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1. Electroweak Phase Transition in SM + Dimension-6 Operator
The electroweak phase transition in the SM has been shown to be a cross-over. To obtain a
first-order transition we have to go beyond the SM. A simple way to achieve this is to add a
dimension-six operator |H|6 to the Higgs potential, i.e.

V (H) = µ2H†H + λ
(
H†H

)2
+ f−2

(
H†H

)3
. (1)

In the following we will determine the range of the parameter f that gives rise to a first-
order transition. For simplicity we neglect all fermionic contributions to the effective Higgs
potential apart from the top quark. The relevant part of the Lagrangian is given by

L ⊃ DµH†DµH − V (H) +
(
ytQ3

LH̃tR + h.c.
)
, (2)

where DµH =
(
∂µ − ig σ

a

2 W
a
µ − ig′ 12Bµ

)
H, Q3

L =
(
tL
bL

)
, and H̃ = iσ2H. We consider

fluctuations around a constant background field φ, choosing φ to be in the real part of the

neutral component, i.e. H =
(

G+
1√
2
(
φ+ h+ iG0)

)
, where h is the physical Higgs field, and

G+ and G0 are Goldstone bosons.
(a) Write the potential (1) as a function of the background field φ only, setting h, G0 and

G+ to 0.
(b) We know experimentally that the Higgs acquires a vacuum expectation value v = 246 GeV

and has a mass of mh = mh(φ = v) = 125 GeV. Express the potential parameters λ and
µ2 through v, m2

h, and f . For which values of f is φ = v the global minimum (at T = 0)?
(c) Extract the background-field dependent masses of the gauge, Higgs and Goldstone bosons,

and the top quark in Landau gauge (ξ = 0).
(d) The one-loop effective potential to leading order in m2(φ)/T 2 can be written as

Veff(φ, T ) = C2(T )
2 φ2 + C4(T )

4 φ4 + C6(T )
6 φ6 , (3)

where field-independent terms have been dropped. Show that the coefficients Ci(T ) are

C2(T ) = − m2
h

2 + 3
4
v4

f2 + 1
4

(
m2
h +M2 − 3 v

4

f2

)
T 2

v2 , (4)

C4(T ) = 1
2
m2
h

v2 −
3
2
v2

f2 + T 2

f2 , (5)

C6(T ) = 3
4f2 (6)

where mZ = 91 GeV, mW = 80 GeV, and mt = 169 GeV are the physical particle masses.
(e) For simplicity let us drop the T 2φ4 term in the following. For which values of f does

the model exhibit a first-order phase transition? What are the corresponding critical
temperatures?
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2. Bounce Solution
The Euclidean action for tunneling from the false to the true vacuum phase is given by [1]

SE,d[φb] =
∫

ddx
[1

2 (∂µφb)2 + V (φb)
]
, (7)

where d = 3 (4) for thermal (quantum) tunneling, and φb is the SO(d) symmetric bounce
solution to the differential equation

φ̈b + d− 1
r

φ̇b = V ′(φb) (8)

with boundary conditions lim
r→∞

φb(r) = φ+ and φ̇(0) = 0. Here, φ+ and φ− denote the
positions of the minima of V with V (φ−) < V (φ+). We assume V (φ+) = 0 in the following.
One way to calculate the Euclidean tunneling action that has been proposed recently [2] is
by defining the tunneling Potential Vt(φ) = V (φ)− φ̇b. It satisfies the differential equation

(
V ′t
)2 = d− 1

d

[
V ′V ′t + 2 (Vt − V )V ′′t

]
(9)

with boundary conditions Vt(φ+) = V (φ+) and Vt(φ0) = V (φ0), where φ0 is the point to
which the field tunnels. It can be shown that Vt(φ) is monotonically decreasing between φ+
and φ0 with Vt(φ) ≤ V (φ).
In terms of Vt the tunneling action becomes

SE,d[Vt] = (d− 1)d−1(2π)d/2
Γ(1 + d/2)

φ0∫
φ+

dφ(V − Vt)d/2

|V ′t |d−1 . (10)

We can now obtain an approximation of SE by approximating Vt for a given φ0 and then
minimizing SE [Vt] with respect to φ0.
(a) Approximate Vt(φ) as a fourth-order polynomial

Vt,a(φ) = a1φ+ a2φ(φ− φ0) + a3φ(φ− φ0)2 + a4φ
2(φ− φ0)2 . (11)

Assume that φ+ = 0 (V (φ+) = 0) and subsequently determine the coefficients ai by
requiring that
i. the boundary conditions Vt(φ+) = V (φ+) and Vt(φ0) = V (φ0) are satisfied.
ii. the differential equation (9) is satisfied at φ0.
iii. (9) is satisfied at φ0.
iv. (9) is satisfied at φT , the maximum of V (φ).

(b) Implement the method described above and use it to calculate the thermal tunneling
action (d = 3) for the model considered in exercise 1 for f = 600 GeV and T = 50 GeV.
Note: φr < φ0 < φ−, where φ− is the position of the broken minimum and φT < φr < φ−
is a root of V .

(c) The nucleation temperature Tn is approximately given by SE,3(Tn)
Tn

= 140. Calculate the
nucleation temperature for f = 600 GeV.
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3. Gravitational Wave Spectrum
(a) Plot the GW spectrum h2ΩGW(f) (ΩGW(f) = 1

ρcrit
dρGW
d log f ) from a cosmological phase

transition with T∗ = 200 GeV, α = 0.1, β/H∗ = 10, and g∗ = 106.75 for the case of a
transition in vacuum and in a thermal plasma. How does the spectrum change when you
change these parameters?

(b) The signal-to-noise ratio of a SGWB in LISA is given by

SNR =

√√√√√√ T
fmax∫
fmin

df
(
h2ΩGW(f)
h2Ωn(f)

)2
, (12)

where T is the observation time, h2Ωn(f) is the noise density parameter of LISA, and
(fmin, fmax) is the frequency range accessible to LISA. Calculate the SNR for the spectra
in (a) assuming a duration of T = 3 yrs.

(c) A GW signal is detectable if it produces an SNR > SNRthr. For LISA, SNRthr = 10.
Consider a power-law spectrum h2Ω(f) = h2Ωp

(
f
f0

)p
with f0 = 1 mHz. Compute the

minimal detectable amplitude h2Ωthr
p for p ∈ {−8,−7, . . . , 8}.

(d) To graphically represent the sensitivity to SGWBs one uses the so-called power-law sen-
sitivity [3]. It is given by the envelope of the minimal detectable power-law signals.

h2ΩPLS = max
p

[
h2Ωthr

p

(
f

f0

)p]
(13)

Plot the PLS along with the spectra from (a).
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Formulary

Effective Potential

The 1-loop contribution to the effective potential is given by

V1(φ) =
∑
i

±nim
4
i (φ)

64π2

(
log m

2
i (φ)
µ2
R

− Ci

)
+
∑
i

niT
4

2π2 J∓

(
m2
i (φ)
T 2

)
, (14)

where the first sum is the zero-temperature Coleman-Weinberg potential [4] in MS renormal-
ization, and the second sum contains the thermal corrections [5]. The sums run over all species
coupled to φ, and ni and m2

i (φ) are the number of degrees of freedom and the field-dependent
squared masses of the species i. The upper (lower) sign corresponds to bosons (fermions). µR is
the renormalization scale and Ci = 3

2

(
5
6

)
for scalars and fermions (gauge bosons).

The thermal one-loop functions

J±(x2) = ∓
∞∫
0

dk k2 log
(
1± e−

√
k2+x2

)
(15)

can be expanded for high temperatures (x2 � 1) as

J+(x2) = − 7π
360 + π2

24x
2 + x4

32 log x
2

a+
+O

(
x6
)
, (16)

J−(x2) = − π2

45 + π2

12x
2 − π

6
(
x2
) 3

2 − x4

32 log x
2

a−
+O

(
x6
)
, (17)

where a+ = π2 exp
(

3
2 − 2γE

)
and a− = 16π2 exp

(
3
2 − 2γE

)
.

GW Spectrum

A cosmological first-order phase transition can be characterized by three parameters:1

• the transition temperature T∗ ' Tn

• the transition strength α ' ∆V
ρrad

∗

• the transition time scale β−1 with β
H∗

=
[
T d

dT
S3(T )
T

]
T=T∗

where Tn is the nucleation temperature, ∆V is the potential difference between the two minima,
ρrad∗ and H∗ are the energy density of the Universe and the Hubble rate at T∗, and S3 is the
bounce action.
A phase transition can generate gravitational waves via three mechanisms: the collision of
bubbles of the broken vacuum, sound waves, and turbulence. The corresponding graviational
wave spectra are given by [6–11]

h2Ωcol(f) = 0.028R
(
H∗
β

)2 ( κcolα
1 + α

)2
Scol(f) , (18)

h2Ωsw(f) = 0.29R
(
H∗
β

)
(H∗τsh)

(
κswα

1 + α

)2
Ssw(f) , (19)

h2Ωturb(f) = 20R
(
H∗
β

)
(1−H∗τsh)

(
κswα

1 + α

) 3
2
Sturb(f) , (20)

1In principle there is a fourth parameter: the bubble wall velocity vw. We here take vw = 1.

4



Gravitational Wave and Phase Transitions Ljubljana 2019

with the spectral shapes

Scol(f) =
(
f

fcol

)3 [ 4.51
1.51 + 3 (f/fcol)2.07

]2.18

, (21)

Ssw(f) =
(
f

fsw

)3 [ 7
3 + 4 (f/fsw)2

] 7
2

, (22)

Sturb(f) =
(

f

fturb

)3 [ 1
1 + (f/fturb)

] 11
3 1

1 + 8πf/h∗
, (23)

and peak frequencies

fcol = 0.17h∗
(
β

H∗

)
, fsw = 0.54h∗

(
β

H∗

)
, fturb = 3.5

2 h∗

(
β

H∗

)
. (24)

The red-shifting factor R of the density parameter and the Hubble rate at the phase transition
red-shifted to today, h∗, are

R = 1.67× 10−5
(
g∗

100

)− 1
3

and h∗ = 16.5 µHz
(

T∗
100 GeV

)(
g∗

100

) 1
6
. (25)

For a phase transition in vacuum, the efficiency factors κ can be approximated as κcol = 1 and
κsw = 0. For a transition in a thermal plasma we can use κcol = 0 and [12]

κsw = α

0.73 + 0.083
√
α+ α

. (26)

The shock time τsh in the plasma is [8]

H∗τsh = min
[
1, H∗R∗

Ūf

]
with H∗R∗ = (8π)

1
3

(
β

H∗

)−1
and Ū2

f = 3
4
κswα

1 + α
. (27)

LISA Sensitivity

The power spectral density (PSD) noise of LISA is given by [13]

Sn(f) = 10
3

{
5.76× 10−48 Hz3

(2πf)4

[
1 +

(0.4 mHz
f

)2
]

+ 3.6× 10−41

1 Hz

}[
1 +

(
f

25 mHz

)2]
(28)

in the frequency window 3× 10−5 Hz < f < 0.5 Hz. The corresponding density parameter is
(H100 = 100 km Mpc−1s−1)

h2Ωn(f) = 4π2

3H2
100

f3Sn(f) . (29)
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