Conference Summary

Rather a collection of impressions from the conference.

- Beauty in Ljubljana

Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [1 / 92]

QUESTIONS

Unstable doubly heavy tetraquarks

Resonances in "wrong-sign" (double flavor) combinations DD, DB, BB? $J^{P} = 1^{+} \mathcal{T}_{[dt]}^{(cc)++}(4156) \rightarrow D^{+}D_{s}^{++}: prima facie evidence for non-q\bar{q} level$ Double charge / double charm

(New kind of resonance: no attractive force at the meson-meson level.)

Also, $1^+ \mathcal{T}^{(k)}_{(k)k}(10581)^{k_-,\cdots}$, $\mathcal{Q} = +78 \text{ MeV}$ $1^- \mathcal{T}^{(k)}_{(k)}(2722)^0$, $\mathcal{Q} = +82 \text{ MeV}$ $0^+ \mathcal{T}^{(k)}_{(k)}(7229)^0$, $\mathcal{Q} = +83 \text{ MeV}$ $1^+ \mathcal{T}^{(k)}_{(k)}(3978)^+$, $\mathcal{Q} = +102 \text{ MeV}$

Aside: ${}^{3}D_{3}$ and ${}^{3}F_{4}$ c2 mesons still to be found in DD, etc.

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ search and observation

More questions concerning the problem of identity

F12. Is there any link to a dark sector?

- F13. What will resolve the disparate values of $|V_{cb}|$ and $|V_{cb}|$ measured in inclusive and exclusive decays?
- F14. Is the 3 × 3 (CKM) quark-mixing matrix unitary?
- F15. Why is isospin a good symmetry? What does it mean?
- F16. Can we find evidence for charged-lepton flavor violation?
- F17. Will we establish and diagnose a break in the SM?
- F18. Do flavor parameters mean anything at all? Contrast the landscape perspective.

Nik hef Patrick Koppenburg

F10. If flavor parameters have meaning (beyond engineering information), what is the meta-question?

Homework for experiment

- 71. Look for double-flavor resonances near threshold.
- Measure cross sections for final states containing 4 heavies: Q, Q, Q, Q.
- 73. Discover and determine masses of doubly-heavy baryons. needed to implement HQS calculation of tetraquark masses intrinsic interest in these states: compare heavy-light mesons. possible core excitations
 - compare nearly right measure, possible core excitations

Resolve Ξ_{cc} uncertainty (SELEX/LHCb)

74. Find stable tetraquarks through weak decays. Lifetime: $\sim \frac{1}{3}$ ps ??

Searches for flavor-changing neutral currents

- fs: Where are flavor-changing neutral currents in quark transitions? In the standard model, these are absent at tree level and highly suppressed by the Glashow-likopoulora-Mlaini mechanism. They arise generically in proposals for physics beyond the standard model, and need to be controlled. And yet we have made no sighting: Why not? $B_{id} \rightarrow \mu^{i}\nu^{i}$, $K^{i} \rightarrow \pi^{i}\nu\bar{\nu}$,...
- F7. Can we detect flavor-violating decays $H(125) \rightarrow \tau^{\pm}\mu^{\mp}, ...?$
- 8. How well can we test the standard-model correlation among B(K⁺ → π⁺νν̄), B(B_s → μ⁺μ[−]), and the quark-mixing matrix parameter γ?

The top quark touches many topics in particle physics

- 11. How well can we constrain Vtb in single-top production, ...?
- rz. How well can we constrain the top-quark lifetime? How free is t? Recent ATLAS: $\Gamma(t) = 1.9 \pm 0.5$ GeV (SM 1.32 GeV)
- n. Are there tT resonances?
- 64. Can we find evidence of flavor-changing top decays t → (Z, γ)(c, u)?

Flavor: the problem of identity (continued)

Parameters of the Standard Model

- 3 Coupling parameters, a₄, a_{nn}, sin² 6
- 2 Parameters of the Higgs potentia
- Vacuum phas
- 6 Quark masses
- Quark mixing angles CP-violating phase
- 3 Charged-lepton masses
- 3 Neutrino masses
- 3 Leptonic mixing angles
- 1 Leptonic CP-violating phase (+ Majorana phas
- 26⁺ Arbitrary parameters

Have we found the "periodic table" of elementary particles?

 $SU(3)_* \otimes SU(2)_* \otimes U(1)_{\gamma} \rightarrow SU(3)_* \otimes U(1)$

Chris Quigg

- re. What do generations mean? Is there a family symmetry?
- Fig. Why are there three families of quarks and leptons? (Is it so?)
- F11. Are there new species of quarks and leptons? exotic charge

Questions about EWSB and the Higgs Sector

- HL Is H(125) the only member of its clan? Might there be others—charged or neutral—at higher or lower masses?
- H2. Does H(125) fully account for electroweak symmetry breaking? Does it match standard-model branching fractions to gauge bosons? Are absolute couplings to W and Z as expected in the standard model?
- Hs. Are all production rates as expected? Any surprise sources of H(125)?
- 14. What accounts for the immense range of fermion masses?
- Hs. Is the Higgs field the only source of fermion masses?
- Are fermion couplings proportional to fermion masses? $\mu^+\mu^-$ soon? How can we detect $H \rightarrow c\bar{c}$? e^+e^- ?? (basis of chemistry)
- 16. What role does the Higgs field play in generating neutrino masses?

Charm baryons

Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [4 / 92]

Bound states with d, u, s, c quarks

[Phys. Rev. Lett. 89 (2002) 112001, arXiv:hep-ex/0208014] [Phys. Lett. B628 18 (2005), arXiv:hep-ex/0406033]

3.58 M(ccd)

Observation of Ξ_{cc}^+ baryon at SELEX

[LHCb, Phys. Rev. Lett. 119 (2017) 112001, arXiv:1707.01621]

Observation of the Ξ_{cc}^{++} baryon

Two double-charm baryons expected: Ξ_{cc}^+ (ccd) and Ξ_{cc}^{++} (ccu)

• Ξ_{cc}^+ reported by SELEX in 2002 and 2004 [PRL 89 112001] [PLB628 18]

•
$$m = 3518.7 \pm 1.7 \text{ MeV}/c^2$$

- We use 2016 13 TeV TURBO data to reconstruct $\Lambda_c^+ \rightarrow p K^- \pi^+$ and $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$.
- Fit returns 12σ significance and $m = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14(\Lambda_c^+) \text{ MeV}/c^2.$
 - ✓ Confirmed in 2012 8 TeV data
 - Mass 100 MeV/c² more than the SELEX state. Too much for isospin-splitting.

TURBO

Full calibration in real time→ Output is ready for physics.

Plenty of collision events discarded, while the interesting are kept.

Patrick Koppenburg

Nik[hef

Conference Summary

04/10/2019 — Beauty in Ljubljana [7 / 92]

TURBO

TURBO++ stores only the needed information → Huge savings in time and cost

Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [7 / 92]

WHAT WE KNOW ABOUT THE Ξ_{cc}^{++} BARY $M_{arcello} Rotondo$

- It is not seen in $D^+ p K^- \pi^+$ [arXiv:1905.02421]
- Its production at $\sqrt{s} = 13 \text{ TeV}$ is [LHCb-PAPER-2019-035] (prel.)

$$\frac{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}{\sigma(\Lambda_c^+)} = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$
Nikhef
Patrick Koppenburg Conference Summary 04/10/2019 – Beauty in Ljubljana [8 / 92]

04/10/2019 — Beauty in Liubliana [8 / 92]

Search for the Ξ_{cc}^+ baryon

Looking for the Ξ_{cc}^+ state, seen by SELEX

- Nothing at the SELEX mass $(3519 \text{ MeV}/c^2)$
- Small bump near the Ξ_{cc}^{++} mass $(3621 \text{ MeV}/c^2)$ but not significant (2.7σ)
 - → Is this the isospin partner of the Ξ_{cc}^{++} ?

Conference Summarv

Patrick Koppenburg

04/10/2019 — Beauty in Ljubljana [9 / 92]

Bound states with d, u, s, c quarks

[LHCb, Phys. Rev. D100 (2019) 032001, arXiv:1906.08350]

LIFETIMES OF THE Λ_c^+ , Ξ_c^0 , and Ξ_c^+ bary of the local set of the set of the

All lifetimes are more precise than the PDG average. The Λ_c^+ and Ξ_c^+ lifetimes are consistent, while the Ξ_c^0 and Ω_c^0 [PRL 121 (2018) 092003] are larger than previous measurements.

Nikhef Patrick Koppenburg

Conference Summary

OLD Ω_c^0 lifetime measurements

[LHCb, Phys. Rev. D100 (2019) 032001, arXiv:1906.08350]

LIFETIMES OF THE Λ_c^+ , Ξ_c^0 , and Ξ_c^+ BARY $\mathcal{O}_{\mathcal{O}_c}^{\mathcal{M}_{\mathcal{O}_c}}$

Conference Summarv

04/10/2019 — Beauty in Ljubljana [13 / 92]

Spectroscopy

Nik hef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [14 / 92]

Matt Nee

New charmonium state in $D\overline{D}$

Using $D\overline{D}$ combinations in the full 9 fb⁻¹ 2011–18 data sample.

X(3842): New charmonium seen in D^+D^- and $D^0\overline{D}^0$! Could be spin-3 $\psi_3(1^3D_3)$

 $m = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2$, $\Gamma = 2.79 \pm 0.51 \pm 0.35 \text{ MeV}$.

$\chi_{c2}(3930)$: First seen in hadroproduction. $m = 3921.9 \pm 0.6 \pm 0.2 \text{ MeV}/c^2$, $\Gamma = 36.6 \pm 1.9 \pm 0.9 \text{ MeV}$.

 $\psi(3770)$: First seen in prompt hadroproduction.

 $m = 3778.1 \pm 0.7 \pm 0.6 \,\mathrm{MeV}/c^2$.

[LHCb, arXiv:1907.13598, submitted to Phys. Rev. Lett.]

Matt Ne

New baryons in $\Lambda_b^0 \pi^+ \pi^-$

Combine 890k $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and 218k $\Lambda_b^0 \rightarrow J/\psi \, pK^-$ from 9 fb⁻¹ 2011–18 data with two pions.

- Clear peak seen at $6149.6 \pm 0.3 \, \text{MeV}/c^2$
- Further split depending in $\Lambda_b^0 \pi^{\pm}$ mass compatibe with Σ_b , Σ_b^* or neither (only one pion can be compatible).
- Best fit: two narrow peaks (widths of 3 ± 1 and 2 ± 1 MeV)

 $m(\Lambda_b(6146)^0) = 6146.18 \pm 0.33 \pm 0.22 \pm 0.16 \text{ MeV}/\alpha$ $m(\Lambda_b(6152)^0) = 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \text{ MeV}/\alpha$

Patrick Koppenburg

Nikhef

Conference Summary

04/10/2019 — Beauty in Ljubljana [15 / 92]

[LHCb, arXiv:1907.13598, submitted to Phys. Rev. Lett.]

Matt Na

New baryons in $\Lambda_b^0 \pi^+ \pi^-$

Combine 890k $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$ and 218k $\Lambda_b^0 \rightarrow J/\psi \, pK^-$ from 9 fb⁻¹ 2011–18 data with two pions.

- Clear peak seen at $6149.6 \pm 0.3 \, \text{MeV}/c^2$
- Further split depending in $\Lambda_b^0 \pi^{\pm}$ mass compatibe with Σ_b , Σ_b^* or neither (only one pion can be compatible).

- The $\Lambda_b(6152)^0$ decays to $\Sigma_b^{\pm}\pi^{\mp}$ and $\Sigma_b^{*\pm}\pi^{\mp}$.
- The $\Lambda_b(6136)^0$ decays only to $\varSigma_b^{*\pm}\pi^{\mp}$
- → Likely to be $J^P = \frac{3}{2}^+$ and $J^P = \frac{5}{2}^+$. Could also be excited Σ_b^0 .

Nik|hef

THE TALE OF THE TWO CAMELS

Dromedary and Bactrian Camel

Conference Summary

04/10/2019 — Beauty in Ljubljana [16 / 92]

 $B_c^{(*)}(2S)^+$ at the LHC

Nikhef Patrick Koppenburg

CMS [CMS, PRL 122 (2019) 132001] ATLAS [ATLAS, PRL 113 (2014) 212004]

 $B_c^{(*)}(2S)^+$ at the LHC

CMS [CMS, PRL 122 (2019) 132001] ATLAS [ATLAS, PRL 113 (2014) 212004] LHCb [PRL 122 (2019) 232001]

[LHCb, Phys. Rev. Lett. 115 (2015) 072001, arXiv:1507.03414]

OBSERVATION OF TWO PENTAQUARKS

Conference Summary

04/10/2019 — Beauty in Ljubljana [17 / 92]

[LHCb, Phys. Rev. Lett. 122 (2019) 222001, arXiv:1904.03947]

[LHCb, Phys. Rev. Lett. 122 (2019) 222001, arXiv:1904.03947]

Observation of NARROW PENTAQUARKS

Three states are observed:

 $P_c(4312)^+$ $\Gamma \sim 10 \text{ MeV} (7\sigma)$, which we could not see with 3 fb^{-1}

$$P_c(4440)^+$$
 $\Gamma \sim 20 \text{ MeV}$
and

- $P_c(4457)^+$ $\Gamma \sim 6$ MeV. The significance of the 2-peak structure is 5.4 σ
 - × No sensitivity to the wide $P_c(4380)^+$

It is striking that the $P_c(4312)^+$ and the $P_c(4457)^+$ sit at the $\Sigma_c D$ and $\Sigma_c D^*$ thresholds

Nikhef Patrick Koppenburg

[ATLAS-CONF-2019-048]

P_{c}^{+} states at ATLAS

With Run 1 data, ATLAS find 2270 \pm 300 $\Lambda_h^0 \rightarrow J/\psi \, p K^-$ decays

- Good fits with LHCb states of [PRL 115 (2015) 072001] and [PRL 122 (2019) 222001]
- Fit with only Λ is not $(p \sim 9 \times 10^{-3})$

CP violation

Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [20 / 92]

.

[LHCb, Phys. Rev. Lett. 122 (2019) 211803, arXiv:1903.08726]

ΔA_{CP} results

Nik|hef

Combining with Run-1 results $(-10\pm8\pm3)\times10^{-4}$ $_{[PRL\ 116\ (2016)\ 191601]}$ and $(+14\pm16\pm8)\times10^{-4}$ $_{[JHEP\ 07\ (2014)\ 041]}$:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4} \qquad (5.3\sigma)$$

Maxime Schubiger ΔA_{CP} History E691 1991 E791 1997 -E791 1997 · FOCUS 2000 -FOCUS 2000 -CLEO 2001 -CLEO 2001 BaBar 2007 -BaBar 2007 -Belle 2008 -Belle 2008 • CDF 2011 -CDF 2011 -LHCb 2014 • LHCb 2014 $A_{CP}(\pi^{+}\pi^{-})$ [%] $A_{CP}(K^{+}K^{-})$ [%] E791 1997 -FOCUS 2000 -CLEO 2001 -BaBar 2007 -Belle 2008 -CDF 2011-LHCb 2011 -CDF 2012 -LHCb 2013 -LHCb 2014 -LHCb 2016 -LHCb 2019-0.5 1.0 1.5 -1.0 -0.5 0.0 -2.0-1.52.0 ΔA_{CP} [%] Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [21 / 92]

ΔA_{CP} History

Conference Summarv

[LHCb, Eur. Phys. J. C77 (2017) 238, arXiv:1610.06019]

FLAVOUR TAGGING AT THE LHC

[ATLAS-CONF-2019-009] [LHCb, Eur. Phys. J. C79 (2019) 706, arXiv:1906.08356]

[ATLAS-CONF-2019-009] [LHCb, Eur. Phys. J. C79 (2019) 706, arXiv:1906.08356]

The angle γ

Nik|hef

Patrick Koppenburg

The precision on direct measurements of γ is slowly approaching that of the CKM fits

BaBar [Derkach, arXiv:1301.3283], Belle [Trabelsi, arXiv:1301.2033], CKMfitter [ckmfitter.in2p3.fr], LHCb [LHCb-CONF-2018-002]

Mikkel Bjørn

The angle γ

Measurements in latest LHCb γ combination [LHCb-CONF-2018-002]					3 fb ⁻¹ Run 1 dataset • Includes 2 fb ⁻¹ 15+16 data • Not in combination yet			
	B-decay mode	$B^+ \rightarrow DK^+$	$B^+ ightarrow D^*K^+$		$B^+ \rightarrow D K^0_s \pi^+$	$B^0 o DK^+\pi^-$		B^+ $\rightarrow DK^+\pi^+\pi^-$
	D-decay mode		Part. reco.	Full reco.	DK*+-res.	DK ^{*0} -res.	Dalitz-method	
GLW	h^+h^-	PLB.777(18)16	PLB.777(18)16		JHEP.17(17)156	JHEP.08(19)41	PRD.93(16)112018	PRD.92(15)112005
	$\pi^+\pi^-\pi^+\pi^-$	PLB.760(16)117			JHEP.17(17)156	JHEP.08(19)41		
	$h^+h^-\pi^0$	PRD.91(25)112014						
ADS	$K^{\pm}\pi^{\mp}$	PLB.760(16)117			JHEP.17(17)156	PRD.90(14)112002 JHEP.08(19)41		PRD.92(15)112005
	$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	PLB.760(16)117			JHEP.17(17)156	JHEP.08(19)41		
	$K^{\pm}\pi^{\mp}\pi^{0}$	PRD.91(25)112014						
GGSZ	$K_S^0 h^+ h^-$	JHEP.10(14)97 JHEP.08(18)176				MD: <u>JHEP.08(16)137</u>		
GLS	$K^0_S K^+ \pi^-$	PLB.733(14)36						
Time-dependent		Time dependent measurements with $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ [JHEP.03(18)59] and $B^0 \rightarrow D^{\mp} \pi^{\pm}$ [JHEP.06(18)84] decays						

Good news: Most LHCb measurements still to be done (or to be updated)

Mikkel Bjørn
[LHCb, arXiv:1909.05211, submitted to Phys. Rev. D] [LHCb, arXiv:1909.05211, submitted to Phys. Rev. Lett.]

[LHCb, arXiv:1909.05211, submitted to Phys. Rev. D] [LHCb, arXiv:1909.05211, submitted to Phys. Rev. Lett.]

04/10/2019 — Beauty in Ljubljana [26 / 92]

Daniel O'H

[LHCb, arXiv:1909.05211, submitted to Phys. Rev. D] [LHCb, arXiv:1909.05211, submitted to Phys. Rev. Lett.]

 V_{ub}

Nik hef Patrick Koppenburg

CKM FIT CONSTRAINTS

[Jure Zupan, arXiv:1903.05062]

The Unitarity Triangle in 1992

Inputs: $|V_{ub}|/|V_{cb}|$ from ARGUS [PLB255 (1991) 297] and CLEO [PLP 64 (1990) 16] (model-dependent), ϵ_{K} , B^{0} oscillations from ARGUS [PLB 192 (1987) 245] and CLEO [PRL 62 (1989) 2233], and the *t* mass $m_{t} > 89 \text{ GeV}/c^{2}$ (95%) from CDF.

• Today the value of *f_B* is about 225 MeV. In 1992, much smaller values were considered likely.

Status at first Beauty in 1993, in Liblice, Czech Republic

Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [29 / 92]

[CKMFitter]

The Unitarity Triangle in 2001

First measurement of $\sin 2\beta$

Nikhef Patrick Koppenburg Co

[CKMFitter]

The Unitarity Triangle in 2010

Constraints on Δm_s

Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [30 / 92]

[CKMFitter]

The Unitarity Triangle in 2018

LET'S BE OPTIMISTIC

Future of the Unitarity Triangle 2018 2027 If the central value remains exactly the same (though unlikely)... Consistent with SM 3.5σ effect (=SM???) 2027 If 3 angles asurements Is this 7σ a little an "odd case" ??? ...ithin (the answer is NO!) · T)... 7σ effect (≠SM)!

Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [31 / 92]

Emi Kou

Rare Decays

Conference Summary

04/10/2019 — Beauty in Ljubljana [32 / 92]

Search for $K^+ \to \pi^+ \nu \overline{\nu}$ decays Adding 2017 data n²_{miss} [GeV²/c⁴ Control data 0.1 **K**_{3π} Find 2 more candidates in signal box. 103 See 3 while expecting 1.65 ± 0.31 back-0.05 K_{2π} **R2** ground → Set 95% CL 10² **R1** K_{u2} $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \overline{\nu}) < 2.4 \times 10^{-10}$ 10 -0.05 Consistent with SM expectap [GeV/c] tion $(8.4 \pm 1.0) \times 10^{-11}$ [Buras, $\frac{1}{2}$ data 0.1 SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Buttazzo, Girrbach, Knegjens, JHEP 1511 (2015) 💆 0.05 033]. Single-event sensitivity: $(3.46 \pm 0.17) imes 10^{-11}$ -0.05→ $B = (5 \pm 7) \times 10^{-11}$ -0.1 10 15 25 20 30 35 π^+ momentum [GeV/c] Niklhef

Conference Summary

Patrick Koppenburg

04/10/2019 — Beauty in Ljubljana [32 / 92]

DIMUON MASS DISTRIBUTION

[LHCb, Phys. Rev. Lett. 118 (2017) 191801, arXiv:1703.05747]

Observation of the decay $B^0_s \rightarrow \mu^+ \mu^-$

[ATLAS, JHEP 04 (2019) 098, arXiv:1812.03017]

 $B_s^0 \rightarrow \mu^+ \mu^-$ at ATLAS

$$\begin{split} \mathcal{B}(B^0_s &\to \mu^+ \mu^-) = (2.8 \, {}^{+0.8}_{-0.7}) \times 10^{-9} \\ \mathcal{B}(B^0 &\to \mu^+ \mu^-) = (-1.9 \pm 1.6) \times 10^{-10} < 2.1 \times 10^{-10} \text{ (95\% C.L.)} \end{split}$$

Consistent with LHCb [PRL 118 (2017) 191801]

Nik hef Patrick Koppenburg

[CMS-PAS-BPH-16-004]

$B \rightarrow \mu^+ \mu^-$ with 2011–16 data

[Aebischer et al., arXiv:1903.10434]

David Straub

$B \rightarrow \mu^+ \mu^-$ after Moriond 2019

Conference Summary

04/10/2019 — Beauty in Ljubljana [37 / 92]

04/10/2019 — Beauty in Ljubljana [37 / 92]

[CMS-PAS-BPH-16-004]

$B \rightarrow \mu^+ \mu^-$ with 2011–16 data

Nik hef Patrick Koppenburg

b fractions at 13 TeV

b-hadron fractions determined using semileptonic $b \rightarrow c \mu \nu$ decays

- Use corrected mass to infer neutrino momentum
- Get 14 M $D^0 X \mu^- \overline{\nu}$, 4.3 M $D^+ X \mu^- \overline{\nu}$, 0.8 M $D_s^+ X \mu^- \overline{\nu}$ and 1.8 M $\Lambda_c^+ X \mu^- \overline{\nu}$
- See $p_{\rm T}$ dependence of $f_{\rm s}$ and $f_{\Lambda^0_b}$

Averages:

$$\frac{f_s}{f_u + f_d} = 0.122 \pm 0.006$$
$$\frac{f_{A_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$

04/10/2019 — Beauty in Ljubljana [39 / 92]

[Hiller & Krüger, PRD69 (2004) 074020, arXiv:0310219]

LEPTON UNIVERSALITY IN $b \rightarrow s \ell^+ \ell^-$

$$R_X = \frac{q_{\max}^2}{\int\limits_{q_{\min}^2}^{q_{\max}^2} \mathrm{d}q^2 \frac{d\Gamma(B \to X\mu^+\mu^-)}{\mathrm{d}q^2}}{\int\limits_{q_{\min}^2}^{q_{\max}^2} \mathrm{d}q^2 \frac{d\Gamma(B \to Xe^+e^-)}{\mathrm{d}q^2}}$$

$$R_{K} - 1 \propto \mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})$$

Assuming:

Nik hef Patrick Koppenburg

- Right-handed currents negligible
- (Pseudo-)scalar couplings $\propto m_\ell$,
- No CP phases beyond the SM

[Hiller & Krüger, PRD69 (2004) 074020]

04/10/2019 — Beauty in Ljubljana [41 / 92]

[LHCb, Phys. Rev. Lett. 113 (2014) 151601, arXiv:1406.6482]

R_{K} History

Patrick Koppenburg

[LHCb, Phys. Rev. Lett. 122 (2019) 191801, arXiv:1903.09252]

Lepton Universality in $B^+ \to K^+ \ell^+ \ell^-$

- For $B^+ \rightarrow K^+ \ell^+ \ell^-$, the range $1.1 < q^2 < 6 \, {\rm GeV^2}/c^4$ is considered
- The fit gets 1943 ± 49 $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays
- The $B^+ \rightarrow K^+ e^+ e^-$ fit gets a yield of 766 \pm 48
- Systematic uncertainties arise from mass shapes, trigger & PID calibrations, input q² distributions

The result is

Nik hef

$$R_{\rm K} = 0.846 \, {}^{+\, 0.060 \, + \, 0.016}_{-\, 0.054 \, - \, 0.014}$$

 $(2.5\sigma \text{ from the SM})$ Patrick Koppenburg Conference Summary

04/10/2019 — Beauty in Ljubljana [43 / 92]

Nik hef Patrick Koppenburg Conference Summarv [Belle, arXiv:1908.01848]

[Belle, arXiv:1904.02440]

Watanuki St

R_{K^*} at Belle

Using 711fb⁻¹ data, Belle measure R_{K^*}

- Find $103 \pm 13 \ B \rightarrow K^* e^+ e^$ and $140 \pm 16 \ B \rightarrow K^* \mu^+ \mu^$ decays, adding B^0 and B^+
- Cross-check

$$r_{J\!/\psi} = 1.015 \pm 0.025 \pm 0.038$$

Combined result ->

R_K

LHCb [PRL 122 (2019) 191801]. Belle [arXiv:1908.01848]. BaBar [PRD 86 (2012) 032012]. Nikhef Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [46 / 92]

 R_{K^*}

 LHCb
 [JHEP 08 (2017) 055]
 Belle
 [arXiv:1904.02440]
 BaBar
 [PRD 86 (2012) 032012]

 Nik
 Patrick Koppenburg
 Conference Summary
 04/10/2019 – Beauty in Ljul

04/10/2019 — Beauty in Ljubljana [46 / 92]

LHC

ELECTRON EFFICIENCY

Nik|hef

Patrick Koppenburg

LHCb use $1.3 \, {\rm fb}^{-1}$ at $\sqrt{s} = 13 \, {\rm TeV}$ taken in 2017 with a dedicated trigger line.

- Reconstruct $B^+ \rightarrow J/\psi K^+$ with one electron (muon) and one velo track
- The reconstruction efficiency is well modeled by simulation.
- The average systematic uncertainty on the data/simulation ratio is 0.6% per track and varies over phase space.

 $B_{\epsilon}^{0} \rightarrow \phi \mu^{+} \mu^{-}$

[JHEP 09 (2015) 179]

0.6 0 $dB(\Lambda_{\rm b}$

0

15 q² [GeV²/c⁴]

LHCb

 $q^{2} [GeV^{2}/c^{4}]$

 $\Lambda_{h}^{0} \rightarrow \Lambda \mu^{+} \mu^{-}$

[JHEP 06 (2015) 115]

BFs too low in $b \rightarrow s\mu^+\mu^-$ decays?

0.0

5

10

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$

[JHEP 11 (2016) 047]

 $q^{2} [GeV^{2}/c^{4}]$

Conference Summary

Nikhef Patrick Koppenburg

04/10/2019 — Beauty in Ljubljana [49 / 92]

[PRL 115 152002 (2015), arXiv:1509.06235v2] [PRD 93 025026 (2016), arXiv:1507.01618]

$B \rightarrow h \ell^+ \ell^-$ form factors from MILC

 $B^+ \rightarrow \pi^+ \ell^+ \ell^-$ [JHEP 10 (2015) 034] and $B \rightarrow K \ell^+ \ell^-$ [JHEP 06 (2014) 133] are all below the lattice computations.

Nik hef Patrick Koppenburg

$B \rightarrow K\pi$ FORM FACTORS APPLIED TO $B \rightarrow \overset{*}{besc}_{otes} \overset{*}{besc}_{otess} \overset$

• Usually the $K^*(890)^0$ meson is assumed to be narrow. Correction are $\mathcal{O}(\Gamma/m)$.

Nik hef Patrick Koppenburg

Conference Summarv

04/10/2019 — Beauty in Ljubljana [51 / 92]

[Belle, PRD 90 112009 (2014), arXiv:1408.6457]

Zhang L

 $Z_c(4200)^+$ in $\overline{B}{}^0 \rightarrow J/\psi \, K^- \pi^+$

All P_5' measurements

LHCb [JHEP 02 (2016) 104], Belle [PRL 118 (2017) 111801] CMS [PLB 781 (2018) 517], ATLAS [arXiv:1805.04000]

All P'_5 measurements

LHCb [JHEP 02 (2016) 104], Belle [PRL 118 (2017) 111801]
Sébastien Descotes-Genon Other works from [Alok et al. 1903.09617] [Kowalska et al. 1903.10932] [D'amico et al. 1704.05438 updated] [Ciuchini et al. 1903.09632] with different settings, similar favoured NP scenarios

1D hyp	Algueró	Aebischer	Alok	Arbey	D'amico	Kowalska
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	5.6 σ	5.9σ	6.2 σ	5.3σ	6.5 σ	4.7σ
$\mathcal{C}_{9\mu}^{\rm NP} = -\mathcal{C}_{10\mu}^{\rm NP}$	5.2σ	6.6σ	6.4 σ	4.5σ	5.9σ	4.8σ
$\mathcal{C}_{9\mu}^{\tilde{\mathrm{NP}}} = -\mathcal{C}_{9'\mu}^{\tilde{\mathrm{NP}}}$	5.5σ	-	6.4 σ	-	-	-

- NP hyps with significant pulls
- Right-handed currents interesting (due to R_{K} closer to 1)
- $C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$ favoured by [Aebischer et al.] as a combined effect of
 - $BR(B_s \rightarrow \mu\mu)$
 - $\Lambda_b \rightarrow \Lambda \mu \mu$ inputs
 - $\Delta m_{d.s}$ assuming no NP in $\Delta B = 2$ (not done in other fits)

Avelino Vicente

B MIXING AND ANOMALIES

$$\Delta M_s \equiv M_H^s - M_L^s = 2 \left| \frac{G_F^2}{12\pi^2} \lambda_t^2 M_W^2 S_0(x_t) B f_{B_s}^2 M_{B_s} \hat{\eta}_B \right|$$

The experimental oscillation frequencies are [HFlav]

 $\Delta M_s^{\rm Exp} = (17.757 \pm 0.021) \text{ ps}^{-1}$

$$\Delta M_d^{
m Exp} = (0.5064 \pm 0.0019) \; {
m ps}^{-1}$$

But with latest lattice [FLAG] ([ETM] [HPQCD] [RBC/UKQCD] [MILC])

$$\begin{split} \Delta M_s^{\rm FLAG} &= \left(20.1 \substack{+1.2 \\ -1.6}\right) \, \text{ps}^{-1} \\ \Delta M_d^{\rm FLAG} &= \left(0.582 \substack{+0.049 \\ -0.056}\right) \, \text{ps}^{-1} \end{split}$$

which is 1.5σ away. Could the same NP explain this and the B anomalies? Nik|hef

Conference Summary

Patrick Koppenburg

04/10/2019 — Beauty in Ljubljana [55 / 92]

[Di Luzio, Nardecchia, EPJC7 7 (2017) 536, arXiv:1706.01868]

SCALE OF NEW PHYSICS FROM B ANOMALIES Ino Vicente

Notation:

Nik hef Patrick Koppenburg

[Di Luzio, Nardecchia, 2017]

$$\begin{split} C_9 &\equiv C_{9\mu} \\ \underbrace{\frac{C_9^{\rm NP}}{\Lambda_{\rm NP}^2}}_{\rm NP} &\sim 20\% \times \underbrace{\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} C_9^{\rm SM}}_{\rm SM} \\ \\ & \text{Unsuppressed NP} \\ CKM-suppressed NP \\ CKM-suppressed NP \\ CKM-suppressed NP \\ C_9^{\rm NP} &= |V_{tb} V_{ts}^*| \qquad \Rightarrow \Lambda_{\rm NP} \sim 30 \text{ TeV} \\ \\ & \text{Loop-suppressed NP} \\ C_9^{\rm NP} &= \frac{1}{16\pi^2} \\ & \Rightarrow \Lambda_{\rm NP} \sim 2.5 \text{ TeV} \\ \\ & \text{CKM\&loop-suppressed NP} \\ C_9^{\rm NP} &= \frac{|V_{tb} V_{ts}^*|}{16\pi^2} \\ & \Rightarrow \Lambda_{\rm NP} \sim 0.5 \text{ TeV} \end{split}$$

THE UGLY DUCKLING

Lepton Flavour Violation

Conference Summary

04/10/2019 — Beauty in Ljubljana [58 / 92]

Matteo Rama

Search for $B^+ \to K^+ \mu^\pm e^\mp$

If lepton-universality is violated, leptonnumber conservation may be too

- LHCb search for $B^+
 ightarrow {\cal K}^+ \mu^\pm e^\mp$ with Run 1 (3 fb^{-1}) data
- After full (BDT) selection, combinatorial background dominates
- No signal found

Limits (90%) set as

$${\cal B}(B^+\!
ightarrow {\cal K}^+\mu^+e^-) < 7.0 imes 10^{-9}\ {\cal B}(B^+\!
ightarrow {\cal K}^+\mu^-e^+) < 6.4 imes 10^{-9}$$

More than a factor 10 better than previous limit [BaBar, PRD73:092001,2006]

04/10/2019 — Beauty in Ljubljana [58 / 92]

[BaBar, arXiv:1905.00608]

SEARCH FOR FORBIDDEN DECAYS

Conference Summary

04/10/2019 — Beauty in Liubliana [59 / 92]

Conference Summary

04/10/2019 — Beauty in Ljubljana [60 / 92]

04/10/2019 — Beauty in Ljubljana [61 / 92]

[Belle, arXiv:1904.08794]

R_D and R_{D^*} with a semileptonic tag

Using 772 million $B\overline{B}$ pairs, a selileptonic opposite B tag and $\tau \rightarrow \mu \overline{\nu} \nu$, Belle measure

 $R(D) = 0.307 \pm 0.037 \pm 0.016$ $R(D^*) = 0.283 \pm 0.018 \pm 0.014$ Using only myods: final word $R(D) = 0.245 \pm 0.035 \pm 0.020$

Using only electrons:

 $R(D) = 0.281 \pm 0.042 \pm 0.017$ $R(D^*) = 0.304 \pm 0.022 \pm 0.016$ Nikhef Patrick Koppenburg Conference Summary

[HFlav'19]

HFLAV

$B \rightarrow D^{(*)} \tau \nu$ HFLAV AVERAGE

BABAR [PRL 109 101802 (2012)] [PRD 88 072012 (2013)] Belle [PRD 92 072014 (2015)] [PRL 118 211801 (2017)] [PRD 97 012004 (2018)] [arXiv:1904.08794] LHCb [PRL 115 (2015) 111803] [PRL 120 (2018) 171802]. Theory [FLAG EPJC77 (2017) 112], [Faijfer et al., PRD 85 094025 (2012)] Nikihef

Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [62 / 92]

OR IS IS 3.9σ ?

Conference Summary

04/10/2019 — Beauty in Ljubljana [63 / 92]

Are we already seeing New Physics?

Conference Summary

04/10/2019 — Beauty in Ljubljana [65 / 92]

Mark Reter

04/10/2019 — Beauty in Ljubljana [66 / 92]

Are we already seeing New Physics?

Patrick Koppenburg

Conference Summary

04/10/2019 — Beauty in Ljubljana [67 / 92]

Magnet Cimant

the summaries in proceedings of the property of the summaries of the summary of the summaries of the summari

the state of the s

The LHCb detector breakyddrostAWneWS.com

BREAKING NEWS

DISCOVERY ANNOUCED IN TOKYO

Nik[hef_______

BEAUTY DECAYS INDICATE YET UNKNOWN PARTICLES EXIST SAYS GUY WILKINSON F

Conference Summary

04/10/2019 — Beauty in Ljubljana [68 / 92]

We need better precision in QCD.

It could be new vector bosons (but beware of $B\overline{B}$ mixing)

Flavour anomalies Z', W'

Lattice

atrick Koppenbur

Sum rules

Nik|hef

QCD

Conference Summary

04/10/2019 — Beauty in Ljubljana [68 / 92]

It could be new vector bosons, or leptoquarks

> Flavour anomalies

Lattice

atrick Koppenbur

Sum rules

Nik[hef

QCD

Leptoguarks

Z', W'

.....

Conference Summary

04/10/2019 — Beauty in Ljubljana [68 / 92]

They are likely to generate chargedlepton flavour violation.

> Flavour anomalies

Conference Summary

CPV?

Z', W'

Lepto-

quarks

Leptons, Kaons HCh

R

04/10/2019 — Beauty in Ljubljana [68 / 92]

NA62

Sum rules

Nik]hef

QCD

Lattice

atrick Koppen

Patrick Koppenburg

Conference Summary

Outlook

04/10/2019 — Beauty in Ljubljana [69 / 92]

The Belle Experiment

Belle II

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter: Csl(TI), waveform sampling (barrel) Pure Csl + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Belle II Startup

0.20 0.15 6 0.10 Linac fire B 0.05 incident 0.00 Date

Patrick Koppenburg

Conference Summary

Plat on 2019/07/01

[superkekb]

Belle II Schedule

RARE DECAYS AT BELLE II

[Belle, NIM A479 (2002) 117][CLEO, PRL 71 (1993) 674]

		signal yield (statistics only)	significance
	$B^0 \to K^{*0} (\to K^+ \pi^-) \gamma$	19.1 ± 5.2	4.4σ
	$B^+ \to K^{*+} (\to K^+ \pi^0) \gamma$	9.8 ± 3.4	3.7 σ
	$B^+ \to K^{*+} (\to K^0_S \pi^+) \gamma$	6.6 ± 3.1	2.1 σ
Nik	hef Patrick Koppenburg	Conference Summary	

04/10/2019 — Beauty in Ljubljana [75 / 92]

INTEGRATED LUMINOSITY

CMS Integrated Luminosity Delivered, pp

04/10/2019 — Beauty in Ljubljana [78 / 92]
Parked B sample at CMS

BROW

DAQ capacity exceeds computing capacity

→ park some data for later use

- CMS collected 10¹⁰ *B* events.
- Similar to LHCb's 2011 sample (caveats apply)

	What wa		Topo
	what we	паче оп	
'N			

Mode	N_{2018}	f_B [17]	B							
	Generic B hadrons									
B_d^0	4.99×10^9	0.4	1.0							
B^{\pm}	4.99×10^9	0.4	1.0							
B_s	1.56×10^{9}	0.1	1.0							
b baryons	1.56×10^{9}	0.1	1.0							
B_c	1.25×10^{7}	0.001	1.0							
${\cal B}$ hadrons total	1.25×10^{10}	1.0	1.0							
Interesting B decays										
$B^0 \to K^* \ell^+ \ell^-$	3290	0.4	$\frac{2}{3} \times 9.9 \times 10^{-7}$ [14]							
$B^{\pm} \to K^{\pm} \ell^+ \ell^-$	2250	0.4	4.51×10^{-7} [15]							

More than 20x the entire BaBar B sample collected in just 6 months!

For other physics, the integrated luminosity of this sample is ~50 fb^1 $\,$

Approximate sample of *b* hadrons in parked sample **before** reconstruction and selection

Conference Summary

<PH> = 20

2018

Time

LHC SCHEDULE

Nikhef Patrick Koppenburg

2015 2016	2017	2018	2019	2020	2021	2022	2023
MAMJJASONDJFMAMJJASOND	I FMAM J J A SONE	J FMAMJ JASOND	Long shu	itdown 2	J FMAMJ J AS OND	J FMAMJ JASONC	J FMAMJ JASOND

ALICE UPGRADES

LHCb Trigger in Run 2

LHCb TRIGGER IN RUN 3

HCb

→ 300 fb⁻¹

 $\mathcal{L} = 2 \cdot 10^{33} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$ requires some new detectors and 40 MHz read-out clock new electronics VELO: New pixel vertex detector TRACKERS: New scintillating fibre tracker. The upstream tracker is also replaced PID: Hybrid photodetectors to be replaced by multi-anode PMTs \rightarrow 50 fb⁻¹ by Run 4. ✓ We are preparing another upgrade for Run 5

 [Upgrade TDR]
 [Velo]
 [PID]
 [Sci-Fi]
 [Trigger]
 [Phase-II Eo]

 hef
 Patrick Koppenburg
 Conference Summary

[CERN-LHCC-2017-003]

LHCb

EOI FOR PHASE-II UPGRADE

[LHCb, arXiv:1808.08865]

LHCB PHASE-II UPGRADE

Join us at the open Upgrade-II meeting in Spring 2020 in Barcelona!

• Possibility to join as technical associate group.

Nik|hef

Patrick Koppenburg

[LHCb, arXiv:1808.08865]

1-1-0

The $P{H}$ ysics case

Conference Summary

Pysics Case

Pysics Case

Pysics Case

04/10/2019 — Beauty in Ljubljana [88 / 92]

An exercise for all of us

Nik hef Patrick Koppenburg

How do you assess the scientific potential for Beauty and in general of

(a) The High-Luminosity LHC? (b) The High-Energy LHC? (c) A 100-TeV pp Collider (FCC-hh)? (d) A 250-GeV ILC? (e) A circular Higgs factory (FCC-ee or CEPC)? (f) A 380-GeV CLIC? (g) A $\mu^+\mu^- \rightarrow H$ Higgs factory? (h) LHeC / FCC-eh? (or an electron-ion collider?) (i) A muon-storage-ring neutrino factory? (*j*) A multi-TeV muon collider? (k) The instrument of your dreams? Chris Quigg Liubliana · 30.09.2019 41 / 41

Chris Quigg Stéphane Monteil

04/10/2019 — Beauty in Ljubljana [90 / 92]

It was a great conference!

Conclusion

It was a great conference! Thanks Ljubljana

Conference Summary

04/10/2019 — Beauty in Ljubljana [92 / 92]

Backup

Conference Summary

04/10/2019 — Beauty in Ljubljana [93 / 92]