

Radiative decays at LHCb

Pavel Krokovny on behalf of the LHCb Collaboration Budker INP and Novosibirsk University

Motivation

- LHCb detector and data taking
- First observation of $\Lambda_b^0 \rightarrow \Lambda \gamma$
- Time-dependent analysis of $B_s^{0} \rightarrow \phi \gamma$ Summary

Beauty 2019

Radiative b decays

- $b \rightarrow s(d)\gamma$ are Flavour-Changing-Neutral-Currents \rightarrow
 - forbidden at tree level in Standard Model (SM), only occurs via loop diagrams in SM,
 - indirect search can probe New Physics at much larger scales

SM: left-handed W induces purely left-handed photon

- Probing for New Physics by measurement of:
 - > photon polarization
 - Branching fractions and direct CP violation parameters

Radiative b decays observables

LHCb performance

Acceptance: $2 < \eta < 5$

- Trigger efficiency: ~ 40% for hadronic channels
- Momentum resolution: 0.4-0.6% at 5 – 100 GeV
- Kaon ID efficiency: 95% with 5 % $\pi \rightarrow K$ mis-ID probability
- Energy resolution for photons:
 1% + 10% / √ E(GeV)

Int. J. Mod. Phys. A 30 (2015) 153022

Beauty baryonic radiative decays

- LHCb has unique dataset of beauty baryons:
 - > Λ_{b}^{0} → $\Lambda\mu^{+}\mu^{-}$ BF JHEP09(2018)145, moments JHEP09(2018)146;
 - > $\Lambda_b^0 \rightarrow \Lambda^* \mu^+ \mu^-$ JHEP06(2017)108, $\Lambda_b^0 \rightarrow N^* \mu^+ \mu^-$ JHEP04(2017)029.
- Baryonic $b \rightarrow sy$ has not observed.
- Gives access to photon polarisation: ground state $\Lambda_b^{0}(\uparrow)$ [b(\uparrow)[ud]>, the [ud] system acts as spectator diquark. The Λ_b^{0} respects properties of the underlying b-quark.
- For Λ_b^{0} decays, normal to the plane formed by the pp-collision and Λ_b^{0} spin directions provide a preferred plane (even for unpolarized Λ_b^{0} , as in LHCb).

Search for $\Lambda_{\rm b} \rightarrow \Lambda_{\rm o} \gamma$ • SM prediction for B from 10⁻⁷ to 10⁻⁵ $\Lambda(1115)$ Λ_h • CDF: B < 1.9.10⁻³ [Phys.Rev.D66 112002] Z • Using LHCb Run2 2016 data (1.7 fb⁻¹) • Very challenging mode: no secondary vertex, long Κ.π lifetime ($c\tau = 8$ cm), no direction from cluster Λ θ. • Using $B^0 \rightarrow K^{*0}\gamma$ as a normalization channel θ_{p}

$$\frac{N(\Lambda_b^0 \to \Lambda\gamma)}{N(B^0 \to K^{*0}\gamma)} = \frac{f_{\Lambda_b^0}}{f_{B^0}} \times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda\gamma)}{\mathcal{B}(B^0 \to K^{*0}\gamma)} \times \frac{\mathcal{B}(\Lambda^0 \to p\pi^-)}{\mathcal{B}(K^{*0} \to K^+\pi^-)} \times \frac{\epsilon(\Lambda_b^0 \to \Lambda\gamma)}{\epsilon(B^0 \to K^{*0}\gamma)}$$

 $B(\Lambda_{b}^{0} \rightarrow \Lambda \gamma) = (7.1 \pm 1.5_{stat} \pm 0.6_{syst} \pm 0.7_{ext}) \ 10^{-6}$

Run2: 1.7 fb⁻¹

Phys. Rev. Lett. 123 (2019) 031801

8

More about $\Lambda_{\rm b}^{0} \rightarrow \Lambda \gamma$

Analysis statistically limited. Main systematics:

Source	Uncertainty (%)
Data/simulation agreement	7.7
Λ_b^0 fit model	3.0
$B^{ ilde{0}} o K^{*0} \gamma$ backgrounds	2.7
Size of simulated samples	1.7
Efficiency ratio	0.7
Sum in quadrature	8.9
$f_{A_b^0}/f_{B^0}$	8.7
Input branching fractions	3.0
Sum in quadrature	9.2

Run2: 1.7 fb⁻¹ Phys. Rev. Lett. 123 (2019) 031801

Photon polarization in $b \rightarrow s\gamma$

- In SM γ is purely left-handed due to angular momentum conservation

$$\mathcal{M} \propto \underbrace{\left(C_{7\gamma}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}\right)\mathcal{O}_{7\gamma}}_{\mathcal{M}_{L}} + \underbrace{\left(C_{7\gamma}^{\prime \mathrm{SM}} + C_{7\gamma}^{\prime \mathrm{NP}}\right)\mathcal{O}_{7\gamma}}_{\mathcal{M}_{R}}$$

- Leading operator in SM: $\mathcal{O}_{7\gamma} = [\bar{s}\sigma_{\mu\nu}(1+\gamma_5)bF^{\mu\nu}]$
- Chirally-flipped term is suppressed: $\mathcal{O}'_{7\gamma} = [\bar{s}\sigma_{\mu\nu}(1-\gamma_5)bF^{\mu\nu}], C_{7\gamma}^{\prime SM} \sim \frac{m_s}{m_b}C_{7\gamma}^{SM}$
- But it enhanced in many NP scenarios (RH W_{R}^{-} , SUSY)
- RH photon: excellent null test for SM

Photon polarization in $B_s^0 \rightarrow \phi \gamma$

Time-dependent decay rates for $B_s^0 \rightarrow \varphi \gamma$ and $\overline{B}_s^0 \rightarrow \varphi \gamma$ gives access to the photon polarization

$$\Gamma_{B_{S}^{0} \to \Phi_{\gamma}}(t) \propto \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + C\cos(\Delta m_{s}t) - S\sin(\Delta m_{s}t) \right]$$

$$\Gamma_{\bar{B}_{S}^{0} \to \Phi_{\gamma}}(t) \propto \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \mathcal{A} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - C\cos(\Delta m_{s}t) + S\sin(\Delta m_{s}t) \right]$$

$$\cdot \Delta\Gamma_{s} \& \Delta m_{s} : \text{ decay width and mass} \\ \text{ differences between the B }^{0} \text{ mass eigenstates} \qquad \text{Depend on} \\ C_{7} \text{ and } C_{7}'$$

• C: measure of the direct CP violation,

S: measure of the $B_{1}^{0} - \overline{B}_{2}^{0}$ mixing

- Selection: $E_{\tau}(\gamma)$ > 3 GeV, $p_{\tau}(B)$ > 3 GeV, PID cuts, γ - π^{0} separation.
- Using $B_s^0 \rightarrow K^{*0} \gamma$ as a high statistics control mode for decay-time acceptance. Run1: 3.0 fb⁻¹ arXiv: 1905.06284

Photon polarization in $B_s^0 \rightarrow \phi \gamma$

- $B^0 \rightarrow K^{*0}\gamma$ is used as control channel for decay time efficiency.
- Fit of B_s^o mass to obtain a background subtracted time-dependent decay rate taking into account event mis-tag probability and decay time uncertainty.

Global radiative TD CPV

LH

Κ* γ	Average HFLAV -0.04 ± 0.14	
$K_{s} \ \pi^{0} \ \gamma$	Average HFLAV -0.07 ± 0.12	
K _s η γ	Average HFLAV 0.06 ± 0.29	
${\sf K}_{\sf s}\;\rho^0\;\gamma$	Average HFLAV -0.22 ± 0.14	
$K_{S} \mathrel{\varphi} \gamma$	Average HFLAV -0.35 ± 0.60	-
φγ	LHCb preliminary 0.11 ± 0.31	•
-	3 -2 $^{-1}C_{CP}$	0 1 2 14

Summary

- The photon polarization in $b \rightarrow s\gamma$ is highly sensitive to NP.
- Complementary approaches by measurements of branching-fractions, angular analyses and CP asymmetries.
- New LHCb results:
 - > first radiative b-baryon decay observed,
 - > new measurement of photon polarization.
- More to come soon from LHCb full Run 2 analyses

... and Belle II, LHCb phase 2 ...

LHCb upgrade schedule

