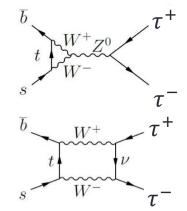
$B \rightarrow \mu^+ \mu^-$ and other very rare *B* decays at LHCb

Matteo Rama

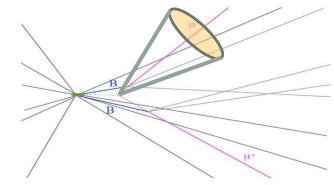
INFN Pisa


on behalf of the LHCb collaboration

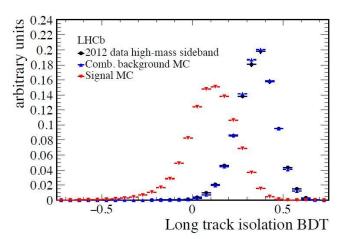
BEAUTY 2019 Ljubljana, 30 September – 4 October 2019

Introduction

- FCNC are forbidden in SM at tree level. Possible through loop diagrams:
 - Suppressed
 - Potential sizeable interference with transitions mediated by new particles
- $B \rightarrow l^+ l^-$ decays belong to this category
 - Further helicity suppressed
 - Theoretically clean SM predictions
 - ➔ Powerful probes of physics beyond SM
- Lepton flavour violating transitions are experimentally forbidden in SM
 - If mediated through neutrino mixing, predicted rates are $< 10^{-50}$
 - Significantly enhanced in many SM extensions, up to already testable rates
- In this talk:
 - Status and prospects of measurements of $B \rightarrow l^+ l^-$ and B LFV decays at LHCb.
- For discussions of other rare *B* decays at LHCb see:
 - P. Krokovny, Radiative decays at LHCb, Tue 1 October
 - F. J. Kress, $b \rightarrow sll$ and friends (studies with muons) at LHCb, Wed 2 October
 - C. Langenbruch, $b \rightarrow sll$ and friends ($R_{K^{(*)}}$, ...) at LHCb, Wed 2 October
 - M. J. Tilley, Semileptonic B decays at LHCb, Thu 3 October


Selection of $B_{(s)}^0 \to \mu^+ \mu^-$ decays

PRL 118, 191801 (2017)


• FCNC processes strongly helicity-suppressed. Theoretically very clean.

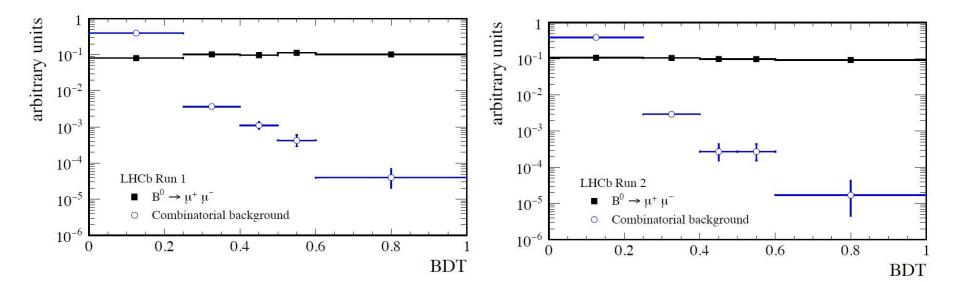
 $BF(B_s^0 \to \mu^+ \mu^-) = (3.57 \pm 0.17) \times 10^{-9}$ $BF(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

- PRL 112 (2014) 101801 EPJC 77 (2017) 112
- Dataset: Run 1 + 1.4 fb⁻¹ of Run 2 (tot: 4.4 fb⁻¹)
- Basic selection requirement:
 - two oppositely-charged muon tracks with common vertex displaced from primary vertex
 - $m_{\mu\mu}$ mass peaking at the $B^0_{(s)}$ mass
- In practice, complex analysis due to low signal/large background rates
- Most abundant background is combinatorial
 - muons from different b quark decays
 - strongly suppressed with multivariate operator
 (BDT) using track isolation, topo/geom information

Typical combinatorial background event with two muons from different *b* decays

BDT calibration

BDT output flat for B^0 signal and peaking at • zero for combinatorial background


• $B^0 \rightarrow \mu\mu$ BDT shape from $B^0 \rightarrow K^+\pi^-$ in data and corrected for trigger and PID selection. Additional lifetime-related correction for $B_s^0 \rightarrow \mu\mu$

PRL 118, 191801 (2017) $B^0 \rightarrow K^+ \pi^-$ selection in data, BDT>0.6 LHCb Run 1 $BDT \in [0.60, 1.00]$ Total $B^0 \rightarrow K^+ \pi^ \overline{B}^0_{\cdot} \rightarrow K^+ \pi^ \Lambda_{\rm h}^0 \rightarrow {\rm ph}$ ----- Comb. bkg

5600

5800

 $m_{{
m K}^+\pi^-} \, [{
m MeV}/c^2]$

900

800

700

600

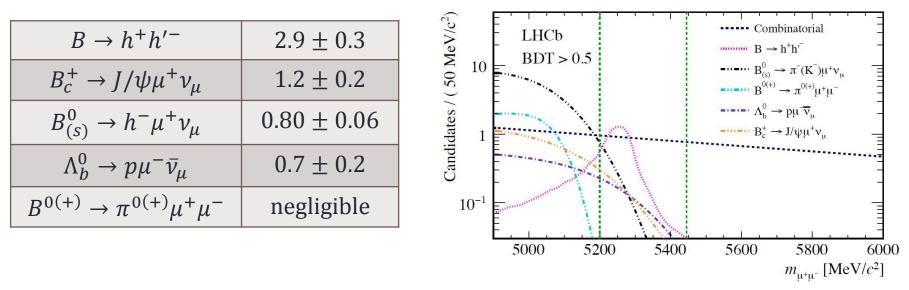
500

400

300

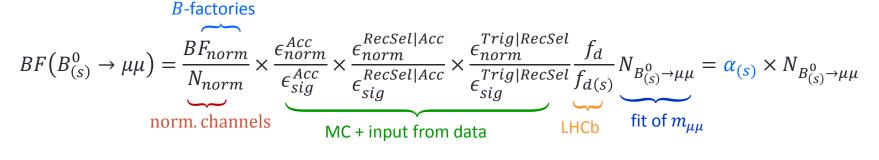
200 100

5200


5400

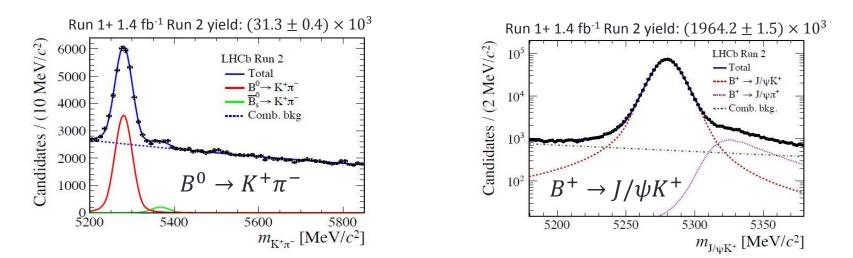
Candidates / (10 MeV/c²)

Physics backgrounds


PRL 118, 191801 (2017)

Yields of main *physics* backgrounds *in signal region* with BDT>0.5:

- These decays are taken into account in the fit to $m_{\mu\mu}$. Mass shapes and yield vs BDT determined from simulated samples with misID probability calibrated on data
- $B \rightarrow h^+ h'^-$ particularly dangerous because peaks in the B^0 signal region
 - Alternative estimates of $B \to h^+ h'^-$ and $B^0_{(s)} \to h^- \mu^+ \nu_{\mu}$ yields from $h\mu$ mass spectra in data
- SM ISR $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ has negligible impact on signal yield from fit
- -60% combinatorial background reduction wrt previous analysis by optimizing BDT+PID


Normalisation

• $\alpha_s = (5.7 \pm 0.4) \times 10^{-11};$ $\alpha = (1.60 \pm 0.04) \times 10^{-11}$

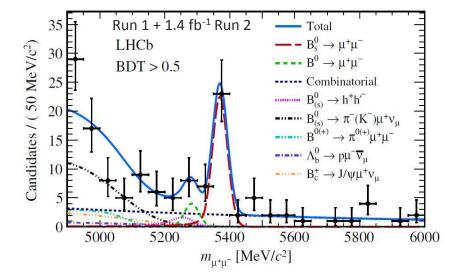
Weighted averages from $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow K^+ \pi^-$

- * $f_s/f_d = 0.259 \pm 0.015$ measured by LHCb at 7 TeV
- Procedure checked by measuring $BF(B^0 \to K\pi)/BF(B^+ \to J/\psi K^+)$ and $BF(B_s \to J/\psi \phi)/BF(B^+ \to J/\psi K^+)$

Beauty 2019, 1 October 2019

Results

• BFs measured from UML fit of $m_{\mu\mu}$ simultaneously in 5 bins of BDT:


 $< 3.4 \times 10^{-10}$ at 95% CL

 $BF(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \qquad 7.8 \sigma$ $BF(B^0 \to \mu^+ \mu^-) = (1.5^{+1.2+0.2}_{-1.0-0.1}) \times 10^{-10} \qquad 1.6 \sigma$

First observation from single experiment

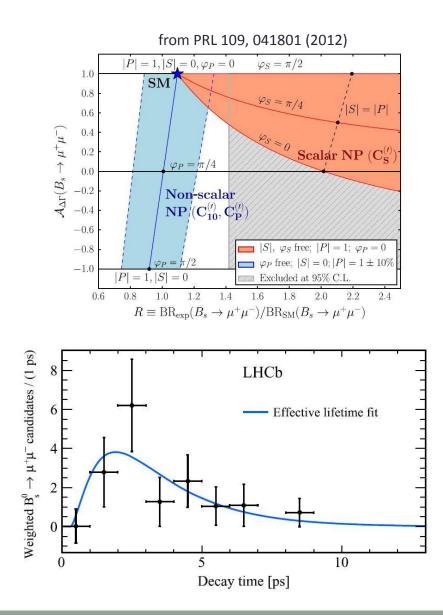
 Results consistent with SM
 NB: BF(B⁰_s → μμ) assumes τ_{B⁰_s→μμ} = τ_{B_s}/(1 − y_s) (i.e. A_{ΔΓ} = 1) It increases by 4.6% (10.9%) if A_{ΔΓ} = 0 (−1) (the sel efficiency decreases)

- Main sources of systematic uncertainty:
 - $BF(B_s^0 \to \mu^+ \mu^-)$: knowledge of f_s/f_d
 - $BF(B^0 \rightarrow \mu^+ \mu^-): B \rightarrow hh$ backgrounds

$B_S^0 \rightarrow \mu^+ \mu^-$ effective lifetime PRL 118, 191801 (2017)

 The effective lifetime is an additional probe for NP complementary to the BF

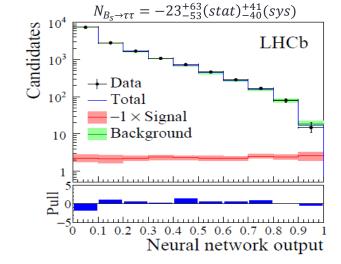
$$\tau_{\mu^+\mu^-} \equiv \frac{\int_0^\infty t \, \Gamma(B_s(t) \to \mu^+\mu^-) dt}{\int_0^\infty \Gamma(B_s(t) \to \mu^+\mu^-) dt}$$


• In terms of the physics parameters:

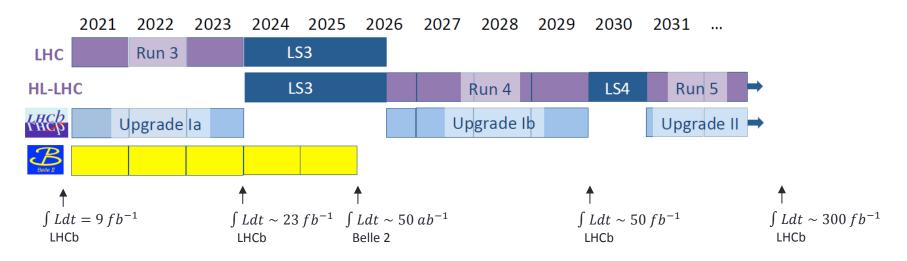
 $\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right)$ $\tau_{B_{s}^{0}} = 1.510 \pm 0.004 \ ps$ $y_{s} \equiv \tau_{B_{s}} \Delta\Gamma/2 = 0.062 \pm 0.006$ $A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} = 1 \text{ in SM, can be in [-1,1) if NP occurs}$

• Measured from fit to the $B_s^0 \rightarrow \mu^+ \mu^$ decay time ($\int Ldt = 4.4 \ fb^{-1}$)

 $\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$


First measurement of this quantity At present, consistent with any value of $A^{\mu^+\mu^-}_{\Delta\Gamma}$

Search for $B^0_{(s)} \rightarrow \tau^+ \tau^-$ decays


- In SM FCNC processes analogous to $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ but less helicity-suppressed $BF(B_s^0 \rightarrow \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$ $BF(B^0 \rightarrow \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$ PRL 112 (2014) 101801 $\frac{\mathcal{B}(B_{(s)}^0 \rightarrow \tau^+ \tau^-)}{\mathcal{B}(B_{(s)}^0 \rightarrow \mu^+ \mu^-)} = \frac{m_\tau^2}{m_\mu^2} \times \sqrt{\frac{m_B^2 - 4m_\tau^2}{m_B^2 - 4m_\mu^2}} \sim 210$
- NP models explaining observed SM tensions in $b \rightarrow sl^+l^-$ and $b \rightarrow cl^-\overline{\nu_l}$ transitions allow possible increase of BF by orders of magnitude
- $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$. τ decay model tuned on BaBar data
- Approximate reconstruction of $B \rightarrow \tau^+ \tau^-$ using geo and mass constraints
- NN built with geometric, kinematic and isolation variables to separate signal and background
- Run 1 dataset (3 fb⁻¹)
- Signal extracted from fit to NN in signal region
 - Yield \rightarrow BF using $B^0 \rightarrow D^+[K^-\pi^+\pi^+]D_s^-[K^+K^-\pi^-]$

 $BF(B_s^0 \to \tau^+\tau^-) < 6.8 \times 10^{-3} @~95\% CL \text{ first limit}$ $BF(B^0 \to \tau^+\tau^-) < 2.1 \times 10^{-3} @~95\% CL \text{ x 2.6 imp}$

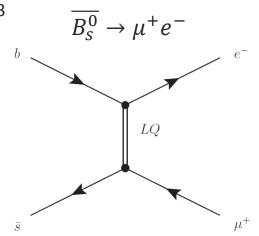
x 2.6 improvement wrt BaBar limit

Prospects for $B \rightarrow l^+l^-$ at LHCb

	now	$\int L dt =$ 23 fb ⁻¹	$\int L dt =$ 300 fb ⁻¹
err $BF(B_s^0 \to \mu^{\pm}\mu^{\mp})$	0.65×10^{-9}	0.30×10^{-9} [1]	0.13×10^{-9} [1]
rel err $BF_{B^0 \to \mu\mu}/BF_{B^0_s \to \mu\mu}$	90%	34% [1]	10% [1]
rel err $ au_{B^0_S o \mu \mu}$	21%	8% [1]	2% [1]
err $S_{B_S^0 o \mu\mu}$	_	_	0.2 [1]
$ULBF(B^0_S\to\tau^+\tau^-)$	6.8×10^{-3}	1.9×10^{-3} [2]	5×10^{-4} [1]

LHCb $B_{(s)}^0 \rightarrow e^+e^-$ measurement in progress

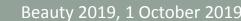
[1] CERN-LHCb-PUB-2018-009 [2] From current limit assuming $1/\sqrt{\int Ldt}$ scaling


Lepton flavour violating *B* decays

- The only lepton flavour violating (LFV) phenomenon observed so far is neutrino oscillation. If this was the only LFV mechanism, LFV *B* decay rates would be $< 10^{-50}$: far beyond current and future experimental reach.
- Many models proposed to explain the tensions with SM in $b \rightarrow sl^+l^-$ and $b \rightarrow cl^-\overline{\nu_l}$ transitions ($R_{K^{(*)}}, R_{D^{(*)}}$, etc) naturally allow sizeable LFV *B* rates, e.g. models with Z', with scalar or vector LQ, or PS³.

for instance:

Becirevic, Kosnik, Sumensari, Zukanovich Funchal, JHEP 11 (2016) 035 Crivellin, Hofer, Matias, Nierste, Pokorski, Rosiek, PRD92 (2015) 054013 Hiller, Loose, Schonwald, JHEP 12 (2016) 027 Bordone, Cornella, Fuentes-Martin, Isidori JHEP 1810 (2018) 148


 \rightarrow it is interesting to search for LFV *B* decays

Search for $B^+ \to K^+ \mu^{\pm} e^{\mp}$

arXiv:1909.01010

- Best limits before this measurement by BaBar
 - $BF(B^+ \to K^+ \mu^- e^+) < 9.1 \times 10^{-8} @ 90\% CL$
 - $BF(B^+ \to K^+ \mu^+ e^-) < 13 \times 10^{-8} @ 90\% CL$
- Branching fractions in the range $10^{-8} 10^{-10}$ in models with Z' or leptoquarks.
- Run 1 dataset (3 fb⁻¹)
- $B^+ \to J/\psi(\to \mu^+\mu^-)K^+$ and $B^+ \to J/\psi(\to e^+e^-)K^+$ used as control channels
- Background rejection:
 - $B^+ \to \overline{D^0} X l^+ \nu_l$, $\overline{D^0} \to K^+ Y l'^- \overline{\nu_{l'}}$ and decays with charmonia rejected with mass vetoes
 - Two multivariate classifiers used to suppress combinatorial and b-hadron decay backgrounds
 - Resulting background yield from b decays is negligible
- $n_{K^+e^+}^2 \, [{\rm GeV}^2/c^4]$ Phase-space model assumed for signal LHCb Simulation 20 BF results can be corrected for different assumptions 15F using efficiency maps given in the paper 10 F

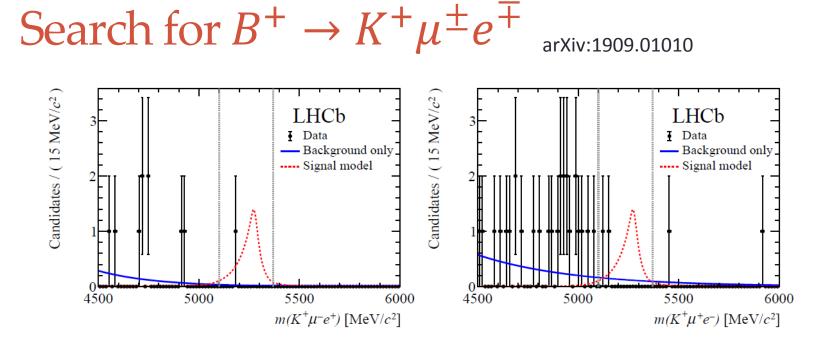
 $m_{K^+\mu^-}^{20}$ [GeV²/c⁴]

10-3

1.6

1.4

1.2

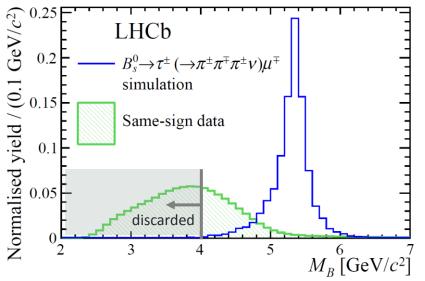

0.8

0.6

0.4 0.2

efficiency

10

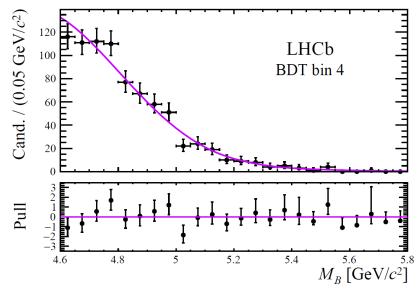

- Signal yields converted to BF using $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-)K^+$ norm. channel
- No signal found \rightarrow set BF upper limits

 $BF(B^+ \to K^+ \mu^- e^+) < 9.5 \times 10^{-9} @ 95\% CL$ $BF(B^+ \to K^+ \mu^+ e^-) < 8.8 \times 10^{-9} @ 95\% CL$

 $> 10 \times improvement w.r.t.$ previous limits from BaBar

Search for $B_{(s)}^0 \to \tau^{\pm} \mu^{\mp}$

- Exp status before this measurement
 - $BF(B^0 \to \tau^{\pm} \mu^{\mp}) < 2.2 \times 10^{-5} @ 95\% CL$ BaBar
 - no limit on $BF(B_s^0 \rightarrow \tau^{\pm} \mu^{\mp})$
- Branching fractions up to 10⁻⁵ in models with Z' or leptoquarks.
 see e.g. JHEP07 (2019) 168
- Run 1 dataset (3 fb⁻¹)
- $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ final state
 - Events from $\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ also included as signal
- B mass reconstructed with 2-fold ambiguity
 - Missing momentum reconstructed through kinematic and vertex constraints
 - Solution with highest S/B is kept
- Background rejection:
 - Isolation variables to suppress decays with additional reconstructed particles
 - Multivariate classifier to suppress combinatorial background
 - $D^- \rightarrow \pi^- \pi^+ \pi^-$ vetoed with $m(3\pi) < 1.8 \ GeV/c^2$
 - $B^0_{(s)} \rightarrow D^-_{(s)} (\rightarrow \mu^- \nu_\mu) \pi^+ \pi^- \pi^+$ suppressed based on decay time of 3π

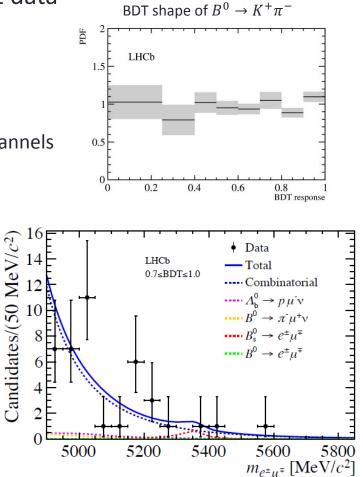

Matteo Rama

Search for $B_{(s)}^0 \to \tau^{\pm} \mu^{\mp}$

- Selected candidates split into 4 samples according to the output of a BDT
- Signal yield in each sample extracted through fit to the *B* mass
 - two fits, fixing to 0 $N_{B^0}^{sig}$ or $N_{B_s^0}^{sig}$
 - signal yields consistent with 0
- Signal yield converted to BF using $B^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-)\pi^+$ normalisation channel

$$\begin{split} BF(B_s^0 \to \tau^{\pm} \mu^{\mp}) < 4.2 \times 10^{-5} @~95\% \ CL \\ BF(B^0 \to \tau^{\pm} \mu^{\mp}) < 1.4 \times 10^{-5} @~95\% \ CL \\ \text{first UL for } B_s^0, \sim 2 \times \text{improvement w.r.t. BaBar for } B^0 \end{split}$$

arXiv:1905.06614


B mass fit in the lowest-background BDT bin

Search for $B^0_{(s)} \to e^{\pm} \mu^{\mp}$

- JHEP 1803 (2018) 078
- Decay allowed in several NP scenarios including e.g. models with Z' boson, heavy singlet Dirac neutrinos, SUSY and the Pati-Salam model
- Previous best limits by LHCb based on 1 fb⁻¹ Run1 data
- Updated with full Run 1 dataset (3 fb⁻¹)
- Selection and analysis strategy similar to $B \rightarrow \mu \mu$
 - $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow J/\psi~K^+$ used as normalisation channels
 - * $B^0 \rightarrow K^+ \pi^-$ also used to calibrate the signal BDT shape
- Main background from $b\overline{b} \rightarrow e^{\pm}\mu^{\mp}X$ decays
- Events in signal region consistent with the expected background:

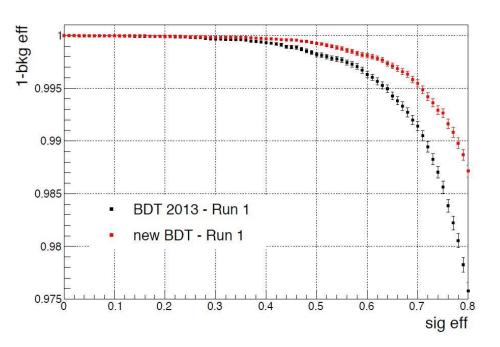
$$BF(B_s^0 \to e^{\pm}\mu^{\mp}) < 6.3 \times 10^{-9} @ 95\% \text{ CL} BF(B^0 \to e^{\pm}\mu^{\mp}) < 1.3 \times 10^{-9} @ 95\% \text{ CL}$$

Best UL to date, improved by factor 2-3 since previous LHCb measurement

Prospects for LFV decays at LHCb

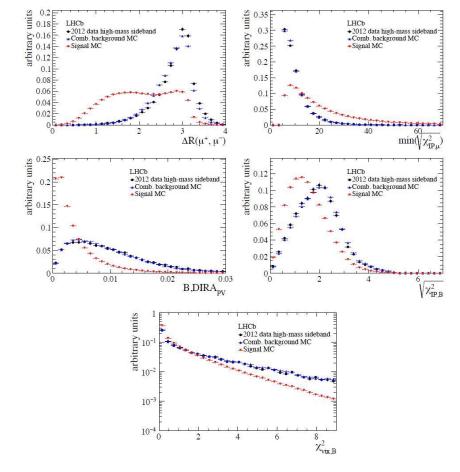
More searches ongoing: $B^0 \to K^{*0} e^{\pm} \mu^{\mp}, \Lambda_b \to \Lambda e^{\pm} \mu^{\mp}, \dots$

NB: ULs @95%, except for $\tau \rightarrow 3\mu$ @90%


Summary

- Intense effort in LHCb to search for non-SM effects in rare and forbidden decays, including $B \rightarrow l^+l^-$ and LFV B decays
 - First single-experiment observation of $B_s^0 \rightarrow \mu^+\mu^-$ and first lifetime measurement, no evidence of $B^0 \rightarrow \mu^+\mu^-$ yet
 - Best upper limits on a number of rare or LFV decays, including $B^0_{(s)} \to \tau\tau, B \to \tau\mu, B \to e\mu$, $B \to Ke\mu$
- Results consistent with SM. But...
 - … all measurements presented today will be updated on full Run 2 dataset (6 fb⁻¹, 13 TeV → > 3 × B sample of Run 1)
 - Ongoing work on additional channels
- The imminent upgrade-I phase will allow a significant jump in sensitivity in the search for physics signals beyond the SM

BACKUP


$B \rightarrow \mu\mu$ multivariate classifier (BDT)

- Long track isolation used as starting point to build the global BDT classifier
- Optimisation and training on MC
- Correlation with $m_{\mu\mu}$ below 5%
- Compared to prev analysis: -50% comb background with same signal efficiency

7 input variables: 2 track isolations + the 5 quantities shown below

PRL 118, 191801 (2017)

$B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$ systematic uncertainties

arXiv:1909.01010

Effect	$B^+\!\to K^+\mu^+e^-$	$B^+\!\to K^+\mu^-e^+$
Data-simulation corrections	1.0%	1.0%
Electron-muon differences	1.4%	1.4%
Fitting model	2.1%	2.1%
PID resampling	4.5%	5.5%
Trigger	1.0%	1.0%
Normalisation factor	3.5%	3.5%
Total	6.4%	7.1%
Background	0.60	0.43