

Beauty 2019, October 1st, 2019, Ljubljana, Slovenia

Kai-Feng Chen National Taiwan University On behalf of the CMS Collaboration Measurement of $B_{s,d} \rightarrow \mu^+ \mu^-$ & Search for $\tau \rightarrow 3\mu$ at CMS

Physics Motivation

- M B_{s,d}→µ⁺µ⁻ decays only proceed thr processes and are highly suppresse
- Loop diagram + Suppressed SM + clean = an excellent place to look
- What to measure:
 - Branching fractions: $B_s \rightarrow \mu \mu m_a$ while first evidence of $B_d \rightarrow \mu \mu n_b$
 - **Effective lifetime**: only the heav in the SM; different compositior

 \overline{b}

$$\tau_{\mu^{+}\mu^{-}} \equiv \frac{\int_{0}^{\infty} t \,\Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) \,dt}{\int_{0}^{\infty} \Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) \,dt} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + 2\mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} y_{s}} \right) \begin{array}{c} \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv -\mathcal{R}(\lambda)/(1 + |\lambda|^{2}) \\ y_{s} \equiv \tau_{\mathrm{B}_{s}^{0}} \Delta\Gamma_{s}/2 \end{array}$$

M SM predictions:

Ref: Beneke et al, PRL 120, 011801 (2018) Bobeth et al, PRL 112, 101801 (2014)
$$\begin{split} & \mathbb{B}(\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-}) = (3.57 \pm 0.17) \times 10^{-9} \\ & \mathbb{B}(\mathbf{B}^{0} \rightarrow \mu^{+} \mu^{-}) = (1.06 \pm 0.09) \times 10^{-10} \\ & \tau(\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-}) = 1.615 \text{ ps} \end{split}$$

Analysis Aspects

𝔅 B_{s,d}→μ+μ− signal signature:

two muons from one displaced vertex;
 isolated from other activities;
 momentum aligned with its flight direction;
 invariant mass peaking at M(B_{s,d}).

Mackground sources:

- Combinatorial background consists of
 - two semileptonic B decays
 - one semileptonic B + a misidentified hadron
- Rare background from single B meson decays:
 - e.g. $B \rightarrow K\pi/KK/\pi\pi$ (peaking),

 $B \rightarrow h^{-}\mu^{+}\upsilon, B \rightarrow h\mu^{+}\mu^{-}$ (not peaking)

Powerful background suppression reached by muon quality, well-reconstructed secondary vertex, isolation, pointing angle, and M(μμ) resolution.

B

В

B

3

Analysis Aspects (cont.)

Background suppression achieved by

- Strict Boosted Decision Tree (BDT) muon identification requirement, including tracking and muon related detector information;
- Event classification BDT, which includes several topological and kinematical variables.
- 𝔅 Calibrations / validations with B^+ → $J/ψK^+$ and B_s →J/ψφ.
- ♦ Normalized to the reference channel $B^+ \rightarrow J/\psi(\rightarrow \mu^+\mu^-) K^+$:

Simi

for

Dataset & Trigger

Combining Run-1 data + 2016, 4 run periods in total:

5 fb⁻¹ at 7 TeV from 2011
20 fb⁻¹ at 8 TeV from 2012
re-blind + re-analyzed

- - **36 fb**⁻¹ **at 13 TeV from 2016**, splits into 2 periods, **2016**A and **2016**B, based on detector conditions.
- **M** Trigger:
 - Identical L1 triggers for signal and normalization; very similar HLT criteria, except displacement requirement for normalization.
 - 2016 setup was very similar to 2012, except a tighter restriction on $|\eta_f| < 1.4$ due to the trigger rate limitation in 2016.

Year	Central	Forward	ηf: pseudo rapidity of the
2011	$0 < \eta_f < 1.4$	$1.4 < \eta_f < 2.1$	most forward muon
2012	$0 < \mid \! \eta_{\rm f} \!\mid < 1.4$	$1.4 < \eta_f < 2.1$	
2016	$0 < \mid \! \eta_{\rm f} \!\mid < 0.7$	$0.7 < \eta_f < 1.4$	\Rightarrow i.e. No "endcap" in 2016

Background Suppression: Variables

 α_{3D}

l_{3D}

 δ_{3I}

M Associated with B candidate:

- B and daughter μ kinematics: **p**_T and **η**.
- Minimal distance between two trajectories: d_{ca}.
- **M** Associated with vertex:
 - Impact parameters: δ_{3D} , $\delta_{3D}/\sigma(\delta_{3D})$
 - Flight length: l_{3D} , $l_{3D}/\sigma(l_{3D})$
 - Pointing angle: α_{3D}
 - Quality of the fit: χ^2/dof
- **M** Associated with isolation:
 - B candidate isolation: $I = p_T(B) / [p_T(B) + \Sigma p_T(tracks)]$ within $\Delta R < 0.7$
 - muon isolation: $I_{\mu} = p_T(\mu) / [p_T(\mu) + \Sigma p_T(\text{tracks})]$ within $\Delta R < 0.5$
 - Track counting: N ^{close} trk
 - Minimal distance between nearby tracks to B vertex: d⁰ca

Simulation versus Data

Comparison between MC and data events:

- Background subtracted distributions from normalization & control channels.
- Difference is accounted as a systematic uncertainty.

Background Suppression: MVA

BDT Configurations:

- 2011 and 2012 samples: the same setup introduced for previous publication.
- 2016 samples: newly trained BDT with the same input variables.

M Training with TMVA:

- Signal source: **simulated** Bs \rightarrow µ⁺µ⁻ events.
- Background source: data sideband.
- Split the samples into 3 subsets: train/test/application;
 - Resulting 3 BDTs for each channel.

% Systematic uncertainties:

- Many validation studies have been performed.
- Measure the double ratio of MC/data and of control/normalization channels.
- Resulting 5-10% uncertainty on the relative efficiencies;
- Around ± 0.07 ps on the effective lifetime.

600

400

200

2.1 1 8.0

-0.5

BDT discriminator

BDT Categorizing

BDT binning optimized with:

- Maximum Likelihood estimator with asymptotic method (*w*/ Asimov data).
- Run-1 channels re-optimized. —
- Look for the **best significance** for branching fraction measurement and smallest uncertainty for lifetime analysis.

Ref. CMS-PAS-BPH-16-004

		20		20	012	20	16A	20	16B
Branching fractions:	Category	Central	Forward	Central	Forward	Central	Forward	Central	Forward
14 categories	Low	_	_	0.27	0.23	0.19	0.19	0.18	0.23
	High	0.28	0.21	0.35	0.32	0.30	0.30	0.31	0.38
Effective lifetime:		20	DII	20	012	20	16A	20	16B
8 categories	Category	Central	Forward	Central	Forward	Central	Forward	Central	Forward
9	BDT	0.22	0.19	0.32	0.32	0.22	0.30	0.22	0.29

Yield Extraction: $J/\psi K^+ \& J/\psi \phi$

***** Fits to invariant mass distributions, with double-Gaussian as the signal model.

/ψK+ background model:

- Combinatorial: exponential;
- Partial reconstructed J/ ψ +X: error function;
- $B^+ \rightarrow J/\psi \pi^+$: triple-Gaussian from MC, fixed to 4% of $J/\psi K^+$ signal.

ψ J/ψφ background model:

- Combinatorial: exponential;

- $B^0 \rightarrow J/\psi K^{*0}$: triple-Gaussian+linear from MC.

Systematic uncertainty of 4% on yield, mainly from the difference to fit w & w/o J/ψ mass constraint.

Ref. CMS-PAS-BPH-16-004

Branching Fraction Extraction

signal width

scales with

resolution

seagu

cowboy

- The model: a 3D unbined ML fit
 - $P(m_{\mu\mu}; \sigma(m_{\mu\mu})) \times P(\sigma(m_{\mu\mu})/m_{\mu\mu}) \times P(\mathcal{C})$
 - Invariant mass: m_{μμ}
 - Per-event mass resolution: $\sigma(m_{\mu\mu})$
 - Dimuon bending configuration: C
 bending towards or away from each other
 (⇒ against possible bias)
- Constrained nuisances:
 - With Gaussian: f_s/f_u , $\mathcal{B}(B^+ \rightarrow J/\psi K^+ \rightarrow \mu \mu K^+)$, converse ratio of efficiencies $\epsilon(Bs)/\epsilon(B^+)$, shape systematic parameters
 - With Lognormal: rare background yields
- PDF choice for 6 components:

Component	$m_{\mu\mu}$	$\sigma(m_{\mu\mu})$
B _s , B _d signal	Crystal-ball, $\sigma_{CB} = \kappa \times \sigma(M_{\mu\mu})$	Keys PDF
B→hh background	Crystal-ball+Gaussian	Keys PDF
B→hµµ, hµv background	Keys PDF	Keys PDF
Combinatorial	Linear (Bernstein)	Keys PDF

Expected Yields Calculation

- Grouping with # of true muons: $B \rightarrow h\mu\mu$ vs. $B \rightarrow h\mu\nu$

A Comment on f_s/f_u

The ratio of fragmentation fraction, f_s/f_u, is an external input to this measurement; experimental situation is not very clear:

- LHCb observes some non-trivial p_T dependence (ref. PRD 100, 031102).
- Not the case for ATLAS (ref. PRL 115, 262001), and not confirmed with CMS internal study using control samples.
- * Take the value from PDG (average of LHCb and ATLAS 7 TeV results), plus additional uncertainties estimated from LHCb 13 TeV result:

 $f_s/f_u = 0.252 \pm 0.012$ (PDG) ± 0.015 (energy/pt dependence)

W Resulting branching fraction can be rescaled:

- Average p_T of the CMS B_s events: 17.2 GeV.
 can be considered.
- Treated as an external uncertainty

 (not as a constrained nuisance parameter, not in likelihood contour scan either).

Results: Branching Fractions

Ref. CMS-PAS-BPH-16-004

Channel	Branching fraction	Sign. (obs)	Sign. (exp)	Consistent with
$B_s \rightarrow \mu^+ \mu^-$	$(2.3^{+1.0}_{-0.8}) \times 10^{-9}$	3.3σ	4.5σ	Nature 522, 68 (CMS part)

Results: Branching Fractions (cont.)

Feldman-cousins approach has been performed:

- Comparison with the result from profile likelihood scan.

One-sided upper limit:

 Full CLs prescription, using LHC-style profile likelihood as the test statistic.

This is the MAIN result for **B**⁰→µ+µ-

Effective Lifetime

 \circledast The proper decay time is measured in 3D: $t = m\ell_{3D}/P$

Measurement with 2D unbined likelihood fit (primary method):

- Fit to dimuon invariant mass $m_{\mu\mu}$ and decay time t (1<t<11 ps); per-event decay time resolution σ_t as a conditional parameter in the resolution model.
- Efficiency correction applied.

PDF Models	Component	$m_{\mu\mu}$	t
	B _s signal	Crystal-ball	$\operatorname{Exp}(t) \otimes \operatorname{Res}(t;\sigma_t) \otimes \operatorname{Eff}(t)$
	B^0 →µµ, B→hh background	Crystal-ball+Gaussian	$\operatorname{Exp}(t) \otimes \operatorname{Res}(t;\sigma_t) \otimes \operatorname{Eff}(t)$
	B→hµµ, hµv background	Gaussian	$\operatorname{Exp}(t) \otimes \operatorname{Res}(t;\sigma_t) \otimes \operatorname{Eff}(t)$
	Combinatorial	Linear (Bernstein)	$\operatorname{Exp}(t) \otimes \operatorname{Res}(t;\sigma_t) \otimes \operatorname{Eff}(t)$

Measurement with sPlot:

- sPlot weights are derived from the BF model.
- Weighted binned likelihood fit, with resolution function and efficiency correction in the PDF.
- Custom implementation for asymmetric uncertainties.

Results from 2 methods are consistent.

Lifetime Results

Primary result from 2D UML:
Ref. CMS-PAS-BPH-16-004 $B_s \rightarrow \mu \mu$
Effective LifetimeExpected
Uncertainty $1.70_{-0.44}^{+0.61}$ ps $^{+0.39}_{-0.30}$ psSystematic uncertainty is small: 0.09psConsistent with SM

(projection with 1<t<11 ps, slightly better S/N comparing to BF fit.)

M Result from sPlot fit:

Systematic Uncertainties

	$B(B_s \rightarrow \mu^+ \mu^-)$ [%]	Effective Lifetime [ps]	
Sources		2D UML	sPlot
Kaon tracking	2.3-4	-	-
Normalization yield	4	-	-
Background yields	1	0.03	(*)
Production process	3	-	-
Muon ID	3	-	-
Trigger	3	-	-
Eff (data/MC)	5-10	-	(*)
Eff (func. model)	-	0.01	0.04
Eff (lifetime dep.)	1-3	(*)	(*)
Era dependence	5-6	0.07	0.07
BDT threshod	-	0.02	0.02
Tracker alignment	-	0.02	-
Finite size of MC	-	0.03	-
Fit bias	-	-	0.09
C correction	-	0.01	0.01
Total Systematics	(+0.3/-0.2) ×10 ⁻⁹	0.09 ps	0.12 ps
Total Uncertainties	(+0.7/-0.6) ×10 ⁻⁹	+0.61/-0.44 ps	+0.52/-0.33 ps

- Relative uncertainties
 for branching fractions;
 absolute uncertainties
 for lifetime.
- Systematic uncertainties
 are included as
 constrained nuisances
 for BF (*except f_s/f_u*).

contribution has been included in other items.

CMS Experiment at the LHC, CERN Data recorded: 2016-May-31 07:08:48.668672 GMT Run / Event / LS: 274250 / 379362289 / 189

A candidate $B_s \rightarrow \mu^+ \mu^-$ event from 2016 data

Search for $\tau \rightarrow 3\mu$: Introduction

 ν_{μ}

Good for probing NP!

- A charged lepton flavor violating (CLFV) decay of τ to 3 muons, no missing neutrinos.
- Allowed by neutrino oscillations, but with extraordinarily small branching fractions beyond experimental accessibility.
- The rate can be strongly enhanced with New Physics scenarios; experimentally the three-muon final state is accessible and clean.
- Searches have been performed by Belle, BaBar, LHCb, ATLAS, no hint of signal yet.
- Best limit from Belle: B< 2.1×10⁻⁸ (@ 90% C.L.) [PLB 687 (2010) 139143]

CMS performed a search for the $\tau \rightarrow 3\mu$, where τ leptons produced in D and B hadron decays, using the data collected in 2016 of 33 fb⁻¹.

Event Selection

% For τ candidate:

- Triggering with two muons plus a track, with vertex and mass requirement;
- Requiring 3 global muons offline and sum of charges should be ±1.

For normalization:

- Select $D_s^+ \rightarrow \phi \pi^+ \rightarrow \mu^+ \mu^- \pi^+$ with the same trigger and very similar momentum thresholds.
- The fraction of (non-)prompt D_s estimated from a fit to the proper decay length distribution.

		D→τ Signal	B→τ Signal	Data
	Production	4.4×10^{5}	1.5×10^{5}	
Violdo for	3µ in fiducial volume	6.6×10 ³	2.3×10 ³	
The las for $BF(\tau \rightarrow 3\mu) = 10^{-7}$	Trigger	214	114	
	3μ p _T >2GeV	88	47	1×107
	3µ candidate	64	29	1×10^{5}

Ref. CMS-PAS-BPH-17-004

Background Suppression Variables

Associated with 3-μ vertex:

- normalized χ^2 from 3- μ vertex fit;
- significance of the 3-µ vertex 3D displacement w.r.t. IP;
- pointing angle α ;
- closest distance between the 3-µ
 vertex and any other track;

Associated with fake-μ from hadron:

- kink parameter for the tracker track;
- spatial compatibility of tracker track and muon track in muon system;
- transverse impact parameter;
- muon momentum;
- track-based isolation;

Ref. CMS-PAS-BPH-17-004

Event Categorizing

#1 Categorized by mass resolution:

- 3-µ mass resolution has been
 evaluated event-by-event,
 ranging from 0.4 to 1.5%,
 depending on the muon rapidity;
- Divided into 3 categories: <0.7%,
 0.7–1%, >1%.

2 Categorized by BDT score:

- BDT trained with signal MC and sideband data as background;
- Further divided into 3 categories,
 2 to be included, 1 dropped.
- Resulting 6 categories in total.

To be included in the fit

Systematic Uncertainties

Systematic uncertainties are incorporated via nuisance parameters.
 Small systematics, statistical uncertainties dominant.

Sources	Input uncertainty	Resulting variation	
Ds normalization	10%	10%	Stability check across
B(Ds→τυ)	4%	3%	different data taking era
B(Ds→φπ→μμπ)	8%	8%	
B(B→Ds+X)	16%	5%	
B(B→τ+X)	11%	3%	Data /MC difference
Uncertainty of B/D ratio	11%	3%	Data / IVIC difference
Uncertainty due to τ from D	100%	3%	
Uncertainty due to τ from Bs	100%	4%	Measured from 3µ
3-muon trigger	8%	2%	mass sideband
Acceptance ratio	1%	1%	Studiod in I/11-111 with
Muon reconstruction	1.5%	1.5%	tag & probe
Pion reconstruction	2.3%	2.3%	ung ex proce
BDT efficiency	5%	5%	Ectimated with
Mass scale	0.07%	shape	$D_{s} \rightarrow \phi \pi \rightarrow \mu \mu \pi MC \& data$
Mass resolution	2.5%	shape J	Do topic printine de data

Extraction of Limit

- Simultaneous maximum likelihood fit to 3µ invariant mass, performed with 6 resolution-BDT categories.
- Signal model is parametrized with Crystal Ball functions
- Background is modeled with an exponential plus a polynomial.
- No hint of signal found, observed (expected) limits are evaluated using CLs method:

 $\mathcal{B}(\tau \rightarrow 3\mu) < 8.8 \ (9.9) \times 10^{-8} @ 90\% C.L.$ $\mathcal{B}(\tau \rightarrow 3\mu) < 1.1 \ (1.2) \times 10^{-7} @ 95\% C.L.$

Summary

cMS is an unique test bench for flavor physics predictions!

Ref. CMS-PAS-BPH-16-004

♦ Measurement of the $B_s \rightarrow \mu \mu$ and search for $B^0 \rightarrow \mu \mu$

- The rare decay $B_s \rightarrow \mu \mu$ has been measured and the branching fractions have been updated. More data are required for probing $B^0 \rightarrow \mu \mu$ decays in the near future.
- Effective lifetime measurement with $B_s \rightarrow \mu\mu$ events at CMS has been carried out for the first time.
- All results are consistent with the SM; full Run-2 analysis is ongoing.

♦ Search for τ →µµµ decay

Ref. CMS-PAS-BPH-17-004

- Search of CLFV decay $\tau \rightarrow 3\mu$ has been conducted at CMS. Using the τ leptons decaying from D and B mesons, no excess above the expected background is observed. Upper limits have been set.

More results are in the pipeline! Stay tuned!