## Rare and Semi-rare Decays of Beauty Mesons in ATLAS

Wolfgang Walkowiak University of Siegen

on behalf of the ATLAS collaboration

18<sup>th</sup> International Conference on B-Physics at Frontier Machines Ljubljana, Slovenia





September 30<sup>th</sup> October 4<sup>th</sup>, 2019



Federal Ministry of Education and Research

SPONSORED BY THE



New Physics beyond the Standard Model in B meson decays:

- Angular analysis of semi-rare decays:  $B^0 \to K^{*0} \ \mu^+ \mu^-$ 
  - ATLAS result with 20.3 fb<sup>-1</sup> of 8 TeV LHC data (Run 1, 2012) [JHEP10 (2018) 047]
- Branching fractions in rare decays:
  - $B_s{}^0 \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \, and \, B^0 \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
  - ATLAS result with 36.2 fb<sup>-1</sup> (effectively 26.3 fb<sup>-1</sup>) of 13 TeV LHC data (Run 2, 2015-2016)
     + combination with 25 fb<sup>-1</sup> of 7-8 TeV LHC data (Run 1) [JHEP04 (2019) 098]
- Prospects at the HL-LHC:
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ [ATL-PHYS-PUB-2019-003]
- $B_s^0 \rightarrow \mu^+ \mu^-$  and  $B^0 \rightarrow \mu^+ \mu^-$ [ATL-PHYS-PUB-2018-005]





## ATLAS B Physics Triggers

### Mostly based on di-muon triggers

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  analysis (Run 1, 8 TeV, 2012)
  - combination of 19 trigger chains (1μ, 2μ or 3μ)
  - largest multi- $\mu$  contribution from 2 $\mu$  with p<sub>T,1</sub> > 6 GeV, p<sub>T,2</sub> > 4 GeV
- $B_s^{\ 0} \rightarrow \mu^+\mu^-$  and  $B^0 \rightarrow \mu^+\mu^-$  analysis (Run 2, 13 TeV, 2015-2016)
  - $\bullet$  two  $\mu$  with  $p_{_{T,1}}$  > 6 GeV,  $p_{_{T,2}}$  > 4 GeV in  $|\eta|$  < 2.5,

4 GeV <  $m_{uu}$  < 8.5 GeV,  $L_{xv}$  > 0 (2016)





 $B^0 \to K^{\star 0} \ \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$ 

- ARA

103



Wolfgang Walkowiak - University of Siegen

Beauty 2019, 2019-10-01

 $B^0 \rightarrow K^{*0} \mu^+ \mu^- - Overview$ 

 $B^{\scriptscriptstyle 0} \to K^{\star \scriptscriptstyle 0} \: \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}\!\!:$  loop-suppressed FCNC decay

- Sensitive to New Physics: differential decay rates and angular distributions
- BR(B<sup>0</sup> → K<sup>\*0</sup>  $\mu^+\mu^-$ ) ~ (1.03 ± 0.06) x 10<sup>-6</sup>
- LHCb: up to  $3.4\sigma$  deviation from SM

Analysis of angular distributions of  $\theta_L$ ,  $\theta_K$ and  $\phi$  in  $q^2 = [m(\mu^+\mu^-)]^2$  bins

- Fit to  $m_{K\pi\mu\mu}$ ,  $cos\theta_{K}$ ,  $cos\theta_{L}$  and  $\phi$  distributions
  - $\rightarrow F_{L}$  (K<sup>\*0</sup> longitudinal polarization)
  - $\rightarrow$  **S**<sub>i</sub> (angular parameters)
- $S_i \rightarrow P_i^{(\prime)}$ : reduce theory uncertainties
- Iow statistics
  - $\rightarrow$  trigonometric folding
  - $\rightarrow$  4 x 3-parameter fits (F<sub>L</sub>, S<sub>3</sub>, S<sub>i=4,5,7,8</sub>) per q<sup>2</sup> bin

[JHEP10 (2018) 047]



# $\mathbf{Y}_{\mathbf{k}}^{\dagger} \mathbf{B}^{0} \rightarrow \mathbf{K}^{*0} \ \mu^{+}\mu^{-} - \mathbf{Signal Selection}$

- $B^{\scriptscriptstyle 0} \to K^{\star \scriptscriptstyle 0} \; \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$  with  $K^{\star \scriptscriptstyle 0} \to K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$  cuts:
- $p_T(\mu,\pi,K) > (3.5, 0.5, 0.5) \text{ GeV}, |\eta| < 2.5$
- m(Kπ) ∈ [846, 946] MeV
- m(Kπµµ) ∈ [5110, 5700] MeV
  - ♦ left SB reduced: suppress  $B \rightarrow \mu\mu X$  PRDs
- q<sup>2</sup> ≤ 6 GeV<sup>2</sup>: suppress
   J/ψ[→ J/ψγ]K\* radiative tail
- Suppress combinatorial background:
- $p_T(K^{*0}) > 3 \text{ GeV}, t/\sigma_t > 12.75,$  $\cos \Theta > 0.999, \chi^2/n.d.f(B^0) < 2$

Other backgrounds:

- at  $\cos\theta_{L} \sim 0.7$  : B  $\rightarrow D^{0}/D^{+}_{(s)}X \rightarrow K\pi X$ , KK $\pi X$  $\rightarrow$  veto D<sup>0</sup>/D<sup>+</sup>\_{(s)} mass ranges
- at  $\cos\theta_{\rm K} \sim 1$  : fake K\* (comb. K $\pi$ ) and B<sup>+</sup>  $\rightarrow$  K<sup>+</sup>/ $\pi^+\mu^+\mu^-$ 
  - $\rightarrow$  difference fitting [-1, 1] vs [-1, 0.9], veto B<sup>+</sup> mass range
  - $\rightarrow$  systematic uncertainties

Multiple  $K\pi\mu\mu$  candidates (12% of events):

- best  $\chi 2$  or smallest  $|m(K\pi) m_{PDG}(K^{*0})| / \sigma(m(K\pi))$ 
  - $\rightarrow$  residual mis-tag fraction ~ 11% (S<sub>4,5</sub> dilution)  $\rightarrow$  post-fit correction



 $q^2 \in [0.04, 6] \text{ excl. } [0.98, 1.1] \text{ GeV}^2$ 





 $B^0 \rightarrow K^{*0} \mu^+ \mu^- - Results$ 



- Largest deviation: ~ 2.7 $\sigma$  from DHMV for P'<sub>4</sub> and P'<sub>5</sub> in q<sup>2</sup>  $\in$  [4, 6] GeV<sup>2</sup>
- Consistent with other experiments
   → P'<sub>5</sub> deviation coherent with LHCb

[JHEP 10 (2018) 047]

 $\rightarrow$  see backup for all comparison plots and references



## $B_s^{\ 0} \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$

ROLDCO

→ μ⁺μ⁻ – Run 1

 $\mathsf{BR}(\mathsf{B}_{\scriptscriptstyle(\mathsf{S})}^{\phantom{*}0}\to\mu^{\scriptscriptstyle+}\mu^{\scriptscriptstyle-}) \text{ w.r.t. } \mathsf{BR}(\mathsf{B}^{\scriptscriptstyle\pm}\to\mathsf{J}/\psi\;\mathsf{K}^{\scriptscriptstyle\pm})$ 

 Sensitive to New Physics in decay via loop diagrams

### Run 1 result:

- BR( $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ ) = (0.9 <sup>+1.1</sup><sub>-0.8</sub>) x 10<sup>-9</sup>
- BR(B<sup>0</sup> →  $\mu^+\mu^-$ ) < 4.2 x 10<sup>-10</sup> at 95% CL  $^{\circ}$
- Compatible with SM at ~  $2\sigma$
- Lower in both BR compared to CMS&LHCb Run 1 combined
- Tension in B<sup>0</sup> reduced with LHCb Run 2 measurement BR(B<sup>0</sup>  $\rightarrow \mu^{+}\mu^{-}$ ) < 3.4 x 10<sup>-10</sup> at 95% CL [PRL 118 (2017) 191801]

and very recent (2019) CMS Run 1 + partial Run 2 result BR(B<sup>0</sup>  $\rightarrow \mu^+\mu^-$ ) < 3.6 x 10<sup>-10</sup> at 95% CL

[CMS PAS BPHY-16-004, 2019-08-04]







Combinatorial (b  $\rightarrow \mu X$ )x(bbar  $\rightarrow \mu X$ ) pairs

- 15-variable BDT to reject dominant background
- Trained and tested on data mass sidebands and simulated signal events

Partially reconstructed ( $b \rightarrow \mu \mu X$ )

Real di-muons at low m<sub>in</sub>

 $B \rightarrow \mu\mu X, B \rightarrow c\mu X \rightarrow s(d)\mu\mu X, B_{a} \rightarrow J/\psi \mu v$ 

Semi-leptonic decays ( $B_{(s)}/\Lambda_b^0 \rightarrow h\mu\nu$ , h =  $\pi$ ,K,p)





# 

- $B \rightarrow hh'$  (h =  $\pi^{\pm}$ , K<sup>±</sup>)
- Superimposed to signal
- Small contribution
- Studied with MC
- Validated in data control regions
- Fake rates with "tight" μ selection:
  - π: 0.1%
  - ♦ K: 0.08%
  - ◆ p: < 0.01%</p>
  - reduces mis-ID by 0.39<sup>2</sup>
  - in blinded region:
     2.9 ± 2.0 events

### Limited mass resolution:

- Overlap of B<sup>0</sup><sub>s</sub> and B<sup>0</sup> peaks
- statistically separated by fit

[JHEP04 (2019) 098]





Ú

# $\mathbb{R}^{\circ}_{(s)} \to \mu^{+}\mu^{-} - Normalization Channel$

 $B^{\pm} \rightarrow J/\psi K^{\pm}$  yield: 70000 unbinned ML fit to m J/wK 60000 50000 Efficiency relative to  $B^0_{(s)} \rightarrow \mu^+ \mu^-$ : 40000 30000 Extracted from MC 20000 10000 Fiducial volume:  $p_{T}(B) > 8 \text{ GeV}, |\eta_{B}| < 2.5$ Pull Data-MC discrepancies 5000  $\rightarrow$  systematic uncertainties Effective B<sup>0</sup> lifetime Events / 0.01 25000 20000  $\rightarrow$  2.7% correction R<sub>a</sub> uncertainties Contribution [%] Source 0.8**Statistical** 15000 **BDT** input variables 3.2 10000 Kaon tracking efficiency 1.5 5000 Muon trigger and reconstruction 1.0Kinematic reweighting (DDW) 0.8 Data/MC 1.4 Pile-up reweighting 0.6 0.8 0.6  $R_{\epsilon} = \epsilon_{J/\psi K} / \epsilon_{uu} = 0.1176 \pm 0.0009 \text{ (stat)} \pm 0.0047 \text{ (syst)}$ 





Beauty 2019, 2019-10-01 p. 13

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} - Signal Yield$ 

### Unbinned ML fit to $m_{uu}$ in 4 BDT bins

- Signals and B → hh'
   3 double-Gaussians with common means
- Combinatorial background 1<sup>rst</sup> order polynomial
- b →  $\mu\mu$ X, exponential
- Semi-leptonic background absorbed in exponential

Extracted yields:

•  $N_s = 80 \pm 22$   $N_d = -12 \pm 20$ 

Consistent with SM expectations:

N<sub>s</sub> = 91
N<sub>d</sub> = 10

Branching fraction (Neyman construction):  $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.21^{+0.96+0.49}_{-0.91-0.30}) \times 10^{-9}$  $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10}$  @ 95% CL

[JHEP04 (2019) 098]

data-driven shape

parameters and

normalizations



Beauty 2019. 2019-10-01 p. 14

Wolfgang Walkowiak - University of Siegen

### $\mathsf{B}_{(s)}$ $\rightarrow \mu^{+}\mu^{-}$ – Results: Run 2 and Combination

### Run 2 (2015/16) only

#### Run 1 + Run 2 (2015/16)



- BR(B<sup>0</sup><sub>s</sub>  $\rightarrow \mu^{+}\mu^{-}) = (3.2 \, {}^{+1.1}_{-1.0}) \times 10^{-9}$
- BR(B<sup>0</sup> →  $\mu^+\mu^-$ ) < 4.3 x 10<sup>-10</sup> at 95% CL

■ BR(B<sup>0</sup><sub>s</sub> → 
$$\mu^+\mu^-$$
) = (2.8  $^{+0.8}_{-0.7}$ ) x 10<sup>-9</sup>

■ BR(B<sup>0</sup> → 
$$\mu^{+}\mu^{-}$$
) < 2.1 x 10<sup>-10</sup> at 95% CL

Compatible with SM at 2.4  $\sigma$ 

[JHEP04 (2019) 098]





## $B^{0} \rightarrow K^{*0} \mu^{+}\mu^{-} and B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ at the High-Luminosity LHC



 $B^0 \rightarrow K^{*0} \mu^+ \mu^- - HL-LHC$  Prospects (3 ab<sup>-1</sup>)



- Run 1 signal & background angular distributions
- Same Run 1 fitting procedure

 $\rightarrow$  P'<sub>5</sub> precision improves by ~ 9x, ~ 8x, ~ 5x

Expected to be still dominated by statistical uncertainties



## $BR(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-})$ Prospects – HL-LHC (3 ab<sup>-1</sup>)

### All-Si Inner Tracker (ITk):

- improves:
  - B mass resolution  $\sigma_{mB}$
  - proper time resolution  $\sigma_{t}$

### Pseudo-MC experiments

- Profile likelihood contours
- Based on Run 1 likelihood
   Dominant systematics:
- $\sigma(f_s/f_d) \sim 8.3\%$  "conservative"







ATLAS measurements of semi-rare and rare decays:

- Angular analysis of  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  with 20.3 fb<sup>-1</sup> of Run 1 data
  - Results compatible with SM and other experiments
  - Data taken in Run 2 to be analyzed (~ 140 fb<sup>-1</sup>) [JHEP10 (2018) 047]
- $B_s^{\ 0} \rightarrow \mu^+\mu^-$  and  $B^0 \rightarrow \mu^+\mu^-$  with 36.2 fb<sup>-1</sup> of Run 2 data
  - Agrees with SM and other measurements
  - ♦ No sign for  $B^0 \rightarrow \mu^+ \mu^-$  in ATLAS data
  - Data taken in 2017 + 2018 still to be added (~105 fb<sup>-1</sup>) [JHEP04 (2019) 098]
- Both channels will profit from HL-LHC
  - Considerably increased statistics
  - Improved m<sub>B</sub> resolution
  - Improved  $\sigma_t$  resolution
  - Promising to test SM [ATL-PHYS-PUB-2018-005, ATL-PHYS-PUB-2019-003]









## **Supporting Material**



 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  – Results: Theory vs. Experiments



DHMV: S. Descotes-Genon et al., JHEP 01 (2013) 048; JHEP 05 (2013) 137; JHEP 12 (2014) 125 JC: S. Jäger and J. Martin Camalich, JHEP 05 (2013) 043; Phys. Rev. D 93 (2016) 014028 LHCb Collaboration, JHEP 02 (2016) 104 CMS Collaboration, Phys. Lett. B 753 (2016) 424 Belle Collaboration, Phys. Rev. Lett. 103 (2009) 171801 BaBar Collaboration, Phys. Rev. D 93 (2016) 052015 [JHEP 10 (2018) 047]

Wolfgang Walkowiak - University of Siegen

Beauty 2019, 2019-10-01 p. 22

## $B^{\scriptscriptstyle 0} \to K^{* \scriptscriptstyle 0} \ \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} - Systematic Uncertainties$

[JHEP 10 (2018) 047]

| Source                                       | $F_L$ | <i>S</i> <sub>3</sub> | $S_4$ | S 5    | <i>S</i> <sub>7</sub> | <i>S</i> <sub>8</sub> |
|----------------------------------------------|-------|-----------------------|-------|--------|-----------------------|-----------------------|
| Combinatoric $K\pi$ (fake $K^*$ ) background | 0.03  | 0.03                  | 0.05  | 0.04   | 0.06                  | 0.16                  |
| $D$ and $B^+$ veto                           | 0.11  | 0.04                  | 0.05  | 0.04   | 0.01                  | 0.06                  |
| Background pdf shape                         | 0.04  | 0.04                  | 0.03  | 0.03   | 0.03                  | 0.01                  |
| Acceptance function                          | 0.01  | 0.01                  | 0.07  | 0.01   | 0.01                  | 0.01                  |
| Partially reconstructed decay background     | 0.03  | 0.05                  | 0.02  | 0.08   | 0.05                  | 0.06                  |
| Alignment and B field calibration            | 0.02  | 0.04                  | 0.05  | 0.04   | 0.04                  | 0.04                  |
| Fit bias                                     | 0.01  | 0.01                  | 0.02  | 0.03   | 0.01                  | 0.05                  |
| Data/MC differences for $p_T$                | 0.02  | 0.02                  | 0.01  | 0.01   | 0.01                  | 0.01                  |
| S-wave                                       | 0.01  | 0.01                  | 0.01  | 0.01   | 0.01                  | 0.03                  |
| Nuisance parameters                          | 0.01  | 0.01                  | 0.01  | 0.01   | 0.01                  | 0.01                  |
| $\Lambda_b$ , $B^+$ and $B_s$ background     | 0.01  | 0.01                  | 0.01  | 0.01   | 0.01                  | 0.01                  |
| Misreconstructed signal                      | 0.01  | 0.01                  | 0.01  | 0.01   | 0.01                  | 0.01                  |
| Dilution                                     |       | _                     | -     | < 0.01 | _                     | < 0.01                |

Transformations 
$$S_i \rightarrow P_i(')$$
:  
 $P_1 = \frac{2S_3}{1 - F_L}$   
 $P'_{j=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$ 

Table entries:

largest value of systematic uncertainties across all q<sup>2</sup> bins; uncertainties vary between q<sup>2</sup> bins

Wolfgang Walkowiak – University of Siegen

 $\rightarrow K^{*0} \mu^+ \mu^- - HL-LHC \text{ Prospects (3 ab}^{-1})$  $B^0$ 



CFFMPSV: M. Ciuchini et al., JHEP 06 (2016) 116 DHMV: S. Descotes-Genon et al., JHEP 01 (2013) 048; JHEP 05 (2013) 137; JHEP 12 (2014) 125 JC: S. Jäger and J. Martin Camalich, JHEP 05 (2013) 043; Phys. Rev. D 93 (2016) 014028

→ μ⁺μ⁻ – Run 1 (S)

 $BR(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}) \text{ w.r.t. } BR(B^{\pm} \rightarrow J/\psi \text{ K}^{\pm})$ 

 Sensitive to New Physics in decay via loop diagrams

#### Run 1 result:

- BR(B<sup>0</sup><sub>s</sub> →  $\mu^+\mu^-$ ) = (0.9 <sup>+1.1</sup><sub>-0.8</sub>)x10<sup>-9</sup>
- BR(B<sup>0</sup> → μ<sup>+</sup>μ<sup>-</sup>) < 4.2x10<sup>-10</sup> at 95% CL [Eur. Phys. J. C76 (2016) 513]

Compatible with SM at ~  $2\sigma$ :

- BR( $B_s^0 \rightarrow \mu^+\mu^-$ ) = (3.65 ± 0.23)x10<sup>-9</sup>
- BR(B<sup>0</sup> →  $\mu^{+}\mu^{-}$ ) = (1.06 ± 0.09)x10<sup>-10</sup> [PRL 112 (2014) 101801]

CMS&LHCb Run 1 combined:

- BR(B<sup>0</sup><sub>s</sub> →  $\mu^{+}\mu^{-}$ ) = (2.8  $^{+0.7}_{-0.6}$ ) x 10<sup>-9</sup>
- BR(B<sup>0</sup> →  $\mu^+\mu^-$ ) = (3.9 <sup>+1.6</sup><sub>-1.4</sub>) x 10<sup>-10</sup> [Nature 522 (2015) 68]

LHCb Run 1 + partial Run 2:

- BR(B<sup>0</sup><sub>s</sub> →  $\mu^{+}\mu^{-}$ ) = (3.0  $^{+0.7}_{-0.6} \pm 0.2$ ) x 10<sup>-9</sup>
- BR(B<sup>0</sup> →  $\mu^+\mu^-$ ) < 3.4 x 10<sup>-10</sup> at 95% CL [PRL 118 (2017) 191801]

CMS Run 1 + partial Run 2:

- BR(B<sup>0</sup><sub>s</sub> →  $\mu^{+}\mu^{-}$ ) = (2.9 ± 0.6  $^{+0.3}_{-0.2}$ ) x 10<sup>-9</sup>
- BR(B<sup>0</sup> → µ<sup>+</sup>µ<sup>-</sup>) < 3.6 x 10<sup>-10</sup> at 95% CL [CMS PAS BPHY-16-004, 2019-08-04]



Wolfgang Walkowiak – University of Siegen



#### Recent theory update:

■ BR(B<sup>0</sup><sub>s</sub> →  $\mu^+\mu^-$ ) = (3.66 ± 0.14)x10<sup>-9</sup>

■ BR(B<sup>0</sup> →  $\mu^+\mu^-$ ) = (1.03 ± 0.15)x10<sup>-10</sup>





$$\mathbb{A}^{1}_{(s)} \to \mu^{+}\mu^{-} - Master Formula$$

Measurement w.r.t.  $B^{\pm} \rightarrow J/\psi \ K^{\pm}$  with  $J/\psi \rightarrow \mu^{+}\mu^{-}$ 

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) = \frac{N_{d(s)}}{\varepsilon_{\mu^{+} \mu^{-}}} \times \left[ \mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-}) \right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}}$$
$$= N_{d(s)} \frac{\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-})}{\mathcal{D}_{\mathrm{ref}}} \times \frac{f_{u}}{f_{d(s)}}, \qquad (1.1)$$

#### with

$$\mathcal{D}_{\mathrm{ref}} = N_{J/\psi K^+} \times (\varepsilon_{\mu^+\mu^-}/\varepsilon_{J/\psi K^+})$$

- $N_{d(s)}$  :  $B^0(s) \rightarrow \mu^+ \mu^-$  signal yields
- $N_{J/\psi K}$  :  $B^{\pm} \rightarrow J/\psi K^{\pm}$  reference channel yield
- $\epsilon_{\mu+\mu}^{-}$  and  $\epsilon_{J/\psi K}$  : acceptance times efficiency
- $f_u/f_{d(s)}$  : ratio of hadronization probabilities of b-quark into B<sup>±</sup> and B<sup>0</sup><sub>(s)</sub> = 0.256 ± 0.013 [PRD 98 (2018) 03001]

■ B(B<sup>+</sup> → J/ $\psi$  K<sup>+</sup>) x B(J/ $\psi$  →  $\mu^+\mu^-$ ) = (1.010 ± 0.029)x10<sup>-3</sup> x (5.961 ± 0.033)% [PRD 98 (2018) 03001]



## $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} - BDT$ Input Variables

| Variable                           | Description                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p_{\mathrm{T}}^{B}$               | Magnitude of the <i>B</i> candidate transverse momentum $\vec{p}_{T}^{B}$ .                                                                                                                                                                                                                                                                               |
| $\chi^2_{\rm PV,DV}$ <sub>xy</sub> | Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x_T} \cdot \sum_{\overrightarrow{\Delta x_T}} \cdot \overrightarrow{\Delta x_T}$ , where $\sum_{\overrightarrow{\Delta x_T}}$ is the covariance matrix.                 |
| $\Delta R_{ m flight}$             | Three-dimensional angular distance between $\overrightarrow{p}^B$ and $\overrightarrow{\Delta x}$ : $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$                                                                                                                                                                                                              |
| $ \alpha_{2D} $                    | Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$ .                                                                                                                                                                                                                                  |
| $L_{xy}$                           | Projection of $\overrightarrow{\Delta x_T}$ along the direction of $\overrightarrow{p}_T^B$ : $(\overrightarrow{\Delta x_T} \cdot \overrightarrow{p_T}^B) /  \overrightarrow{p_T}^B $ .                                                                                                                                                                   |
| $\mathrm{IP}_B^{\mathrm{3D}}$      | Three-dimensional impact parameter of the $B$ candidate to the associated PV.                                                                                                                                                                                                                                                                             |
| DOCA <sub>µµ</sub>                 | Distance of closest approach (DOCA) of the two tracks forming the <i>B</i> candidate (three-dimensional).                                                                                                                                                                                                                                                 |
| $\Delta \phi_{\mu\mu}$             | Azimuthal angle between the momenta of the two tracks forming the $B$ candidate.                                                                                                                                                                                                                                                                          |
| $ d_0 ^{\max}$ -sig.               | Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the $B$ candidate, in the transverse plane.                                                                                                                                                                                                            |
| $ d_0 ^{\min}$ -sig.               | Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the $B$ candidate, in the transverse plane.                                                                                                                                                                                                           |
| $P_{\rm L}^{\rm min}$              | The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$ .                                                                                                                                                                                                                                                                  |
| I <sub>0.7</sub>                   | Isolation variable defined as ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum. |
| DOCA <sub>xtrk</sub>               | DOCA of the closest additional track to the decay vertex of the $B$ candidate. Only tracks matched to the same PV as the $B$ candidate are considered.                                                                                                                                                                                                    |
| $N_{ m xtrk}^{ m close}$           | Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk},\text{DV}}) < 1$ . Only tracks matched to the same PV as the <i>B</i> candidate are considered.                                                                                                                                 |
| $\chi^2_{\mu,\mathrm{xPV}}$        | Minimum $\chi^2$ for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.                                                                                                                                                                                                                                        |



$$\mathbb{G}_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$$
 – Systematic Uncertainties

### Expected uncertainties on BR(B<sup>0</sup><sub>(s)</sub> $\rightarrow \mu^{+}\mu^{-}$ ):

| Source                                                                         | $B_{s}^{0}$ [%] | <i>B</i> <sup>0</sup> [%] |
|--------------------------------------------------------------------------------|-----------------|---------------------------|
| $f_s/f_d$                                                                      | 5.1             | -                         |
| $B^+$ yield                                                                    | 4.8             | 4.8                       |
| $R_{\varepsilon}$                                                              | 4.1             | 4.1                       |
| $\mathcal{B}(B^+ \to J/\psi \ K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$ | 2.9             | 2.9                       |
| Fit systematic uncertainties                                                   | 8.7             | 65                        |
| Stat. uncertainty (from likelihood est.)                                       | 27              | 150                       |

[JHEP04 (2019) 098]

- Dominated by statistical uncertainties
- Main fit systematic uncertainties:
  - Mass scale uncertainty
  - $\bullet$  Parametrization of the b  $\to \mu^+\mu^- X$  background









## LHC / HL-LHC Plan



[https://hilumilhcds.web.cern.ch/about/hl-lhc-project]



- HL-LHC parameters: [CERN-2017-007-M]
- Aim: > 10 x  $\int Ldt$  of LHC  $\rightarrow$  3 000 - 4 000 fb<sup>-1</sup>
- Peak L<sub>inst</sub> ~ 5 ... 7.5 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- <µ> = 140 ... 200 pp interactions, every 25 ns

#### ATLAS upgrades:

- Detector & trigger, esp. new all-Si Inner TracKer (ITK)
- improves
  - B mass resolution  $\sigma_{mB}$
  - proper time resolution  $\sigma_{t}$



## HL-LHC Challenge



HL-LHC tī event in ATLAS ITK at <µ>=200

tt event in ATLAS ITk
<µ> = 200
p<sub>⊤</sub>(tracks) > 1 GeV



2.5 mm





## ATLAS Upgrade Program

| system  | phase0 / run 2                                                                                           | phase 1 / run 3                                                                                  | phase 2 / run 4                                                                                            |  |  |
|---------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Pixel   | IBL at R=34 mm, new cooling, new services                                                                |                                                                                                  | replaced by ITk pixel                                                                                      |  |  |
| SCT     |                                                                                                          |                                                                                                  | replaced by ITk strips                                                                                     |  |  |
| TRT     |                                                                                                          |                                                                                                  | decommissioned                                                                                             |  |  |
| LAr     | all new power<br>supplies                                                                                | new L1 trigger electronics                                                                       | new readout electronics (input to<br>L0Calo), 40 MHz streaming,<br>High Granularity Timing Detector (HGTD) |  |  |
| Tile    | new low voltage power supplies                                                                           |                                                                                                  | readout electronics, 40 MHz streaming,<br>improved drawer mechanics, new HV<br>power supplies              |  |  |
| RPC     | gas leak repairs                                                                                         | BMG (sMDT) in acceptance<br>gaps, BIS78 chambers<br>between barrel and end-caps                  | new chambers in inner barrel                                                                               |  |  |
| TGC     |                                                                                                          | New Small Wheel<br>(sTGC + MicroMegas)                                                           | new front-end electronics,<br>forward tagger (option)                                                      |  |  |
| MDT     |                                                                                                          |                                                                                                  | replace all front-end electronics                                                                          |  |  |
| Trigger | new L1Topo,<br>upgraded CTP,<br>partial FTK<br>L2 + EF $\rightarrow$ HLT                                 | new FEX, full FTK,<br>new muon-CTP interface<br>HLT: multi-threading,<br>offline-like algorithms | L0 (Calo, Muons) 1 MHz, 10 μs latency<br>optional: L1 (L0 at 4 MHz, L1Track)<br>800 kHz, 35 μs latency     |  |  |
| DAQ     | custom hard-/firmware                                                                                    | FELIX for some systems                                                                           | FELIX for all systems                                                                                      |  |  |
|         | Wolfgang Walkowiak - University of Siegen [LHCC-I-023, CERN-LHCC-2015-020] Beauty 2019, 2019-10-01 p. 33 |                                                                                                  |                                                                                                            |  |  |

## Prospects for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Mass Separation





# BR(B<sup>0</sup><sub>(s)</sub> $\rightarrow \mu^{+}\mu^{-}$ ) Prospects – Run 2 (130 fb<sup>-1</sup>)

### Signal statistics estimate:

- Based on Run 1 result
- Full Run 2  $\rightarrow \int L dt \sim 130 \text{ fb}^{-1}$
- $\sigma_{_{bb}}$ : 8 TeV  $\rightarrow$  13/14 TeV : factor ~1.7
- 2MU6 || MU6\_MU4 topological triggers
- → total: N<sub>Run2</sub> ~ 7 x N<sub>Run1</sub>

Pseudo-MC experiments

- 2D Neyman construction
- Based on Run 1 likelihood

Systematic uncertainties

- External:
  - $f_s/f_d$ , BR(B<sup>±</sup>  $\rightarrow$  J/ $\psi$  K<sup>±</sup>)  $\rightarrow$  keep as in Run 1
- $\rightarrow$  keep as in R Internal:
  - fit shapes, efficiencies, ...
  - $\rightarrow$  scale with statistics





Beauty 2019, 2019-10-01 p. 35

[ATL-PHYS-PUB-2018-005]



Uncertainties on BR( $B_s^0 \rightarrow \mu^+ \mu^-$ ) and BR( $B^0 \rightarrow \mu^+ \mu^-$ ): [ATL-PHYS-PUB-2018-005]

|                      | $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$        |                          | $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ |                          |
|----------------------|---------------------------------------------|--------------------------|------------------------------------|--------------------------|
|                      | stat $[10^{-10}]$                           | $stat + syst [10^{-10}]$ | stat $[10^{-10}]$                  | $stat + syst [10^{-10}]$ |
| Run 2                | $7 \mathrm{x} \mathrm{N}_{\mathrm{R1}}$ 7.0 | 8.3                      | 1.42                               | 1.43                     |
| HL-LHC: Conservative | 15x $\mathrm{N_{_{R1}}}3.2$                 | 5.5                      | 0.53                               | 0.54                     |
| HL-LHC: Intermediate | $60 \mathrm{x}  \mathrm{N_{R1}} 1.9$        | 4.7                      | 0.30                               | 0.31                     |
| HL-LHC: High-yield   | 75x $\mathrm{N_{R1}}1.8$                    | 4.6                      | 0.27                               | 0.28                     |

 $\begin{array}{ll} \text{CMS \& LHCb combined (Run 1):} & [\text{Nature 522 (2015) 68}] \\ \bullet & \text{BR}(\text{B}_{s}^{\ 0} \rightarrow \mu^{+} \ \mu^{-}) = 2.8^{+0.7} \ _{-0.6}) \times 10^{-9}, & \text{BR}(\text{B}^{0} \rightarrow \mu^{+} \ \mu^{-}) = (3.9^{+1.6} \ _{-1.4}) \times 10^{-10} \\ \text{LHCb (2015+2016):} \\ \bullet & \text{BR}(\text{B}_{s}^{\ 0} \rightarrow \mu^{+} \ \mu^{-}) = 3.0 \pm 0.6^{+0.3} \ _{-0.2}) \times 10^{-9} & [\text{Phys. Rev. Let. 118 (2017) 191801}] \end{array}$ 





## ATLAS Inner Tracker (ITk) Upgrade

### New all-silicon detector:

- ITk pixel (13 m<sup>2</sup>):
  - 5 barrel, 5 EC layers (with rings)
  - Inclined sensors
  - Extends to  $\eta_{max}$  = 4.0 (2.5 now)
  - Innermost layer at 36 mm
  - ~ 580 M channels (80 M now)
- ITk strips (160 m<sup>2</sup>):
  - 4 barrel layers, 6 EC rings
  - ~ 50 M channels (6 M now)
  - Strip occupancy < 1%</p>

### ITk material considerably less than current ID

- Improved tracking efficiency
- Better mass resolution



Beauty 2019, 2019-10-01 p. 37



# $\mathbb{G}_{s}^{0} \rightarrow J/\psi \phi$ Proper Time Resolution – Run 2



Insertable B Layer (IBL) added in Run 2:

- $\sigma_{t}$  improves by ~ 30%
- Further improvement expected for ITk layout

## Prospects for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Mass Separation

### Dedicated $B_s^{\ 0} \rightarrow \mu^+\mu^-$ MC: • Run 2 conditions like 2015

- HL-LHC & HL-ATLAS:
  - ↓ L<sub>inst</sub> = 7.5 x 10<sup>34</sup> cm<sup>2</sup>s<sup>-1</sup>
     at 14 TeV CME
     <µ> = 200 pile-up events
  - ITk: inclined design, up to |η| < 4,</li>
     50 x 50 μm<sup>2</sup> pixels

### Candidate selection ~ Run 1

- $B_s^{0}$ : oppositely charged  $\mu^{\pm}$ ,
  - $p_{T}(\mu_{1,2}^{t}) > 5.5 \text{ GeV}$
- Two-track vertex fit
   m(B<sup>0</sup>) from ID/ITk-only tracks

[CERN-LHCC-2017-021, ATLAS-TDR-030]







## ATLAS ID and ITk Material Budgets



[CERN-LHCC-2017-020, ATLAS-TDR-029]

Material budget of ITk is greatly reduced.

