \text{ GeV}$
- Signal regions defined by $m_{\text{miss}}^2(\pi^+)$

Reconstructed m_{miss}^2 (assuming π^+ mass) as a function of the track momentum for control data before PID and γ and multi-track rejection. [Phys.Lett.B 791, 156-166(2019)]
Data After Signal Selection (2017 Dataset)

- Validation regions dedicated to background validation
- Signal and validation regions blinded

Zuzana Kučerová
Recent Results in Kaon Physics
01/10/2019
Single Event Sensitivity (SES) (2017 Dataset)

\[
N_{\pi\nu\nu}^{\text{exp}} \approx N_{\pi\pi} \epsilon_{\text{trig}} \epsilon_{RV} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{B(\pi\nu\nu)}{B(\pi\pi)} \quad \Rightarrow \quad SES = \frac{B(\pi\nu\nu)}{N_{\pi\nu\nu}^{\text{exp}}}
\]

- \(N_{\pi\nu\nu}^{\text{exp}}\) = expected number of \(K^+ \rightarrow \pi^+\nu\bar{\nu}\) events
- \(N_{\pi\pi}\) = Number of \(\pi^+\pi^0\) events from Control sample with \(\pi\nu\nu\)-like selection without \(\gamma\)/multiplicity rejection
- \(\epsilon_{\text{trig}}\) = efficiency of PNN trigger
- \(\epsilon_{RV} = K^+ \rightarrow \pi^+\nu\bar{\nu}\) loss due to \(\gamma\)/multi-track rejection bc of random activity
- \(A_{\pi\nu\nu,\pi\pi}\) = MC acceptances for \(K^+ \rightarrow \pi^+\nu\bar{\nu}\) (\(\sim 3\%\)) and \(K^+ \rightarrow \pi^+\pi^0\) (\(\sim 8.5\%\))
- \(B(\pi\pi)\) = PDG branching ratio for \(K^+ \rightarrow \pi^+\pi^0\)
- \(B(\pi\nu\nu)\) = SM branching ratio for \(K^+ \rightarrow \pi^+\nu\bar{\nu}\)

Ratio of acceptances allows for cancellation of systematic effects
- Computation in bins of \(\pi^+\) momentum and instantaneous beam intensity

Measured single event sensitivity:

\[
SES = (3.89 \pm 0.21) \times 10^{-11} \quad \text{(Preliminary)}
\]

Expected number of \(K^+ \rightarrow \pi^+\nu\bar{\nu}\) events in both signal regions combined:

\[
N_{\pi\nu\nu}^{\text{exp}} = 2.16 \pm 0.12 \pm 0.26_{\text{ext}} \quad \text{(Preliminary)}
\]

External error coming from \(B(\pi\nu\nu)\).
$K^+ \rightarrow \pi^+\pi^0$ Background

$K^+ \rightarrow \pi^+\pi^0$ Control data used to study tails of m^2_{miss} distribution

Expected and observed $K^+ \rightarrow \pi^+\pi^0$ bckg in validation regions after PNN selection

$$N^{exp}_{\pi\pi}(\text{region}) = N(\pi^+\pi^0) \cdot f^{\text{kin}}(\text{region})$$

- $N^{exp}_{\pi\pi}(\text{region}) =$ Expected $K^+ \rightarrow \pi^+\pi^0$ events in signal region after PNN selection
- $N(\pi^+\pi^0) =$ Data in $\pi^+\pi^0$ peak after PNN selection
- $f^{\text{kin}}(\text{region}) =$ Fraction of $K^+ \rightarrow \pi^+\pi^0$ in signal region measured on Control data

By-product: $\mathcal{B}(\pi^0 \rightarrow \text{invisible}) < 4.4 \times 10^{-9}$ 90% CL
Upstream Background

Normal decay of K^+:

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- MC projected at collimator

Track from $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Decay vertex

Zuzana Kučerová
Recent Results in Kaon Physics
01/10/2019 12 / 27
Upstream Background

Normal decay of K^+:

$K^+(75 \text{ GeV}) \rightarrow \pi^+ < 35 \text{ GeV}$

Upstream Background:

- K^+ decays/interacts in the achromat
- Secondary π^+ downstream
- Beam elements block additional particles
- π^+ scattering in Straw Chamber 1
- Pileup beam particle tagged as K^+

Sketches from G. Ruggiero
Upstream Background

Normal decay of K^+:

$K^+ (75 \text{ GeV})$ decays/interacts in the achromat.

Secondary π^+ downstream.

Beam elements block additional particles.

π^+ scattering in Straw Chamber 1.

Pileup beam particle tagged as K^+.

Upstream bckg:

- K^+ decays/interacts in the achromat.
- Secondary π^+ downstream.
- Beam elements block additional particles.
- π^+ scattering in Straw Chamber 1.
- Pileup beam particle tagged as K^+.
Background Summary (2017 Dataset)

Expected number of events in both signal regions combined (Preliminary):

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (SM)</td>
<td>$2.16 \pm 0.12_{\text{stat}} \pm 0.26_{\text{ext}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0 (\gamma)$ IB</td>
<td>$0.29 \pm 0.03_{\text{stat}} \pm 0.03_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu_{\mu} (\gamma)$ IB</td>
<td>$0.11 \pm 0.02_{\text{stat}} \pm 0.03_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu_{\mu} (\mu^+ \rightarrow e^+ \text{decay})$</td>
<td>$0.04 \pm 0.02_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$</td>
<td>$0.12 \pm 0.05_{\text{stat}} \pm 0.03_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^- \pi^+$</td>
<td>$0.02 \pm 0.02_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \gamma \gamma$</td>
<td>$0.005 \pm 0.005_{\text{syst}}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow l^+ \pi^0 \nu_l$</td>
<td>negligible</td>
</tr>
<tr>
<td>Upstream background</td>
<td>$0.9 \pm 0.2_{\text{stat}} \pm 0.2_{\text{syst}}$</td>
</tr>
<tr>
<td>Total background</td>
<td>$1.5 \pm 0.2_{\text{stat}} \pm 0.2_{\text{syst}}$</td>
</tr>
</tbody>
</table>

$K^+ \rightarrow \pi^+ \pi^0 (\gamma)$, $K^+ \rightarrow \mu^+ \nu (\gamma)$, $K^+ \rightarrow \pi^+ \pi^- \pi^+$ and upstream backgrounds estimated from Control data and validated using the validation regions. Other backgrounds estimated from the MC simulations validated on data.
Zuzana Kučerová

Recent Results in Kaon Physics

01/10/2019 16 / 27
Box Opened
2 events observed in signal region

NA62 Preliminary

\(m_{\text{miss}}^2 \) vs \(\pi^+ \) momentum

\(\text{SM } K^+ \rightarrow \pi^+ \nu \bar{\nu} \)

\(\text{data} \)

\(0 \)

\(-0.1 \)

\(10 \)

\(15 \)

\(20 \)

\(25 \)

\(30 \)

\(35 \)

\(40 \)

\(-0.05 \)

\(0 \)

\(0.05 \)

\(0.1 \)

NA62 Preliminary

Zuzana Kučerová

Recent Results in Kaon Physics

01/10/2019
Preliminary Results from the 2016+2017 Datasets

<table>
<thead>
<tr>
<th>Single event sensitivity</th>
<th>$(0.346 \pm 0.017) \times 10^{-10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected number of background events</td>
<td>1.65 ± 0.31</td>
</tr>
<tr>
<td>Observed number of events</td>
<td>3</td>
</tr>
</tbody>
</table>

Observed upper limits:

- $B(K^+ \to \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10}$ \(\text{@} 90\% \text{ CL} \) (Preliminary)
- $B(K^+ \to \pi^+ \nu \bar{\nu}) < 2.44 \times 10^{-10}$ \(\text{@} 95\% \text{ CL} \) (Preliminary)

Grossman-Nir limit: $B(K_L \to \pi^0 \nu \bar{\nu}) < 8.14 \times 10^{-10}$ \(\text{@} 90\% \text{ CL} \) (Preliminary)
Forbidden Decays (LNV) at NA62

- Study of $K^+ \rightarrow \pi^- \mu^+ \mu^+$ and $K^+ \rightarrow \pi^- e^+ e^+$ ($\Delta L_I = 2$)
- Processes in BSM with massive Majorana neutrinos U
- Signal selection using $|M(\pi^- l/l^+ l^+) - M(K^+)|$ and PID
 → improvement by factor 2-3 wrt previous result:
 - $\mathcal{B}(K^+ \rightarrow \pi^- e^+ e^+) < 2.2 \times 10^{-10}$ @ 90% CL
 - $\mathcal{B}(K^+ \rightarrow \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}$ @ 90% CL
Hidden Sector Searches: Heavy Neutral Leptons (HNL)

- Study of $K^+ \rightarrow l^+ N (l = e, \mu) – production search$
- νMSM – mixing of three massive sterile neutrinos (HNL) with the three ordinary active neutrinos – fermion portal to a hidden sector
- Kinematic variable: squared missing mass $m^2_{\text{miss}} = (P_K - P_l)^2$
- Signal: a spike above continuous missing mass spectrum
- Mass scan in the range of 141–462 (220–383) MeV/c^2 in the e^+ (μ^+) case

- Preliminary 2016+2017 results → new upper limit on mixing parameter $|U_{l4}|^2$ [Goudzovski, KAON 2019]
- Improvement by less than a factor of 2 with full dataset (2016-2018)
- Intention to collect data in beam-dump mode in 2021-2023 for HNL decay (and other) searches

![Graph showing upper limits on mixing parameter $|U_{l4}|^2$](image)
Hidden Sector Searches: Dark Photon \(A' \)

- Search for dark photon using \(K^+ \rightarrow \pi^+\pi^0, \pi^0 \rightarrow A'\gamma \), decay chain with \(A' \) decaying to invisibles – vector portal to a hidden sector
- SM extension – new vector field \(A' \) mixing with the SM \(\gamma \)
- Signal signature: \(\pi^0 \) decay, one \(\gamma \) and missing energy, no additional activity
- Kinematic variable: squared missing mass \(m_{\text{miss}}^2 = (P_K - P_{\pi^+} - P_{\gamma})^2 \)
- Signal: a spike above continuous missing mass spectrum
- Mass scan in range 30–130 MeV/c\(^2\) of \(M_{A'} \)
- 2016 results \(\rightarrow \) no statistically significant excess identified \(\rightarrow \) **new upper limit on \(\epsilon^2 \) coupling of \(A' \) to \(\gamma \)** [JHEP 05 (2019) 182]
- Expected \(\sim 100\times \) more statistics from full 2016–2018 dataset

![Graphs showing mass scan and coupling limits](image)
Prospects for NA62

All physics analyses ongoing (2017 and/or 2018 datasets):
- 2018 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ dataset
 - Analysis ongoing
 - $2 \times$ more data than in 2017
 - Optimization studies to increase signal efficiency
 - New collimator installed – increased signal acceptance

NA62 After 2021 (LHC Run 3):
- Plans to modify the beamline setup in order to strongly suppress upstream background
- Add 4th GTK station to reduce $K^+ - \pi^+$ mistagging probability
- Plans for new vetoes in the beamline to detect extra particles
- Plans for data-taking:
 - $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at nominal beam intensity
 - Rare decays + Exotics
 - NA62++:
 - Beam dump experiment (closed TAX) with 10^{18} POT
 - Decays of exotic particles
 - New ANTI0 detector under construction to veto muons produced in the TAX
 - Studies to increase proton beam intensity by 20-50% above nominal
KAoN Facility (2026 Onwards)

NA62 has initiated feasibility study for running at considerably higher intensity...

- Physics goals:
 - NA62×4 – improve precision on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - KLEVER – measure $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$, complementary to NA62 and KOTO
 - 4× higher intensity in K^+ mode, 6× higher intensity in K_L mode
 - Challenging for tracking and beam detectors (K^+ mode)
 - Challenging for calorimetry and photon detection (K_L mode)
 - Large commonality in terms of upgrades required (hardware, readout)
Search for new physics with CP-violating (and highly suppressed FCNC) process $K_L \rightarrow \pi^0 \nu \bar{\nu}$

SM prediction for branching ratio is $\mathcal{B}_{SM} = (3.0 \pm 0.3) \times 10^{-11}$

~50 people from 16 institutes

First physics run in 2013

2015 dataset:

- Results published in Physical Review Letters [PRL.122.021802 (2019)]
- Measured SES: $(1.30 \pm 0.01_{\text{stat}} \pm 0.14_{\text{syst}}) \times 10^{-9}$
- Expected number of background events in the signal region: 0.42 ± 0.18
- No signal candidate events were observed
- New upper limit for $\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu}) \leq 3.0 \times 10^{-9}$ at 90% C.L.
 \rightarrow 10x improvement wrt prev. limit from KEK E391a [Phys.Rev.D 81, 072004, 2010]

Current status of 2016-2018 data analysis presented at KAON 2019

Future – major upgrades planned for KOTO Step-2 [Nomura, KAON 2019]
\[K_L \rightarrow \pi^0 \nu \bar{\nu} \] at KOTO, J-PARC Center, Japan

- 30 GeV/c proton beam hitting a gold target
- Secondary neutral beam (neutrons, photons, \(K_L \)) produced at an angle and transported to the decay region via neutral beamline
- Peak \(K_L \) momentum 1.4 GeV/c
- Calorimeter and hermetic veto counters for neutral and charged particles around decay region in vacuum

Signature: two photons + missing energy

Main sources of background: charged

\[(K_L \rightarrow \pi^\pm e^\pm \nu, \ K_L \rightarrow \pi^\pm \mu^\pm \nu, \ K_L \rightarrow \pi^+ \pi^- \pi^0, \ K_L \rightarrow \pi^+ \pi^-), \text{neutral} \ \ (K_L \rightarrow \pi^0 \pi^0 \pi^0, \ K_L \rightarrow \gamma \gamma, \ K_L \rightarrow \pi^0 \pi^0) \]

Diagram:

- Proton beam
- Au target
- CsI calorimeter (reconstruct \(\pi^0 \) from 2\(\gamma \))
- \(K_L \) beam
- Hermetic veto detectors
- Beam plug
- Sweeping magnet
- Primary Proton
- Target
- Collimator
- Photon absorber
- Cooling block

Additional details:

- \(30 \text{ GeV/c proton} \)
- Collimator + sweeping magnet
- \(K_L \) pencil beam
- pencil beam (\(K_L, n, \gamma \))
- \(\nu \bar{\nu} \) (undetectable)
- \(\pi^0 \rightarrow 2\gamma \)
2016–2018 dataset:
- 1.4× more statistics
- New veto counters
- Current status presented at KAON 2019 →

[Shinohara, KAON 2019]:
- Measured SES = 6.9×10^{-10}
- Expected number of background events in the signal region: 0.05 ± 0.02
- 4 events found in signal region
Stay tuned...

More results from Kaon experiments coming soon...

For more Kaon related searches see presentations at KAON 2019 [KAON 2019, Perugia]
- Intensity:
 - 2016: 40% of nominal
 - 2017: 55% of nominal
 - 2018: 65% of nominal

- Kaon decays:
 - 2017: 2×10^{12} K^+ decays
 - 2016+2017+2018: 6×10^{12} K^+ decays

- 2017 signal acceptance: 1.34% (including random veto, trigger and total detector efficiency)

- Rolke-Lopez 68% confidence interval: $\mathcal{B}(K^+ \rightarrow \pi^+ \nu\bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$ (for comparison with BNL)
Recent Results in Kaon Physics

Date

Protons on target

* Including periods of beam off

𝐏𝐫𝐨𝐭𝐨𝐧𝐬𝐨𝐧𝐭𝐚𝐫𝐠𝐞𝐭

2014-15 (16) Pilot run, Commissioning runs

2016 Physics run (45 days*)

2017 Physics run (160 days*)

2018 Physics run (217 days*)
π⁰ rejection and search for π⁰ → invisible

A-priori evaluation of π⁰ rejection in K⁺ → π⁺π⁰ (0.015 < m_{miss}^2 < 0.021 GeV²/c⁴)

- Same selection, and trigger stream as K⁺ → π⁺ν̅ν, about 1/3 of the data used for πνν
- Single-γ detection efficiency from data minimum-bias K⁺ → π⁺π⁰ (Tag & Probe)
- π⁰ rejection evaluated from convolution with MC K⁺ → π⁺π⁰(γ)
- Validation: side-bands with expected rejection O(10⁻⁷) where π⁰ → invisible excluded
- π⁰ rejection expected: \((2.8^{+5.0}_{-2.1}) \times 10^{-9}\) (π⁺ momentum 25-40 GeV/c)

Result

- BR(π⁰ → invisible) normalized to π⁰ → γγ
- Background expected: \(10^{+22}_{-8}\) (K⁺ → π⁺π⁰)
- Events observed: 12

BR(π⁰ → invisible) < 4.4 \times 10^{-9} @ 90% CL

UL 60 times stronger than past measurement
Backup

Background Validation

\(K^+ \rightarrow \pi^+\pi^0 \) background expected and observed in control regions (CR1 + CR2) after \(\pi\nu\nu \) selection

\(K^+ \rightarrow \mu^+\nu \) background expected and observed in control region (CR) after \(\pi\nu\nu \) selection

23/10/2019 Giuseppe Ruggiero - Kaon 2019
πνν Single Event Sensitivity

\[\epsilon_{RV} \text{ measured on } K^+ \rightarrow \mu^+ \nu \text{ data} \]

- Intensity measured event-by-event using Gigatracker time sidebands

\[\langle \epsilon_{RV} \rangle_{2017} = 0.638 \pm 0.014 \]

\[\epsilon_{\text{trigger}} \text{ measured on data} \]

- \(\pi^+ \) momentum [15,20] GeV/c

Statistical uncertainty

Stat+systematic uncertainty

Zuzana Kučerová

Recent Results in Kaon Physics

10/09/2019

Giuseppe Ruggiero - Kaon 2019
\[\pi\nu\nu \text{ S.E.S.: Results} \]

- Integrated over beam intensity and π^+ momentum

\[S.E.S. = (0.389 \pm 0.021) \times 10^{-10} \]

\[N_{\pi\nu\nu}^{exp} = 2.16 \pm 0.12 \pm 0.26_{ext} \]

- Error budget (S.E.S.)

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty $\times 10^{-10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0 trigger</td>
<td>± 0.015</td>
</tr>
<tr>
<td>Acceptance</td>
<td>± 0.012</td>
</tr>
<tr>
<td>Random veto</td>
<td>± 0.008</td>
</tr>
<tr>
<td>L1 trigger</td>
<td>± 0.003</td>
</tr>
<tr>
<td>Normalization background</td>
<td>negligible</td>
</tr>
</tbody>
</table>

- External error on $N_{\pi\nu\nu}^{exp}$ from $Br(\pi\nu\nu) = (0.84 \pm 0.10) \times 10^{-10}$