Hadronic *B* decay reconstruction in early Belle II data

Eldar Ganiev¹, Niharika Rout², Benedikt Wach³

¹University of Trieste & INFN, Trieste, Italy ²Indian Institute of Technology, Madras, India ³Max Planck Institute for Physics, Munich, Germany

October 1, 2019 — Beauty 2019, Ljubljana

Motivation

The standard model is successful but incomplete.

Identifying the theory that completes the SM is the main goal of today's HEP.

Flavor — a powerful instrument in indirect searches for non-SM physics.

Belle II hadronic B decay program has key role:

- Reach 1° precision or better on α/φ_2 , γ/φ_3 to tighten CKM constraints;
- Probe non-SM CPV in penguin $b \rightarrow d$ and $b \rightarrow s$ transitions in $B^0 \rightarrow \eta' K^0$ and $B^0 \rightarrow \varphi K^0$.

Belle II in 2019: first 6.5 fb⁻¹ collected with all the subdetectors installed and fully operational.

Goal: use hadronic *B* decays to validate various aspects of detector performance.

Belle II at SuperKEKB

Continuum suppression

B→Dh results

First charmless from Belle II

Branching fraction ~ 10^{-5} .

Signal dominated by ~ 25 B⁰ \rightarrow K⁺ π ⁻ events.

Summary

- Belle II: at the forefront of indirect exploration of non-SM physics
- Hadronic *B* decays have a key role
- Mid-2019: first 6.5 fb⁻¹ of data with complete detector offer detailed validation of performance
- Beam energy controlled to < 3 MeV
- 4500 B \rightarrow D^(*)h reconstructed in 5.15 fb⁻¹
- First observation of suppressed $B \rightarrow DK$ decay in Belle II
- First observation of charmless *B* decays in Belle II
- <u>Remarkable performance Belle II is ready for physics</u>