

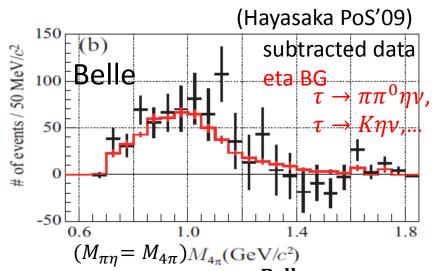
Search for the second-class current with the τ decay into πην

OKazuya Ogawa¹, Michel Hernández Villanueva², Kiyoshi Hayasaka¹ for Belle collaboration 1.Niigata University 2.The University of Mississippi

The second-class current

The weak hadronic currents without strangeness can be classified into two types depending on G-parity(G);

- $PG(-1)^J = +1$: first-class current (FCC)
- $PG(-1)^J = -1$: second-class current (SCC) \leftarrow not observed (P is parity and J is spin of the decay current)


In the Standard Model, the SCC is strongly suppressed due to isospin symmetry and no such current has been observed so far.

The second-class current τ decay mode: $\tau \rightarrow \pi \eta \nu$

For the second-class current τ decay, $\tau \to \pi \eta \nu$ (J^{PG} = 0⁺⁻) $\Rightarrow \tau \to \pi \eta \nu$ can be realized through the SCC.

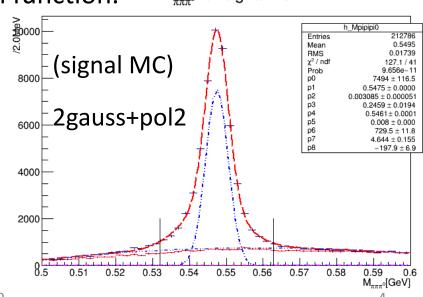
 $\tau \to \pi \eta \nu$ various theoretical predictions give for its branching fraction O(10⁻⁵), that is reachable with the available Belle data sample.

We report status of our analysis of $\tau \rightarrow \pi \eta \nu$, based on Monte Carlo simulated samples corresponding to Belle full data.

Previous study:

$$\begin{split} & \text{Br}^{\text{Belle}}(\tau^- \to \pi^- \eta \nu) \ @ \ 670 \text{fb}^{-1} \\ &= (4.4 \pm 1.6 \pm 0.8) \times 10^{-5} \ (2.4 \sigma) \\ &< 7.3 \times 10^{-5} \ \text{CL=90\% (un-published)} \\ & \text{Br}^{\text{BaBar}}(\tau^- \to \pi^- \eta \nu) \ @ \ 470 \text{fb}^{-1} \\ &= (3.4 \pm 3.4 \pm 2.1) \times 10^{-5} \\ &< 9.9 \times 10^{-5} \ \text{CL=95\%} \\ &\text{(P.del Amo Sanchez et.al,PRD 83 032002(2011))} \end{split}$$

Hereafter, the Br^{Belle} $(\tau^- \rightarrow \pi^- \eta \nu) = 4.4 \times 10^{-5}$ is used as a reference.


2

$M_{\pi\pi\pi^0}$ distribution for signal MC

- Using selected events:
 - signal: $au o \pi \eta ig(\eta o \pi \pi \pi^0 ig)
 u$
 - Tag: $\tau \rightarrow l\nu\nu$ (leptonic tag)

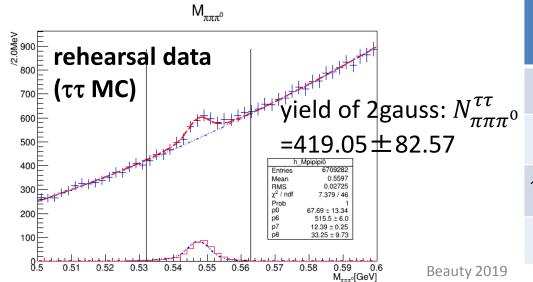
(The selection criteria is shown in poster)

- signal extraction: yield is evaluated by a fit for eta peak on $M_{\pi\pi\pi^0}$ distribution.
 - using both $\pi^+\pi^-\pi^0$ combinations $(\tau^- \rightarrow \pi)\pi^+\pi^0\nu$)
- Fit with 2Gaussian + 2^{nd} polynomial function. $M_{\pi\pi\pi^0}$ for signalMC
- Signal region is defined as 547±15MeV that corresponds to mean ± 5σ region of the main peak of the signal shape (blue gauss).
- $(4.64\pm0.03)\times10^4$ events are obtained from 1.3×10^7 events...
- \rightarrow Efficiency is 0.350 \pm 0.002%

Main BG modes

Main BG modes are divided into the following. Since $\tau \to \pi \eta \pi^0 \nu$ and $K^*(\to K_L \pi) \eta \nu$ have much larger Br than expected Br for signal, their rates seriously affect the systematics.

- η peaking BG
 - $\tau \to \pi \eta \pi^0 \nu (\pi^0 \text{ missing})$: Br=(1.39±0.07) × 10⁻³
 - $\tau \to K^* \eta \nu$, $K^* \to K_L \pi$ (K_L missing): Br=(1.38±0.15) × 10⁻⁴
 - $\tau \rightarrow K\eta\nu$ (Pid misidentification): Br= $(1.55\pm0.08)\times10^{-4}$
 - $q \overline{q}$ including π and η


- Non-peaking BG
 - $-\tau \to \pi\pi\pi\pi^0\nu$:
 - $Br=(4.62\pm0.05)\%$
 - $-\tau \to \pi\pi\pi\nu$ with fake π^0

η signal extraction

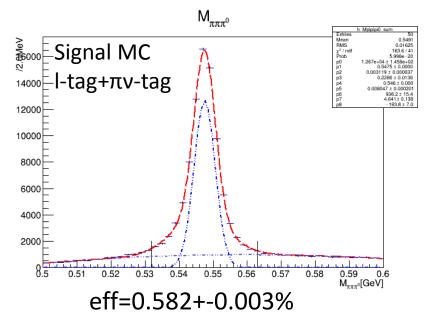
- For the demonstration, we consider $\tau\tau$ MC sample as a 702 fb⁻¹ data samples here. (rehearsal data)
- The signal yield is estimated by the difference:

$$N_{\pi\pi\pi^{0}}^{\tau\tau} - \left(N_{\pi\pi\pi^{0}}^{K\eta\nu} + N_{\pi\pi\pi^{0}}^{K^{*}\eta\nu} + N_{\pi\pi\pi^{0}}^{\pi\pi^{0}\eta\nu} \left(+N_{\pi\pi\pi^{0}}^{q\bar{q}}\right)\right) = 16.\ 06 \pm 86.04$$

Since $\tau\tau$ MC don't have $\tau\rightarrow\pi\eta\nu$ events, this yield is expected to be 0.

Main peak BG	# of η for 702 fb ⁻¹ samples
$ au o K \eta u$	$N_{\pi\pi\pi^0}^{K\eta\nu}$ =35.15 ± 2.24
$ au o K^* \eta \nu$	$N_{\pi\pi\pi^0}^{K^*\eta\nu} = 113.98 \pm 4.07$
$ au o \pi \pi^0 \eta \nu$	$N_{\pi\pi\pi^0}^{\pi\pi^0\eta\nu} = 259.09 \pm 6.13$
q ar q	$N_{\pi\pi\pi^0}^{q\bar{q}} = 72.85 \pm 14.10$

 $(N_{\pi\pi\pi}^{qq})$ is included into error only)

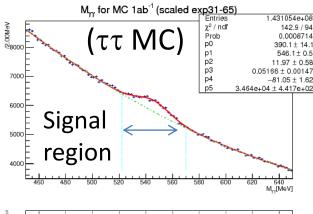

Evaluated significance

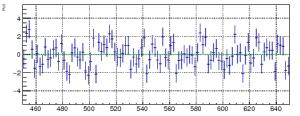
- Evaluate significance with Y_{4s} data (703fb⁻¹) and full data (915fb⁻¹: Y_{4s} , Y_{5s} , continuum)
- When number of signal N_{sig} and significance are defined as $2\epsilon' N_{\tau\tau pair} Br(\tau \to \pi \eta \nu)$ and $\frac{N_{sig}}{N_{sigerr}}$ (detection efficiency ϵ' =0.350% by signal MC), significances for each assumption of luminosity L and $Br(\tau \to \pi \eta \nu)$ are shown in the table below.

$Br(\tau \to \pi \eta \nu)$	L, fb ⁻¹	N_{sig}	$sign$ ificance, σ
4.4×10^{-5}	702.9	245	2.3
	915.1	259	2.6
1.0×10^{-5}	702.9	45	0.5
	915.1	59	0.6

Included hadronic tag ($\tau \to \pi \nu$)

- Allow not only leptonic tag but $\tau \to \pi \nu$ (Br=10.82%) in tag side
- According to naive estimation that multiplied by square root of efficiency increase, the significance is **3.4** σ (=2.6 σ × $\sqrt{\frac{0.582}{0.350}}$) for ${\rm Br}(\tau \to \pi \eta \nu) = 4.4 \times 10^{-5}$ and full data.


$\tau \to \pi \eta \nu, \eta \to \gamma \gamma$


- According to rough estimations, the rough significance is 0.7 σ for $\mathcal{L}=915.1 \mathrm{fb^{-1}}$ and $\mathrm{Br}(\tau \to \pi \eta \nu)=1.0 \times 10^{-5}$.
- But it turns out that this also has similar significance.
 This should be also seriously considered later.

Efficiency for signal MC = 1.50%.

Rough significance[σ]= $\frac{N_{sig}}{\sqrt{\# of BG + N_{sig}}}$

$Br(au o\pi\eta u)$	L, fb ⁻¹	N_{sig}	# of BG	Rough significance, σ
4.4×10^{-5}	702.9	853	1.0×10^{5}	2.7
	915.1	1111	1.3×10^{5}	3.0
1.0×10^{-5}	702.9	194	1.0×10^5	0.6
	915.1	253	1.3×10^{5}	0.7

2019/10/01 Beauty 2019 9

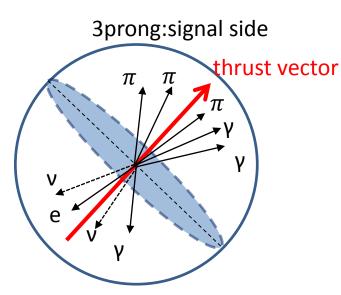
Summary

- In order to search for $\tau \to \pi \eta \nu$, we study the sensitivity using $\tau \to \pi \eta \nu$ with $\eta \to \pi \pi \pi^0$, based on Monte Carlo simulated samples corresponding to Belle's full data.
- We evaluate significance with full data (915fb⁻¹: Y_{4s} , Y_{5s} , continuum). It is 2.6 σ for $Br(\tau \to \pi \eta \nu) = 4.4 \times 10^{-5}$ or 0.6 σ for $Br(\tau \to \pi \eta \nu) = 1.0 \times 10^{-5}$.
- If the hadronic tag $(\tau \to \pi \nu)$ is included, according to naive estimation that multiplied by square root of efficiency increase, the significance is 3.4 σ for $Br(\tau \to \pi \eta \nu) = 4.4 \times 10^{-5}$ and full data.
- For $\tau \to \pi \eta \nu$ with $\eta \to \gamma \gamma$, 3.0 σ may be expected with $Br(\tau \to \pi \eta \nu) = 4.4 \times 10^{-5}$ and full data. We need to study it more seriously to combine.

2019/10/01 Beauty 2019 10

Back Up

$\tau \to \pi \eta \nu, \eta \to \pi \pi \pi^0$ selection criteria


- Definition of good charged track
 - $-P_t > 0.06 \text{GeV/c}^2 \text{ in Barrel}(-0.6235 < \cos\theta < 0.8332)$ $P_t > 0.1 \text{GeV/c}^2 \text{ in Endcap}$ $(-0.8660 < \cos\theta \le -0.6235, 0.8332 \le \cos\theta < 0.9563)$
 - helix: $|dr| \le 1$ cm, $|dz| \le 5$ cm
- Definition for good gamma
 - -0.8660 < cos θ < 0.9563 & $E_{\gamma} > 0.05$ GeV
- Missing angle at lab frame: $-0.8660 < \cos \theta_{miss} < 0.9563$

 θ_{miss} is the polar angle for missing momentum P_{miss} (difference between four-momentums for beam and sums of them for tracks and gammas).

$$P_{miss} = P_{beam} - \Sigma P^{tracks} + \Sigma P^{\gamma}$$

$\tau \to \pi \eta \nu, \eta \to \pi \pi \pi^0$ selection criteria

- Divide the event by the thrust vector into two hemispheres the tag and signal sides which have 3-1 prong and net charge = 0.
 - Tag side (leptonic tag; τ → lνν):
 Allow 1 lepton and ≤ 1γto accept FSR or ISR from lepton.
 invariant mass of all tag-side γ and track: $M_{tag} < 1.8 \text{GeV}/c^2$
 - <u>Signal side:</u> Allow 3π and 2γ only $(0.105 < M_{\gamma\gamma} < 0.165 GeV). <math>M_{sig} < 1.2 GeV/c^2$
- signal extraction: yield is evaluated by a fit for eta peak on $M_{\pi\pi\pi^0}$ distribution.

1prong:tag side