
Ljubljana Summer School 2019

BSM in the sky

Tutorial

Lecturer: Filippo Sala, Tutorial: Yann Gouttenoire,

The first three problems will be treated during the first tutorial session and the last
three problems during the second tutorial session. We actively encourage you to
work on the problems during the free time from 1 pm to 3 pm after lunch. Then,
we kindly invite you to volunteer to present your solution on the black board. In
any case, you will receive help from the tutor.

——————–
Some numerical values: 1 s ' 1.5×1024 GeV−1, 1 cm ' 5.1×1013 GeV−1, Mpl ' 2.44×1018 GeV.

Problem 1 - Survival of the baryon abundance

We assume that we live in a universe with as many baryons as antibaryons and we estimate the
proton-antiproton annihilation cross-section to be

σpp̄ vrel =
c1

m2
π

, (1)

where c1 is an order 1 constant.

• Question 1 : Using the instantaneous freeze-out approximation, compute the surviving
relic abundance of nucleons and anti-nucleons.

• Question 2 : The baryon-to-photon ratio is infered by BBN prediction vs observation
[1] to be η ≡ nB/nγ ' 6.2 ± 0.4 × 10−10. Deduce the value of the baryon-to-entropy
ratio nB/s. We assume the effective number of neutrinos to be the SM value, namely
Neff ' 3.045 [2, 3]. Conclude.

Problem 2 - Upper bound on the mass of thermal DM

The unitarity of the S-matrix S†S is just the matrix form of the conservation of the occupation
probability of a quantum state

∑
f Pi→f . We can split the channels into elastic and inelastic

scatterings Pelast + Pinelast = 1. Thanks to the orthonormality properties of the spherical

harmonics, the conservation of the probability is even satisfied for each partial wave L, P
(L)
elast +

P
(L)
inelast = 1.1 Next, the inelastic cross-section of a 2-to-2 process can be decomposed into partial

waves with each coefficient expressed as a function of P
(L)
inelast

σine =
∑

σ
(L)
ine with σ

(L)
ine =

π(2L+ 1)

p2
i

P
(L)
inelast. (2)

1Partial waves are eigenstates of the square of the angular momentum L2.
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This is how, in 1990, Griest and Kamionskowski (have a look at [4] but also app. B if you
are interested) convert the unitarity requirement on an upper-bound on the annihilation cross-
section

P
(L)
inelast . 1 → σ

(L)
ine .

π(2L+ 1)

p2
i

. (3)

• Question 1 : Derive the non-relativistic limit of eq. (3) as a function of the relative
velocity vrel and the DM mass MDM.

• Question 2 : Deduce the upper bound on the mass of Majorana (self-conjugate) and
Dirac (non self-conjugate) thermal DM assuming that it freezes-out by annihilating through
partial wave L. You can use the value in [5] for the annihilation cross-section of thermal
DM at freeze-out 〈σvrel〉FO. We give 〈1/vrel〉 =

√
xFO/π [4].

• Question 3 : However, for such heavy DM, we expect the coupling constant to be large
and non-perturbative effects, the so-called Sommerfeld effects, to modify the velocity
dependence of the annihilation cross-section (you can have a look at app. (A) for a quick
summary) such that the value of 〈σvrel〉FO from [5] must be corrected. Understand why.
Estimate how the upper bound on the DM mass from the previous question is affected.

• Question 4 : Show that a cross-section larger than few times the geometrical cross-section
would violate unitarity.

Problem 3 - Relaxing the unitarity bound by injecting entropy

Consider the presence of an heavy cold relic V of mass mV which dominates the energy density
of the universe and decays into SM radiation after the DM has frozen-out. During the decay,
non-relativistic degrees of freedom held in the cold relic are converted into relativistic degrees of
freedom held in the radiation, hence creating entropy. We assume that the cold relic has already
decoupled from the SM (and from DM) when it dominates the energy density of the universe,
meaning that its comoving number density YV is conserved. We assume that the decay occurs
instantaneously when H ∼ ΓV .

• Question 1 : Compute the temperature Tdom at which the cold relic starts dominating
the energy density of the universe as a function of YV and mV .

• Question 2 : Compute the temperature of the universe just after the decay T after
dec .

• Question 3 : Compute the temperature of the universe just before the decay T before
dec .

• Question 4 : Compute the dilution factor D ≡ Safter
dec /Sbefore

dec as a function of mV , ΓV
and YV , where S is the total entropy S = s a3 and s is the comoving entropy. We can
neglect the entropy stored in the cold relic before it decays. Realize how simple is the
expression for D when expressed as a function of Tdom and T after

dec .

• Question 5 : Compute the impact of the entropy injection due to the decay of the cold
relic on the annihilation cross-section at freeze-out. Deduce the consequence for indirect
detection.

• Question 6 : Compute the new unitarity bound on the mass of thermal DM as a function
of the dilution factor D.

• Question 7 : The good agreement between theory and observation regarding Big-Bang
Nucleosynthesis constrains the lifetime of any heavy cold relic to be smaller than ∼ 0.03 s.
Assuming mV = 100 PeV, compute the maximal dilution factor and the maximal unitarity
bound on the DM mass, compatible with BBN.
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Problem 4 - Gamma-ray at Earth from DM decay

• Question 1 : Give a list of dimension 5 operators inducing the decay of DM, assuming
that it is a singlet under the symmetry groups of the SM GSM. At least 3 operators for a
singlet scalar DM and 1 operator for a singlet fermion DM would be nice.

• Question 2 : Deduce an estimate for the DM lifetime τ as a function of the cut-off Λ.

• Question 3 : Knowing that lower bound on the DM lifetime coming from gamma-ray
and X-ray telescopes is roughly τ ∼ 1026 s [6, 7] and assuming Λ ∼ GUT , deduce an
upper bound on the mass of DM decaying via a dimension 5 operator.

Problem 5 - Gamma-ray at Earth from DM annihilation

GC
P

SUN

r⊙ s

r

θ

Figure 1: Relation between the angle θ and the distance along the line-of-sight s in eq. (7).

The detected gamma flux per solid angle unit and per energy unit from annihilation in the
Milky Way of self-conjugate DM is (see app. C for a derivation)

dφγ
dΩdE

=
1

2

r�
4π

(
ρ�
MDM

)2

J(θ)
∑
f

〈σv〉f
dNf→γ
dE

(4)

where

J(θ) =

∫
ds

r�

(
ρDM (~r)

ρ�

)2

(5)

is the so-called J factor for annihilation, r� = 8.33 kpc is the Earth distance to the GC and
ρ� = 0.3 GeV/cm3 is the supposed DM energy density at the Earth position. It is also common
to define the J-factor averaged over a disk [0, θ] or an annulus [θ1, θ2]

J̄ =
1

∆Ω
2π

∫ θ2

θ1

dθ sin θ J(θ), (6)

where ∆Ω = 2π
∫ θ2
θ1
dθ sin θ. As shown in Fig.(1), The distance s between the Earth and the

observation point P is related to the distance r between P and the galactic center GC through

r =
√
r2
� + s2 − 2r�s cos θ (7)
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where θ is the angle between the observer line-of-sight and the GC. A mostly used DM profile
is the so-called Navarro-Frenk-White [8] fitted on N-body simulations

ρNFW(r) = ρs
rs
r

1(
1 + r

rs

)2 (8)

We choose the parameter ρs = 24.42 GeV/cm3 and rs = 0.184 kpc in order for the local DM
density at the sun position r� = 8.33 kpc to be ρ� = 0.3 GeV/cm3 and for the total DM
mass contained within 60 kpc to be M60 ≡ 4.7× 1011 M� [9]. However, the presence of a cusp
(DM profile peaked as ρDM ∼ 1/r at the center) contradicts the observation of a core in dwarf
galaxies (ρDM ∼ r0 at the center). More precisely, it has been found that the star rotation
velocity in the inner part of the galaxy shows a solid-body behaviour (rises linearly with the
radius) hence indicating the presence of a central core in the DM distribution [10–17]. In order
to agree better with the observation, an alternative to NFW is the iso-thermal profile (e.g. [18])

ρiso(r) =
ρs

1 +
(
r
rs

)2 . (9)

An other alternative (which is the one we choose here) is to modify NFW by including a core
of size r0

ρcore
NFW(r) = ρs

rs
r + r0

1(
1 + r

rs

)2 . (10)

• Question 1 : Compute numerically the J-factor averaged over the disk [0, 1◦] centred
on the GC, assuming the NFW profile in eq. (8).

• Question 2 : Repeat the exercise with the modified NFW profile in (10) including a
core of size r0 = 0.5 kpc. Understand how uncertainties on the presence of a core in the
MW center translate on uncertainties on the DM annihilation cross-section upper bounds
coming from indirect detection experiments. Understand also how these uncertainties
vary when we vary the observation angle θ.

• Question 3 : The HESS (TeV gamma-rays telescope) collaboration provides one of the
most stringent indirect detection constraints on annihilation cross-section of DM with a
TeV mass. In [19], they use a NFW profile (without a core) averaged over the annulus
[0.3◦, 1◦]. Estimate the potential error on the upper bound on the DM annihilation
cross-section if the MW has indeed a ∼ 0.5 kpc core.

• Question 4 : If you can not use numerical methods, you can try to prove analytically
that the J-factor for the only-solid-core DM profile

ρdisk = ρ0 if r < r0 and 0 otherwise (11)

is Jdisk = 4π
3

(
ρ0
ρ�

)2 (
r0
r�

)3
. An advice, you should better rename r� → d to prevent

mixing up r0 and r�.

Problem 6 - Analogue of Sommerferld enhancement in classical
gravity

Consider a point particle impinging on a star of radius R. Neglecting gravity, only particles with
impact parameter b smaller than R will hit the star. Hence, the cross-section for the particle to
crash on the star is just the geometrical cross-section σ0 = πR2. However, after including the
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long range Newton’s force, particles can crash on the star for larger impact parameter. Then,
the cross-section is πb2max, where bmax is the largest impact parameter leading to a crash. We
denote v the velocity at infinity.

• Question : Show that

σ = σ0

(
1 +

v2
esc

v2

)
, (12)

where v2
esc = 2GNM/R is the escape velocity from the surface of the star. We conclude

that a long-range Newton’s interaction enhances the cross-section σv by of factor growing
as 1/v. This is a classical counterpart of the Sommerfeld enhancement, c.f. app. A.

Problem 7 - γ-ray constraints on U(1)D model

We have seen in problem 1 that thermal DM must be protected against decay via dimension 5
operators. An easy solution is to charge the DM (Dirac fermion X) under a local U(1)D, hence
also providing an interaction between DM particles mediated by a dark photon Vµ

L ⊃ −1

4
FDµνF

µν
D −

1

2
m2
V VµV

µ + X̄
(
i /D −MDM

)
X (13)

where MDM > mV are the masses of the fermion DM and vector mediator and Dµ = ∂µ+ igD Vµ
is the covariant derivative. We define the dark fine structure constant αD ≡ g2

D/(4π). The dark
sector can communicate to the SM via a renormalizable kinetic mixing

L ⊃ − ε

2cw
FDµνF

µν
Y . (14)

This allows the dark photon to decay into SM particles. We suppose that the dark sector and
the SM have been at thermal equilibrium in the early universe (thermal DM scenario) but
have decoupled well before DM freezes-out. DM freezes-out by annihilating into a pair of dark
photons with cross-section

σvrel =
πα2

D

M2
DM

. (15)

We know fix the DM mass MDM = 1 TeV.

• Question 1 : Assuming that the perturbative cross-section σv in eq. (15) is correct, give
the value of the dark fine structure constant αD needed to correctly reproduce the correct
DM abundance. We give 〈σvrel〉FO = 2.4× 10−26 cm3/s.2.

• Question 2 : We want to use indirect detection to constrain thermal DM with TeV mass
range. A good experiment is HESS telescope which measures TeV energy γ-ray. Assuming
the validity of the perturbative cross-section in eq. (15), discuss if the HESS constraints
from [20] can probe the U(1)D model.

• Question 3 : For heavy thermal DM (∼TeV mass range), the coupling constant αD is
large and non-perturbative effects called Sommerfeld effects can enhance the perturbative
cross-section (see app. A for a bit of more details). The relative velocity in the MW
which is vrel ∼ 220 km/s ∼ 10−3 has to be compared to the relative velocity at freeze-out
∼ 0.3. Compute the ratio of the annihilation cross-section in MW to the one at freeze-
out 〈σv〉 |MW/ 〈σv〉 |FO, assuming the Coulomb approximation (c.f. eq. (23)) to be valid.3

2The similarity of 〈σvrel〉FO with the s-wave perturbative Majorana value computed in [5] comes from
the almost exact cancellation between the Dirac-to-Majorana factor and the velocity dependence of the non-
perturbative (Sommerfeld-enhanced) cross-section 〈σvrel〉 ∝ 1/vrel.

3Don’t lose your time performing the average over the velocity distribution of DM in the galaxy and assume
〈σvrel〉 = σvrel|

vrel=
√
〈v2

rel〉
.
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Deduce the relevance of the Sommerfeld enhancement for indirect-detection in the MW.
And in Dwarfs ?

• Question 4 : Using the expression for the Sommerfeld enhancement with finite mediator
mass in eq. (25), compute the upper bound on the mediator mass mV of the U(1)D model
coming from HESS [20] assuming the branching ratio BR (V → τ−τ+) ∼ 15 % and the
DM mass MDM = 1 TeV.

A What is the Sommerfeld enhancement ?

The Sommerfeld enhancement is a non-relativistic effect arising in Quantum Mechanics. Sup-
pose that a non-relativistic particle is moving along the z direction with wavefunction

ψ
(0)
k (~r) = eikz, (16)

and can be annihilated and converted into an other state due to a short-range interaction at the

origin: Hann = Uannδ(~r) [21]. Then the rate of the process will be proportional to |ψ(0)
k (~r)|2 = 1.

But now if we add a long-range interaction V (~r), the wavefunction of the particle will be
distorted and this will change the annihilation rate. More precisely, the wavefunction ψk(~r) will
obey to the Schrodinger equation[

− 1

2M
∇2 + V (~r) + Uannδ(~r)

]
ψk = εk ψk. (17)

Since the annihilation takes only place locally in r = 0, the only effect of the long-range force
is to modify the value of the wavefunction at the origin. This changes the cross-section

σ = σ0Sk, (18)

by a factor called the Sommerfeld factor

Sk =
|ψk(0)|2

|ψ(0)
k (0)|2

. (19)

σ0 is the perturbative cross-section, computed when taking only into account the short-range
potential. From the point of view of Feynman diagrams, the Sommerfeld enhancement can be
visualized as an infinite ladder of mediator exchange.

X̄ V

X V

...

(20)

The infinite number of mediator exchange manifests the existence of bound states in the theory
when the range of the Dark force 1/mV is larger than the size of the would-be bound state
system (µvrel)

−1, µ being the reduced mass MDM/2 of the 2-body system

BSE:
αDMDM

2mV
≥ 1. (21)

We can neglect the mass of the mediator when the range of the Dark force 1/mV is larger than
the De Brogglie wavelength (µvrel)

−1, the so-called Coulomb approximation

Coulomb:
MDMvrel

2mV
≥ 1. (22)
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In that case, the Sommerfeld enhancement factor of the cross-section is simply

SC = 2π
αD
vrel

1

1− e−2π
αD
vrel

. (23)

In the opposit case, in presence of a finite mediator mass there is no exact analytical expression
of the Sommerfeld enhancement factor. However, an approximative analytical solution can be
found after replacing the Yukawa potential by the Hulthen potential

VH = −αD m∗
e−m∗r

1− e−m∗r
. (24)

Then, the Sommerfeld factor for direct annihilation is found to be [22], [23]

SH =
2παD
vrel

sinh(πMDMvrel/m∗)

cosh(πMDMvrel/m∗)− cosh(π
√
M2

DMv
2
rel/m

2
∗ − 4MDMαD/m∗)

. (25)

For mV &MDMvrel/2, the Sommerfeld factor with the Hulthen potential SH is suppressed with
respect to the Sommerfeld factor with the Coulomb potential SC except on resonances, which
coincide with energies of bound states crossing zero. SH is a good approximation off-resonance.
The position of the first resonances of the Yukawa potential can be matched if m∗ = 1.68 mV

[22] but the position of the higher resonances become more and more approximate.

B Unitary bound on cross-sections

Clarification of the computation of the unitary bound on 2→ 2 cross-section in [4] using results
from [24].

B.1 Partial-wave expansion of the cross-section

We consider the scattering 1 + 2 → 3 + 4. The transition probability amplitude between the
two asymptotic states 〈i|S |f〉 = 〈p1, λ1; p2, λ2|S |p3, λ3; p4, λ4〉 can be decomposed as

Sif = δif + i(2π)4δ(4)(Pi − Pf )Tif (26)

where the matrix element Tif contains the non-trivial part. The cross-section reads

dσ(ab→ cd) =
1

2E12E2vrel
d Lips(s; P3,P4) (27)

where
2E12E2 vrel =

√
(p1 · p2)2 −m1m2 ≡ 2λ1/2(s,m2

1,m
2
2) (28)

In the rest frame of particule a, we have vrel = p2/E2 = v2 while in the center of mass frame
we have

vrel =
p
√
s

E1E2
. (29)

We notice that the center of mass initial pi and final pf momenta can be expressed as

pi = (4s)−1/2λ1/2(s,m2
1,m

2
2), pf = (4s)−1/2λ1/2(s,m2

3,m
2
4) (30)

The Lorentz-invariant phase space is

d Lips(s,P3,P4) =
d3p3

(2π)3

1

2E3

d3p4

(2π)3

1

2E4
(2π)4 δ(P1 + P2 − P3 − P4) (31)

=
1

16π2

1

E3E4
p2dp dΩ δ(s1/2 − E1 − E2). (32)
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Now using

E = (m2
3 + p2)1/2 + (m2

4 + p2)1/2 (33)

dE = (E−1
3 + E−1

4 ) p dp = E−1
3 E−1

4 E pdp, (34)

the LIPS becomes

d Lips(s,P1,P2) =
1

16π2

p

E
δ(s1/2 − E)dEdΩ (35)

and

d Lips(s,P1,P2) =
1

16π2

p√
s
dΩ (36)

Then the differential cross section reads

dσ(12→ 34) =
pf

4pis

∑
f

∣∣∣∣Tif4π

∣∣∣∣2 dΩ (37)

=
πpf
2pis

∑
f

∣∣∣∣Tif4π

∣∣∣∣2 d cos θ (38)

Now, we expand Tif (θ) in terms of Legendre polynomials of cos θ:

Tif (θ) = 8πs1/2
∞∑
L=0

(2L+ 1)PL(cos θ)Tif,L(s). (39)

Using the orthogonality relation

1

2

∫
dxPL′(x)PL(x)(2L+ 1) = δLL′ (40)

we obtain the cross section in terms of partial waves σ =
∑
σL

σL = 4π(2L+ 1)
∑
f

pf
pi
|Tif,L|2 , (41)

which averaged over polarizations becomes

σL =
4π(2L+ 1)

(2s1 + 1)(2s2 + 1)

∑
λ

∑
f

pf
pi
|Tif,L|2 . (42)

B.2 Unitarity of the partial-wave expansion

The unitarity means that the Hamiltionian should be Hermitian H† = H. Since the S-matrix
is S = e−iHt, it implies

S†S = 1 (43)

and yields to

−i(2π)4δ(4)(Pi−Pf )(Tif−T ∗fi) =
∑
n

(
n∏
k=1

∫
d3pk
(2π)3

1

2Ek

)
TikT

∗
fk(2π)4δ(4)(Pi−Pk)(2π)4δ(4)(Pf−Pk),

(44)
where we used Eq.(26). We get the generalized optical theorem

−i(Tif − T ∗fi) =
∑
n

(
n∏
k=1

∫
d3pk
(2π)3

1

2Ek

)
TikT

∗
fk(2π)4δ(4)(Pi − Pk) (45)
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which holds order by order. Remark: taking i = f = A, we obtain

Im T(A→ A) = m1

∑
X

Γ(A→ X) = m1Γtot (46)

if A is a 1-particle state and

Im T(A→ A) = 2Ecm pcm

∑
X

σ(A→ X) (47)

if A is a 2-particles state. In the case of the scattering 12→ 34, by using Eq.(36) we get

−i(Tif (Ω)− T ∗fi(Ω)) =
∑
k

∫
d Lips(s; k)TikT∗fk (48)

=
∑
k

1

16π2

pk√
s

∫
dΩ′Tik(Ω

′)T ∗fk(Ω
′′) (49)

where Ω is the solid angle between p1 and p3, Ω′ is the solid angle between p1 and pk and Ω′′ is
the solid angle between p3 and pk. Please see Fig.(2) for a visual representation.

p1

p3

pk

θ

θ′

φ′

x

y

Figure 2: Solid angles Ω, Ω′ and Ω′′ which appear in the unitarity equation Eq.(49).

Now using the expansion in Legendre polynomials in Eq.(39), the following property of
Legendre polynomials ∫

dφ
′
PL(cos θ′′) = 2πPL(cos θ)PL(cos θ′) (50)

as well as the orthogonality relation in Eq.(40), we can write

−8πs1/2
∑
L

(2L+ 1)PL(x)i(Tif,L − T ∗fi,L) (51)

=
∑
k

pk 4s1/2

∫
dx′
∑
L′

(2L′ + 1)PL′(x
′)Tik,L′

∑
L

(2L+ 1)2πPL(x)PL(x′)T ∗fk,L (52)

=16πs1/2
∑
k

pk
∑
L′

(2L′ + 1)PL′(x)Tik,L′T
∗
fk,L′ , (53)

9



with x = cos θ and x′ = cos θ′. Finally, we get

Tif,L − T ∗fi,L = 2i
∑
k

pk Tik,LT
∗
fk,L. (54)

Using matrix notation, this can be rewritten as

TL − T †L = 2iTLp̃T
†
L (55)

with p̃ = diag(...pk...) where pk is the 3-momentum of the intermediate state k. Defining

SL = 1 + 2ip̃1/2TLp̃
1/2, we see that the partial-wave unitarity can also be written SLS

†
L = 1 or

|Sel,L|+
∑
f

|Si 6=f,L|2 = 1, (56)

where Sel,L stands for the elastic channel, i = f . If we define Sel,L = ηLe
2iδL , where δL

is a real phase shift and ηL is an inelaticity factor, 0 ≤ ηL ≤ 1. Then |Sel,L|2 = η2
L, and∑

f |Si 6=f,L|
2 = 1 − η2

L. Finally, using Tel,L = (Sel,L − 1)/2ip and Tf 6=i,L = Sf 6=i,L/2i(pipf )1/2

and the standard formula for the unpolarized cross section in terms of partial waves σ =
∑
σL,

where σL is given in Eq.(42), we find

σr,L = 4π
2L+ 1

(2s1 + 1)(2s2 + 1)

∑
λ

∑
f 6=i

pf
pi
|Tif,L|2 (57)

=
π(2L+ 1)(1− ηL)

p2
i

. (58)

Here σr,L is the reaction cross section, that is, the total cross section minus the elastic piece. It
has a maximum when ηL = 0, so we conclude that

σL(a+ b→ c+ d) ≤ π(2L+ 1)/p2
i . (59)

In the early Universe,

p2
i = E2 −m2

X =
m2
Xv

2
rel

4(1− v2
rel/4)

≈
m2
Xv

2
rel

4
, (60)

where we used vi = pi/E and vrel = 2vi.
So σLvrel ≤ (σL)max vrel where

(σL)maxvrel ≈
4π(2L+ 1)

m2
Xvrel

(61)

C Gamma-ray from DM annihilation

Let’s compute the contribution to the detected gamma spectrum due to the Dark Matter anni-
hilation in the Milky way. The number of DM pairs in the volume d3r at position ~r in the MW
is

d3r
1

2

(
ρDM (~r)

MDM

)2

(62)

where ρDM (~r) is the DM energy density at ~r. We have assumed self-conjugate DM. In the
opposit case where particles can only interact with anti-particles, the 1/2 must be replaced by
1/4.
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DM

DM

f

f̄

Figure 3: DM annihilation into SM

If we suppose that a pair of DM annihilates into a pair of SM particles f as shown in Fig.(3)
with a cross-section 〈σv〉f , then multiplying the last expression by 〈σv〉f gives the number of
DM annihilations into f per second

d3r
1

2

(
ρDM (~r)

MDM

)2∑
f

〈σv〉f . (63)

Now multiplying by the number of photons produced per second, in energy bin ∆E centered
on E, per DM annihilation into SM particles f ,

∆E
dNf→γ
dE

, (64)

we get the number of photons produced in volume d3r, at position ~r, in energy bin ∆E centered
on E

d3r
1

2

(
ρDM (~r)

MDM

)2∑
f

〈σv〉f ∆E
dNf→γ
dE

. (65)

Stel ΔΩr

d3r

 γ

 γ

 γ

 γ

 γ

Figure 4: The detected γ-ray flux is the fraction
∆Ω

4π

Stel

4πr2
of the total emission.

However, as described in Fig.(4) a telescope with a surface Stel, receiving signals within a
solid angle ∆Ω and within an energy bin ∆E detects only a fraction

∆Ω

4π

Stel

4πr2
(66)
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of the total number of photons produced. So this telescope detects a number of photons per
second which is

Stel∆Ω∆E
dφγ
dΩdE

=

∫
d3r

1

2

(
ρDM (~r)

MDM

)2∑
f

〈σv〉f ∆E
dNf→γ
dE

∆Ω

4π

Stel

4πr2
. (67)

where φγ is the integrated γ flux in cm2/s.
Finally the detected gamma flux per solid angle unit and per energy unit, assuming self-
conjugate DM, is

dφγ
dΩdE

=
1

2

r�
4π

(
ρ�
MDM

)2

Jann

∑
f

〈σv〉f
dNf→γ
dE

(68)

where

Jann =

∫
ds

r�

(
ρDM (~r)

ρ�

)2

(69)

is the so-called Jann factor for annihilation, r� = 8.33 kpc is the Earth distance to the GC and
ρ� = 0.3 GeV/cm3 is the supposed DM energy density at the Earth position.
Note that a similar treatment for DM decay leads to

dφγ
dΩdE

=
r�
4π

(
ρ�
MDM

)
Jdec

∑
f

Γf
dNf→γ
dE

(70)

where

Jdec =

∫
ds

r�

(
ρDM (~r)

ρ�

)
. (71)
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