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1. Electroweak Phase Transition in SM + Dimension-6 Operator
The electroweak phase transition in the SM has been shown to be a cross-over. To obtain a
first-order transition we have to go beyond the SM. A simple way to achieve this is to add a
dimension-six operator |H|® to the Higgs potential, i.e.

V(H) = i2H H + ) (HTH)2 + 2 (HTH)3 . (1)

In the following we will determine the range of the parameter f that gives rise to a first-
order transition. For simplicity we neglect all fermionic contributions to the effective Higgs
potential apart from the top quark. The relevant part of the Lagrangian is given by

£ > D*HYD,H — V(H) + (wQf Htg +hc.) | 2)

br,
fluctuations around a constant background field ¢, choosing ¢ to be in the real part of the

G+
neutral component, i.e. H = . , where h is the physical Higgs field, and
p (\}5 (¢+h+ZGO)> phy g8

GT and G are Goldstone bosons.

(a) Write the potential as a function of the background field ¢ only, setting h, G° and
Gt to 0.

(b) We know experimentally that the Higgs acquires a vacuum expectation value v = 246 GeV
and has a mass of my = mp(¢ = v) = 125 GeV. Express the potential parameters A and
p? through v, m?, and f. For which values of f is ¢ = v the global minimum (at 7' = 0)?

where D,H = <8u—ig”—;Wﬁ —ig’%BlJ H, Q% = (tL>, and H = ioyH. We consider

(c) Extract the background-field dependent masses of the gauge, Higgs and Goldstone bosons,
and the top quark in Landau gauge (£ = 0).

(d) The one-loop effective potential to leading order in m?(¢)/T? can be written as

Cu(T)
4

Cs(T)
6

V(o) = 28 g2 ¢

ot +

where field-independent terms have been dropped. Show that the coefficients C;(T') are

m? 3t 1 vt T2
C2(T):—2h+4f.2+4<m;21+M2—3f2>U2, (4)
1m? 302 T?
3
CG(T):TfQ (6)

where mz = 91 GeV, my = 80 GeV, and m; = 169 GeV are the physical particle masses.

(e) For simplicity let us drop the T2¢* term in the following. For which values of f does
the model exhibit a first-order phase transition? What are the corresponding critical
temperatures?
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2. Bounce Solution
The Euclidean action for tunneling from the false to the true vacuum phase is given by [1]

1
Spaln = [ e |5 @uon? + V()] g
where d = 3 (4) for thermal (quantum) tunneling, and ¢ is the SO(d) symmetric bounce
solution to the differential equation

d—1

r

&y + & =V'(¢p) (8)
with boundary conditions rlggo op(r) = ¢4 and $(0) = 0. Here, ¢4 and ¢_ denote the
positions of the minima of V' with V(¢_) < V(¢4). We assume V(¢4) = 0 in the following.

One way to calculate the Euclidean tunneling action that has been proposed recently [2] is
by defining the tunneling Potential V;(¢) = V() — ¢p. It satisfies the differential equation

)2 = v 2 v - vy v ()

with boundary conditions Vi(¢4) = V(¢4+) and Vi(¢o) = V(¢0), where ¢g is the point to
which the field tunnels. It can be shown that V;(¢) is monotonically decreasing between ¢
and ¢o with Vi(¢) < V(¢).

In terms of V; the tunneling action becomes

w—Ml&Mﬂ? (v -

I(1+d/2) Vit

Sp.alVi] = (10)

We can now obtain an approximation of Sg by approximating V; for a given ¢y and then
minimizing Sg[V;] with respect to ¢p.

(a) Approximate Vi(¢) as a fourth-order polynomial

Via(¢) = a1¢ + asp(¢ — ¢o) + asp(¢p — $0)* + asd® (¢ — ¢o)* . (11)

Assume that ¢4 = 0 (V(¢4+) = 0) and subsequently determine the coefficients a; by
requiring that
i. the boundary conditions V;(¢4) = V(¢4) and Vi(¢o) = V(o) are satisfied.
ii. the differential equation @D is satisfied at ¢y.
iii. @ is satisfied at ¢y.
iv. @ is satisfied at ¢, the maximum of V(o).

(b) Implement the method described above and use it to calculate the thermal tunneling
action (d = 3) for the model considered in exercise |1| for f = 600 GeV and T' = 50 GeV.
Note: ¢ < ¢g < ¢_, where ¢_ is the position of the broken minimum and ¢ < ¢, < ¢_
is a root of V.

(¢) The nucleation temperature 7;, is approximately given by SE%iiT”) = 140. Calculate the
nucleation temperature for f = 600 GeV.
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3. Gravitational Wave Spectrum

(a)

Plot the GW spectrum h?Qaw(f) (Qaw(f) = ﬁgﬁ%) from a cosmological phase
transition with 7, = 200GeV, o = 0.1, §/H, = 10, and g. = 106.75 for the case of a
transition in vacuum and in a thermal plasma. How does the spectrum change when you

change these parameters?

The signal-to-noise ratio of a SGWB in LISA is given by

fmax

SNR= | T / df (higgﬁg)f (12)

min

where T is the observation time, h2Q,(f) is the noise density parameter of LISA, and
(fmin, fmax) is the frequency range accessible to LISA. Calculate the SNR for the spectra

in (b)) assuming a duration of 7 = 3yrs.

A GW signal is detectable if it produces an SNR > SNRy,,. For LISA, SNRy,, = 10.
Consider a power-law spectrum h?Q(f) = h%Q, (f—{))p with fo = 1mHz. Compute the
minimal detectable amplitude hQQ;ghr for pe {-8,-7,...,8}.

To graphically represent the sensitivity to SGWBs one uses the so-called power-law sen-
sitivity [3]. It is given by the envelope of the minimal detectable power-law signals.

h2Qprs = mgx {hQQ;hr (]]{))P} (13)

Plot the PLS along with the spectra from ().
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Formulary

Effective Potential

The 1-loop contribution to the effective potential is given by
2(gz5 n; T4 m2(e)
L L0 (1, . 14
Z 64 2 ( 08 — 5 MR ) + Z :F ( T2 ’ ( )

where the first sum is the zero-temperature Coleman-Weinberg potential [4] in MS renormal-
ization, and the second sum contains the thermal corrections [5]. The sums run over all species
coupled to ¢, and n; and m?(¢) are the number of degrees of freedom and the field-dependent
squared masses of the species i. The upper (lower) sign corresponds to bosons (fermions). pp is

the renormalization scale and C; = % (%) for scalars and fermions (gauge bosons).
The thermal one-loop functions

Ti(a?) = :F/dk: K log (14 ¢ ViH7) (15)

can be expanded for high temperatures (22 < 1) as

Vs 7r2 xt x?
2
= - - 4+ L 1og X 1
Te(@) = — 355 T 33 T 331085 +O< °). (16)
2 2 3 4 2
2y_ _ ™ T 2 T 25_‘3 xr 6
J_(z*) = 45+ 3% " 5 (az) 3210ga7 —I—(’)(az ), (17)

where a4 = 72 exp (% — 2’yE) and a_ = 1672 exp (% — 27E>-

GW Spectrum

A cosmological first-order phase transition can be characterized by three parametersﬂ

e the transition temperature T, ~ T,

AV

prad

e the transition strength o ~

e the transition time scale 8~ with Hﬁ* = {Td% S:’Z(FT)

Jor,

where T,, is the nucleation temperature, AV is the potential difference between the two minima,
pad and H, are the energy density of the Universe and the Hubble rate at T, and Ss is the
bounce action.

A phase transition can generate gravitational waves via three mechanisms: the collision of
bubbles of the broken vacuum, sound waves, and turbulence. The corresponding graviational

wave spectra are given by [6HIT]

h?Qeol(f) = 0.028 R (%)2 (ffZ)QSml(f), (18)
W (1) = 029R () (Hor) (fjff;f Sunl). (19)
P2 Qs (f) = 20R <}é) (1 — Hura) (szf Sturb (f) 5 (20)

'In principle there is a fourth parameter: the bubble wall velocity v.,. We here take v, = 1.
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with the spectral shapes

A% 4.51 18
Seal(f) = (fm) 151+ 3 <f/fcol>2-°7] ’ -
(A T
Sow(f) = (fsw> 3+4(f/fsw)2‘| ’ =
B 3 1 3 1
Sturb (f) = (fturb) L n (f/fturb):| 1+8nf/hy’ (23)

and peak frequencies

fc01=0.17h*(§*), fSW=0.54h*(i), o = 22 b, (5) (24)

The red-shifting factor R of the density parameter and the Hubble rate at the phase transition
red-shifted to today, h,, are

1 1

5( 9« \ 3 T g« \ 6
R=167x107° d hy = 16.5nHz [ ———— ) 25
% (100) an B Z(lOOGeV) (100) (25)

For a phase transition in vacuum, the efficiency factors x can be approximated as k., = 1 and
ksw = 0. For a transition in a thermal plasma we can use k.o, = 0 and [12]

(67

sW . 26
" = 073+ 0.083v/a + a (26)
The shock time 74, in the plasma is [§]
H.R, ! = SW
H,Tgy, = min ll, Uf 1 with H.R, = (871')% (}i) and UJ% = iqu(; (27)

LISA Sensitivity
The power spectral density (PSD) noise of LISA is given by [13]

10 [ 5.76 x 10748 Hz3 0.4mHz\?| 3.6 x 1074
S"(f):i%{ (2r ) [ < 7 )] m}

() |

in the frequency window 3 x 107°Hz < f < 0.5Hz. The corresponding density parameter is
(HIOO = 100 km Mpc_ls_l)

B 472
a 3Hfy,

h?Qn(f) F28u(f).- (29)
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