

September 30 - October 4, 2019

FCNC in top quark transitions in ATLAS

M. Florencia Daneri Universidad de Buenos on behalf of the **ATLAS** Collaboration

maria.florencia.daneri@cern.ch

FCNC couplings

Dominant **SM** top coupling

Flavour Changing Neutral Currents

SM

 \rightarrow forbidden at tree level

 \rightarrow **one loop** interactions strongly **suppressed** by the **GIM** mechanism (negligible \mathscr{B})

BSM

 \rightarrow **increase rates** several orders depending on the model

 \hookrightarrow quark singlets (**QS**), two Higgs doublet (**2HDM**) with and without flavour conservation (**FC**), supersymmetric extensions of the SM (**MSSM**, *K* **SUSY**)

	\mathbf{SM}	QS	2HDM	FC 2HDM	MSSM	₽ SUSY
$t \rightarrow uZ$	8×10^{-17}	1.1×10^{-4}	_	_	2×10^{-6}	$3 imes 10^{-5}$
$t \to u \gamma$	3.7×10^{-16}	7.5×10^{-9}	_	_	2×10^{-6}	1×10^{-6}
$t \to ug$	3.7×10^{-14}	1.5×10^{-7}	_	_	8×10^{-5}	2×10^{-4}
$t \to u H$	2×10^{-17}	4.1×10^{-5}	$5.5 imes 10^{-6}$	_	10^{-5}	$\sim 10^{-6}$
$t \rightarrow cZ$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	$3 imes 10^{-5}$
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \to c H$	3×10^{-15}	4.1×10^{-5}	$1.5 imes 10^{-3}$	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Signature

- 3 isolated charged **leptons** $(e, \mu) \rightarrow 2$ with $m_{\ell\ell}$ close to Z mass
- ≥ 2 jets (= 1 b-tagged)

Main **backgrounds**: diboson, $t\bar{t}Z$ and tZ

Main **systematic** uncertainties: theoretical normalisation and **background modelling**

Analysis Strategy

 \hookrightarrow event **reconstruction in SR** using a minimized χ^2 variable (to discriminate signal and background) + selection on masses

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{a}\ell_{b}}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^{2}}{\sigma_{t_{\text{FCNC}}}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^{2}}{\sigma_{t_{\text{SM}}}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{\text{reco}} - m_{W}\right)^{2}}{\sigma_{W}^{2}}$$

 \hookrightarrow binned likelihood **fit** in SR and CR

observed

$$\mathscr{B}(t \to Zu) < 1.7(2.4) \times 10^{-4}$$

 $\mathscr{B}(t \to Zc) < 2.4(3.2) \times 10^{-4}$
expected 4

- \rightarrow four signatures accessible depending on the Higgs decay
- \rightarrow dedicated analysis for each signature
- \rightarrow **combined** interpretation performed by **ATLAS**

 $t \rightarrow H(WW^*/ZZ^*)q$

Signature \rightarrow multilepton

2 categories:

- 2 same sign leptons, \geq 4 jets (= 1 or 2 b-tagged)
- 3 leptons, \geq 2 jets (= 1 b-tagged)

Main **backgrounds**: *ttW* and **non-prompt leptons** (estimated from MC and data)

Main **systematic** uncertainties: **background modelling** + data driven statistical uncertainties

Analysis Strategy

ightarrow BDTs trained to discriminate signal from background ightarrow **2 combined BDTs** (signal vs non-prompt leptons/*ttV*) for each category

↔ binned maximum likelihood **fit to BDT** discriminant

$$\begin{aligned} \mathcal{B}(t \rightarrow Hu) < 1.6(1.5) \times 10^{-3} \\ \mathcal{B}(t \rightarrow Hc) < 1.9(1.5) \times 10^{-3} \end{aligned}$$

Phys. Rev. D 98 (2018) 032002

Signature

- 1 **lepton** (e or μ)
- ≥ 4 jets (≥ 2 b-tagged)

Main **background**: $t\bar{t}$ + **HF jets**

Main **systematic** uncertainties: **background modelling** and **c-jet mistagging**

Analysis Strategy

- \hookrightarrow event categorisation based on n_{jets} and n_{bjets}
- ↔ LH discriminant based on object kinematics

 $L(\mathbf{x}) = \frac{P^{\text{sig}}(\mathbf{x})}{P^{\text{sig}}(\mathbf{x}) + P^{\text{bkg}}(\mathbf{x})} \xrightarrow{\text{p.d.f. under the signal hypothesis}} p.d.f. under the background hypothesis}$ $\hookrightarrow \text{ binned likelihood fit under the signal hypothesis}$

H(bb)

 $t\bar{t}$ production

Events / 0.

Signature

- $\mathbf{2}\tau$ (at least one τ_{had})
- multiple **jets**

BDT discriminant

Main **background**: **fake leptons** (data driven estimation for CR)

Main **systematic** uncertainties: **fake taus** modelling uncertainties

Analysis Strategy

 \hookrightarrow **event categorisation** for SR based on the number of τ_{lep} and

 τ_{had} and n_{jets}

 \hookrightarrow **BDT** with kinematic observables to separate signal from background

⇔binned likelihood **fit to BDT** distributions

 $\begin{aligned} \mathcal{B}(t \rightarrow Hu) < 1.7(2.0) \times 10^{-3} \\ \mathcal{B}(t \rightarrow Hc) < 1.9(2.1) \times 10^{-3} \end{aligned}$

Signature $\rightarrow 2\gamma$

- 1. hadronic: ≥ 4 jets (≥ 1 b-tagged)

Main **backgrounds**:

- 1. **hadronic**: $\gamma\gamma$ +jets (estimation with fit to data)
- 2. **leptonic**: $t\bar{t}\gamma$, $W\gamma\gamma$, $\gamma\gamma$ +jets (background calibration to data)

Analysis **statistically** limited

Analysis strategy

JHEP10(201

 \hookrightarrow 3-body reconstruction and **mass conditions** on reconstructed tops

- \hookrightarrow hadronic: fit to $m_{\gamma\gamma}$ spectrum
- $\hookrightarrow \textbf{leptonic: event count}$

 $\begin{aligned} \mathcal{B}(t \rightarrow Hu) < 1.7(2.4) \times 10^{-3} \\ \mathcal{B}(t \rightarrow Hc) < 2.2(1.6) \times 10^{-3} \end{aligned}$

$t \rightarrow Hq$ Combination

	95% CL upper limits on $\mathscr{B}(t \to Hc)$ Observed (Expected)	95% CL upper limits on $\mathscr{B}(t \to Hu)$ Observed (Expected)
$\begin{split} H &\to b\bar{b} \\ H &\to \tau\tau \; (\tau_{\text{lep}}\tau_{\text{had}}, \tau_{\text{had}}\tau_{\text{had}}) \\ H &\to WW^*, \tau\tau, ZZ^* \; (2\ell\text{SS}, 3\ell) \\ H &\to \gamma\gamma \end{split}$	$\begin{array}{c} 4.2 \times 10^{-3} \ (4.0 \times 10^{-3}) \\ 1.9 \times 10^{-3} \ (2.1 \times 10^{-3}) \\ 1.6 \times 10^{-3} \ (1.5 \times 10^{-3}) \\ 2.2 \times 10^{-3} \ (1.6 \times 10^{-3}) \end{array}$	$5.2 \times 10^{-3} (4.9 \times 10^{-3})$ $1.7 \times 10^{-3} (2.0 \times 10^{-3})$ $1.9 \times 10^{-3} (1.5 \times 10^{-3})$ $2.4 \times 10^{-3} (1.7 \times 10^{-3})$
Combination	$1.1 \times 10^{-3} (8.3 \times 10^{-4})$	$1.2 \times 10^{-3} (8.3 \times 10^{-4})$

$\mathcal{B}(t \rightarrow Hu) < 1.2(0.83) \times 10^{-3}$
$\mathcal{B}(t \rightarrow Hc) < 1.1(0.83) \times 10^{-3}$

JHEP 05 (2019) 123

Signature

- SR \rightarrow 1 γ , 1 lepton (*e* or μ), 1 b-jet, \not{E}_T
- **CR** \rightarrow *W* + γ + jet, *Z* + γ

Main **background**:

- *e* **misidentified** as $\gamma(t\bar{t}) \rightarrow data driven estimate$
- processes with prompt γ

Analysis Strategy

 \hookrightarrow **NN** to discriminate signal from background \hookrightarrow binned profile likelihood **fit to NN** output in **SR** and $W + \gamma + \text{jet}$

 \hookrightarrow binned profile likelihood **fit** p_T^{γ} for $Z + \gamma$

 \hookrightarrow limits derived for **left** (LH) and **right** (RH) handed couplings

u/c

CERN-EP-2019-155

(Submitted to PLB)

Data

— Signal (x10)

e→γ fake

i→γ fake

Uncertaint

W+γ+jets

Z+γ+jets

Other prompt

NN output

Events / bir

ATLAS

tuγ, LH

SR Post-Fit

√s=13 TeV, 81 fb⁻¹

Signature

- 1 isolated **high energy lepton** (e or μ)
- *E*/_T
- 1 jet **b-tagged**

Main **background**: W/Z+jets, $t\bar{t}$, diboson, multijet

Main **systematic** uncertainties: JES, $\not{E_T}$ modelling, normalisation and **modelling of multijet** background

Analysis Strategy

 \hookrightarrow **NN** to discriminate signal and background

↔ binned maximum likelihood **fit to NN output in SR**

$$\mathcal{B}(t \to gu) < 0.4(0.35) \times 10^{-4}$$

 $\mathcal{B}(t \to gc) < 2.0(1.8) \times 10^{-4}$

EPJC 76 (2016) 55

Overview

Strong programme searching for **FCNC** processes in the **top sector**

 $\hookrightarrow \mathbf{several\ couplings}$ and final states are investigated

 \hookrightarrow **upper limits** are set on the \mathscr{B}

→ **similar strategy** for all of them: define **SR** and **CR**, use **BDT** or **NN** to discriminate signal and background events, **profile likelihood fit** to these distributions

Next round of analyses with **full 13TeV** dataset

 \hookrightarrow more data

Analysis	Publication date	Reference
$t \rightarrow Zq(t\bar{t}@13\text{TeV})$	August 2018	<u>JHEP07(2018)176</u>
$t \rightarrow Hq - \text{multilepton}(t\overline{t} @ 13 \text{TeV})$	September 2018	<u>Phys. Rev. D 98 (2018) 032002</u>
$t \to H(\gamma \gamma) q(t\bar{t} @ 13 \text{TeV})$	November 2017	<u>JHEP10(2017)129</u>
$t \to H(b\bar{b}/\tau\tau + \text{combo})(t\bar{t}@13\text{TeV})$	May 2019	<u>JHEP 05 (2019) 123</u>
$t \rightarrow \gamma q$ (SingleTop@13TeV)	August 2019	<u>CERN-EP-2019-155</u> (sub to PLB)
$t \rightarrow gq(\text{SingleTop} @ 8\text{TeV})$	February 2016	<u>EPJC 76 (2016) 55</u>

Thank you for your attention!

$t \rightarrow Zq$

$t\bar{t} \to WbZ(\ell\ell)q$

Region	se	lect	ion:
1005ioii			

Selection	$t\bar{t}Z$ CR	WZ CR	ZZ CR	Non-prompt lepton CR0 (CR1)	SR
No. leptons	3	3	4	3	3
OSSF	Yes	Yes	Yes	Yes	Yes
$ m_{\ell\ell}^{\rm reco} - 91.2 {\rm GeV} $	< 15 GeV	< 15 GeV	< 15 GeV	> 15 GeV	< 15 GeV
No. jets	≥ 4	≥ 2	≥ 1	≥ 2	≥ 2
No. <i>b</i> -tagged jets	2	0	0	0(1)	1
$E_{ m T}^{ m miss}$	> 20 GeV	> 40 GeV	> 20 GeV	> 20 GeV	> 20 GeV
$m_{\mathrm{T}}^{\ell_{\mathcal{V}}}$	-	> 50 GeV	-	-	-
$ m_{\ell_V}^{\rm reco} - 80.4 {\rm GeV} $	-	-	-	-	< 30 GeV
$ m_{i\ell\nu}^{\rm reco} - 172.5 {\rm GeV} $	-	-	-	-	< 40 GeV
$ m_{i\ell\ell}^{\rm reco} - 172.5 {\rm GeV} $	-	-	-	-	< 40 GeV

Expected number of events:				
Sample	Yields			
	Pre-fit	Post-fit		
$t\bar{t}Z$	37 ± 5	37 ± 4		
WZ	32 ± 19	32 ± 8		
ZZ	6.2 ± 3.2	6.4 ± 3.0		
Non-prompt leptons	26 ± 11	20 ± 7		
Other backgrounds	23 ± 4	23 ± 4		
Total background	124 ± 26	119 ± 10		
Data	116	116		
Data / Bkg	0.94 ± 0.21	0.97 ± 0.12		
Signal $t \to uZ \ (\mathcal{B} = 0.1\%)$	101 ± 8	103 ± 8		
Signal $t \to cZ \ (\mathcal{B} = 0.1\%)$	85 ± 7	87 ± 7		

Fitted distributions:	
2 (27)	

- $\rightarrow \chi^2$ (SR)
- \rightarrow leading p_T for non-prompt leptons for $t\bar{t}Z$ (CR)
- \rightarrow transverse mass for $WZ\left(\text{CR}\right)$
- \rightarrow reco mass for ZZ (CR)

Events / 1

Data / Bkg

$t\bar{t} \to WbZ(\ell\ell)q$

$t\bar{t} \rightarrow WbZ(\ell\ell)q$

	Expected	Observed
t —> Zu	2.4×10^{-4}	1.7×10^{-4}
t -> Zc	3.2×10^{-4}	2.4×10^{-4}

BDT inputs per region category:

Variable	2ℓSS	3ℓ
$p_{\rm T}$ of higher- $p_{\rm T}$ lepton	×	
$p_{\rm T}$ of lower- $p_{\rm T}$ lepton	×	
$p_{\rm T}$ of lepton ℓ_0		×
$p_{\rm T}$ of lepton ℓ_1		×
$p_{\rm T}$ of lepton ℓ_2		×
Dilepton invariant masses (all combinations)	×	×
Trilepton invariant mass		×
Best Z candidate invariant mass		×
Maximum lepton $ \eta $	×	
Lepton flavor	×	
Number of jets	×	×
Number of <i>b</i> -tagged jets	×	×
$p_{\rm T}$ of highest- $p_{\rm T}$ jet		×
$p_{\rm T}$ of second highest- $p_{\rm T}$ jet		×
$p_{\rm T}$ of highest- $p_{\rm T}$ b-tagged jet		×
$\Delta R(\ell_0,\ell_1)$		×
$\Delta R(\ell_0,\ell_2)$		×
ΔR (higher- $p_{\rm T}$ lepton, closest jet)	×	
ΔR (lower- $p_{\rm T}$ lepton, closest jet)	×	
$\Delta R(\ell_1, \text{closest jet})$		×
Smallest $\Delta R(\ell_0, b$ -tagged jet)		×
$E_{ m T}^{ m miss}$	×	
m _{eff}	×	×

FCNC discriminant

	Expected	Observed
t —> Zu	1.5×10^{-3}	1.6×10^{-3}
t -> Zc	1.5×10^{-3}	1.9×10^{-3}

 $t \rightarrow H(bb)$

Preselection requirements:

Requirement	$tqH(b\bar{b})$ search
Trigger Leptons	single-lepton trigger =1 isolated e or μ
	_
Electric charge (q)	_
Jets	≥4 jets
<i>b</i> -tagging	$\geq 2 b$ -tagged jets

LH discriminant:

$$L(\mathbf{x}) = \frac{P^{\text{sig}}(\mathbf{x})}{P^{\text{sig}}(\mathbf{x}) + P^{\text{bkg}}(\mathbf{x})}$$
$$P^{\text{sig}}(\mathbf{x}) = \frac{\sum_{k=1}^{N_p} P^{\text{sig}}_{\text{btag}}(\mathbf{x}^k) P^{\text{sig}}_{\text{kin}}(\mathbf{x}^k)}{\sum_{k=1}^{N_p} P^{\text{sig}}_{\text{btag}}(\mathbf{x}^k)}$$
$$P^{\text{sig}}_{\text{kin}}(\mathbf{x}) = P^{\text{sig}}(M_{\ell\nu b_{\ell}}) P^{\text{sig}}(X_{b_1b_2q_h}) P^{\text{sig}}(M_{b_1b_2})$$

LH discriminant inputs:

- lepton flavour
- kinematic observables (jet prop)
- b-tagging weights
- angular separation
- MET

• *m_{eff}*

 $t \to H(\tau \tau)q$

Preselection requirements:

Requirement	$tqH(\tau\tau)$ search		
	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel	
Trigger	single-lepton trigger	di- $ au$ trigger	
Leptons	=1 isolated e or μ	no isolated e or μ	
	$\geq 1 \tau_{had}$	$\geq 2 \tau_{had}$	
Electric charge (q)	$q_\ell imes q_{ au_{ ext{had},1}} < 0$	$q_{ au_{\mathrm{had},1}} imes q_{ au_{\mathrm{had},2}} < 0$	
Jets	\geq 3 jets	≥3 jets	
<i>b</i> -tagging	=1 b -tagged jets	=1 <i>b</i> -tagged jets	

BDT input variables: $au_{\mathrm{lep}} au_{\mathrm{had}}$ $au_{
m had} au_{
m had}$ Variable 3j ≥4j 3j ≥4j $m_{ au au}^{ ext{fit}}$ \times Х Х Х \times Х m_{Hq} Х \times Х Х $m_{\rm T,lep}$ Х $p_{\mathrm{T},1}$ Х Х Х Х Х \times Х $p_{\mathrm{T,2}}$ $E_{\mathrm{T}}^{\mathrm{miss}}$ ϕ centrality \times Х Х Х $E_{\mathrm{T},\parallel}^{\mathrm{miss}}$ Х Х Х Х $E_{\mathrm{T},\perp}^{\mathrm{miss}}$ Х Х m_{bj_1} Х \times Х Х \times Х $m_{\text{lep}j}$ \times \times $m_{\tau j}$ x_1^{fit} \times \times Х Х x_2^{fit} Х \times \times \times \times $m_{bj_1j_2}$ Х

 $t \to H(b\bar{b})q$

 $t \to H(\tau \tau)q$

H —> bb	Expected	Observed
t —> Hu	4.9×10^{-3}	5.2×10^{-3}
t —> Hc	4.0×10^{-3}	4.2×10^{-3}

H —> tau tau	Expected	Observed
t —> Hu	2.0×10^{-3}	1.7×10^{-3}
t —> Hc	2.1×10^{-3}	1.9×10^{-3}

Hadronic selection

The next step is designed to select events for which the six-body final state (two photons and four jets) is compatible with a $t\bar{t}$ final state. It starts by forming three-body objects: the two photons plus one jet on one side (Top1), and the three other jets on the other side (Top2). By grouping each of the four jets with the two photons, four (Top1,Top2) pairs are constructed, with corresponding invariant masses (M_1,M_2) . For an event to be selected, there must be at least one combination (Top1,Top2) with masses (M_1,M_2) compatible with the top quark mass, as decribed below.⁵

Based on the position and width of the two signal peaks, the window chosen for the M_1 selection ranges from 152 GeV to 190 GeV, while for M_2 the broader range from 120 GeV to 220 GeV is chosen.

In order to increase the acceptance, albeit with a reduced signal-to-noise ratio, events failing the M_2 selection step are also retained for the final analysis by exploiting two (orthogonal) categories:

- category 1: events that pass the full selection;
- category 2: events that fail the M_2 requirement but satisfy all other selection criteria.

Leptonic selection

The next step is to verify, as was done for the hadronic selection, that the final-state particles are kinematically compatible with the decay of two top quarks. The invariant mass M_1 of the two photons and one of the two jets (Top1) is calculated, as well as the mass M_2 of the remaining jet, the lepton, and the neutrino (Top2). For the latter, the neutrino longitudinal momentum is estimated by using a W boson mass constraint, as was done in Ref. [33]. The same calculation is repeated, exchanging the role of the two jets. If the invariant masses (M_1, M_2) of one of the two (Top1, Top2) combinations fall in predefined windows around the top quark mass, the event is selected, provided one of the two jets is *b*-tagged. This defines category-1 events. Events fulfilling all requirements, except the one on M_2 are kept as category-2 events. As was done for the hadronic mode, the acceptance windows were optimised, resulting in the same interval for M_1 (152 GeV to 190 GeV), and in a slightly narrower interval for M_2 , from 130 GeV to 210 GeV.

Figure 3: Distribution (a) of the transverse mass calculated from the lepton kinematics and the missing transverse momentum and (b) of the invariant mass of the lepton, the neutrino, and one jet for each $\gamma\gamma j$ combination where the $m_{\gamma\gamma j}$ mass falls in the M_1 acceptance window. No *b*-tagging is required. The $t\bar{t}\gamma$, $W\gamma\gamma$ and $Z\gamma\gamma$ distributions are superimposed, normalised to the data's integrated luminosity using theoretical cross sections. The SHERPA $S_{\gamma\gamma j}$ sample is normalised to the difference between data and the sum of $t\bar{t}\gamma$, $W\gamma\gamma$ and $Z\gamma\gamma$. The distribution of the FCNC signal is normalised assuming a branching ratio of (a) 2% and (b) 1%. The vertical dotted lines in (b) indicate the M_2 selection window (see text).

$\underline{m}_{\gamma\gamma}$ distributions after the hadronic/leptonic selection

Selection	Hadronic Leptonic			
Category	1	2	1	2
		Signal t	$\rightarrow cH$	
Acceptance with stat. unc. [%]	2.89 ± 0.10	4.15 ± 0.12	0.96 ± 0.03	0.27 ± 0.02
Expected events for $\mathcal{B} = 0.2\%$	$7.85^{+0.64}_{-0.67}$	$11.30^{+0.91}_{-0.96}$	$2.60^{+0.21}_{-0.23}$	$0.71^{+0.07}_{-0.07}$
	SM Higgs boson resonant background			
Expected events	$1.17\substack{+0.09\\-0.11}$	$3.27^{+0.25}_{-0.27}$	$0.26^{+0.02}_{-0.03}$	$0.23^{+0.02}_{-0.02}$
$t\bar{t}H$ fraction	90%	68%	92%	77%

H —> gam gam	Expected	Observed
t —> Hu	2.4×10^{-3}	1.7×10^{-3}
t —> Hc	1.6×10^{-3}	2.2×10^{-3}

Summary of the best-fit $\mathscr{B}(t \to Hq)$ for the individual searches as well as their combination, assuming $\mathscr{B}(t \to Hq') = 0$, where q, q' = u, c.

31

$t \rightarrow Hq$ Combination

• upper limits on $\mathscr{B}(t \to Hq)$ were translated into upper limits on the non-flavour-diagonal Yukawa couplings λ_{tqH} appearing in the Lagrangian

 $\cdot \ \mathcal{L}_{\text{FCNC}} = - \, \lambda_{t_L q_R} \overline{t}_L q_R H - \lambda_{q_L t_R} \overline{q}_L t_R H + h \, . \, c \, . \label{eq:FCNC}$

- $\mathscr{B}(t \to Hq)$ is estimated as the ratio of its partial width to the SM $t \to Wb$ partial width, which is assumed to be dominant
- the coupling $|\lambda_{tqH}|$ can be extracted as $|\lambda_{tqH}| = (1.92 \pm 0.02)\sqrt{\mathscr{B}(t \to Hq)}$
- λ_{tqH} coupling corresponds to the sum in quadrature of the couplings relative to the two possible chirality combinations of the quark fields $\lambda_{tqH} = \sqrt{|\lambda_{t_L q_R}|^2 + |\lambda_{q_L t_R}|^2}$

	Expected	Observed
$ \lambda_{tuH} $	0.055	0.066
$ \lambda_{tcH} $	0.055	0.064

Observable	Vertex	Coupling	Obs.	Exp.
$C_{\rm uW}^{(13)*} + C_{\rm uB}^{(13)*}$	tuγ	LH	0.19	$0.22_{-0.03}^{+0.04}$
$C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}$	tuγ	RH	0.27	$0.27_{-0.04}^{+0.05}$
$C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*}$	tcγ	LH	0.52	$0.57_{-0.09}^{+0.11}$
$C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}$	tcγ	RH	0.48	$0.59_{-0.09}^{+0.12}$
$\sigma(pp \rightarrow t\gamma)$ [fb]	tuγ	LH	36	52^{+21}_{-14}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tuγ	RH	78	75^{+31}_{-21}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tcγ	LH	40	49_{-14}^{+20}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tcγ	RH	33	52^{+22}_{-14}
$\mathcal{B}(t \to q\gamma) [10^{-5}]$	tuγ	LH	2.8	$4.0^{+1.6}_{-1.1}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tuγ	RH	6.1	$5.9^{+2.4}_{-1.6}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	LH	22	27^{+11}_{-7}
$\mathcal{B}(t \to q\gamma) [10^{-5}]$	tcγ	RH	18	28^{+12}_{-8}

effective coupling strengths (*) the energy scale is assumed to be $\Lambda = 1$ TeV

^(*)more details in <u>arXiv:0811.3842</u>

$gq \to t \to W(\to \ell \nu)b$

Neural Network input variables:			
Variable	Definition		
$m_{\rm T}({\rm top})$	Transverse mass of the reconstructed top quark		
p_{T}^ℓ	Transverse momentum of the charged lepton		
$\Delta R(\mathrm{top},\ell)$	Distance in the η - ϕ plane between the reconstructed top quark and the charged		
	lepton		
$p_{\mathrm{T}}^{b ext{-jet}}$	Transverse momentum of the <i>b</i> -tagged jet		
$\Delta \phi$ (top, <i>b</i> -jet)	Difference in azimuth between the reconstructed top quark and the <i>b</i> -tagged jet		
$\cos\theta(\ell, b\text{-jet})$	Opening angle of the three-vectors between the charged lepton and the <i>b</i> -tagged jet		
q^ℓ	Charge of the lepton		
$m_{\mathrm{T}}(W)$	W-boson transverse mass		
η^ℓ	Pseudorapidity of the charged lepton		
$\Delta \phi(\mathrm{top}, W)$	Difference in azimuth between the reconstructed top quark and the W boson		
$\Delta R(\text{top}, b\text{-jet})$	Distance in the η - ϕ plane between the reconstructed top quark and the <i>b</i> -tagged jet		
$\eta^{ ext{top}}$	Pseudorapidity of the reconstructed top quark		
p_{T}^W	Transverse momentum of the W boson		

$gq \to t \to W(\to \ell \nu)b$

	Expected	Observed
t —> gu	0.35×10^{-4}	0.4×10^{-4}
t —> gc	1.8×10^{-4}	2.0×10^{-4}

$$gq \to t \to W(\to \ell \nu)b$$

• upper limits at the production **cross section** multiplied by $\mathscr{B}(t \to Wb)$:

 $\sigma_{gq \to t} \times \mathscr{B}(t \to Wb) < 3.4(2.9) \text{pb}$

• upper limits on the **coupling constants** of the FCNC interactions divided by the scale of new physics Λ :

 $\kappa_{ugt}/\Lambda < 5.8 \times 10^{-3} \text{TeV}^{-1}$ and $\kappa_{cgt}/\Lambda < 13 \times 10^{-3} \text{TeV}^{-1}$

• upper limits on the \mathscr{B} using $\mathscr{B}(t \to qg) = C(\kappa_{qgt}/\Lambda)^2$:

 $\mathscr{B}(t \to gu) < 0.4(0.35) \times 10^{-4} \text{ and } \mathscr{B}(t \to gc) < 2.0(1.8) \times 10^{-4}$