Theory status and implications of $R(D^{(*)})$ and polarization observables

Teppei Kitahara Technion/Nagoya University

18th International Conference on B-Physics at Frontier Machines (BEAUTY2019), October 3, 2019, Ljubljana, Slovenia

$b \rightarrow c \tau \bar{\nu}$ in Standard Model

Current status of R(D) and R(D*)

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia [HFLAV averages Spring 2019]

Latest SM predictions

works are $\mathcal{O}(1/m_c)$, $\mathcal{O}(\alpha_s)$, $\mathcal{O}(1/m_b)$ + part of $\mathcal{O}(1/m_c^2)$)

 $2/1/0: \mathcal{O}(1/m_c^2)$ corrections are just constants 3/2/1: ω dependence in $\mathcal{O}(1/m_c^2)$ is included

$$w = (m_B^2 + m_D^{(*)2} - q^2)/2m_B m_D^{(*)}$$

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

- All $\mathcal{O}(1/m_c^2)$ corrections in the heavy quark expansion are included and fit all form factors (previous) [Bordone, Jung, van Dyk 1908.09398]
 - All lattice data, QCDSR, and the latest LCSR result [Gubernari, Kokulu, van Dyk '19]
 - $R(D)_{\rm SM} = 0.298 \pm 0.003$ $R(D^*)_{\rm SM} = 0.247 \pm 0.006$
 - + Angular distributions from Belle data [Belle, 1510.03657, 1702.01521, 1809.03290]
 - $R(D^*)_{\rm SM} = 0.250 \pm 0.003$ $R(D)_{\rm SM} = 0.297 \pm 0.003$

R(D): 1.4 \rightarrow 1.4 σ $R(D^*): \mathbf{2.5} \rightarrow \mathbf{3.4} \sigma$ combine: $3.1 \rightarrow 3.9 \sigma$ (my personal analysis)

Photon emissions in data

Soft-photon corrections

At large distance ($\mu < \Lambda_{\text{OCD}}$), the QED interactions of the charged mesons are well described by

the scalar QED (point-like particle approximation)

QED corrections on Dalitz plane

$d^2 \Gamma(\overline{B}^0 \to D^+ \mu \nu)$ 28 - 6 QED 25 26 correction(%) @E_{max}= 20 MeV 24 20 22 s_{Dr}(GeV²) $s_{\mathrm{D}t}(\mathrm{GeV}^2)$ 18 -210 16 QED 14 10 0 6 q^2 (GeV²)

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

Three independent parameters: E_{max} and 2 Dalitz variables: $q^2 = (p_B - p_D)^2$, $s_{D\ell} = (p_D + p_\ell)^2$

$$d^2 \Gamma(\overline{B}^0 \to D^+ \tau \nu)$$

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

We conclude that the QED corrections to $R(D^+)$ and $R(D^0)$ are different at 1-1.5%

PHOTOS MC simulation

- PHOTOS Monte-Carlo generator can simulate modifications of the kinematic variables **induced by final**-state photon radiations (NO initial state) in the leading-logarithmic collinear approximation
- PHOTOS has been utilized in Belle (v2.02) /BaBar (v2.13)/LHCb (v3.56) for B semileptonic decay searches
 - All virtual corrections (Coulomb pole also) are not covered in PHOTOS
 - Quantum interference of O(E⁰_{max}) in emissions are not covered in PHOTOS (< v2.07(single), v2.13) (multiple))
 - LHCb analysis *does* include the interference of the final-state emissions
- O(In E_{max}) contributions to $B^- \to D^0 e \bar{\nu}$ have been checked (soft E_{γ} and hard E_{γ}) by PHOTOS v1.06 compared to analytic formula assuming constant FFs [E. Richter-Was '93]

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

[Barberio, Eijk, Was, '91; Barberio, Was, '94; Davidson, Przedzinski, Was '16]

Crosscheck by PHOTOS

Part of LHCb colleagues have checked the soft-photon correction by PHOTOS v.3.56

Leading LFU-violating contribution is reproduced by PHOTOS v.3.56 with interference switch=on

The small gap comes from virtual (Coulomb) correction which is absent in PHOTOS

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia [Calí, Klaver, Rotondo, Sciascia '19]

Coulomb contribution

- Coulomb contribution depends on kinematic
- template shape [Calí, Klaver, Rotondo, Sciascia '19]

Impacts of these modifications have not been studied yet

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

cs:
$$q^2$$
, $m_{\rm miss}^2$, E_{μ}

Coulomb correction would give impacts on the experimental results through a change of the fit

Polarization observables in D^* decay (into $D\pi$)

Longitudinal D^* polarization

 $F_L\left(D^*\right) =$

Data vs. SM [Belle, 1903.03102] $F_I(D^*) = 0.60 \pm 0.08 \pm 0.04$

 $F_{I}(B^{0} \to D^{*-}e^{+}\nu) = 0.56 \pm 0.02$

Belle II sensitivity $\Delta F_I(D^*) = \pm 0.01 \pm 0.04$ (can exclude SM at >3 σ level) [Adamczyk, 1901.06380] 50 ab⁻¹

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

$$= \frac{\Gamma\left(B \to D_L^* \tau \nu\right)}{\Gamma\left(B \to D^* \tau \nu\right)}$$

[Alok, Kumar, Kumbhakar, Sankar '17] [Bordone, Jung, van Dyk 1908.09398] $F_L(D^*)_{\rm SM} = 0.46 \pm 0.04$ $F_L(D^*)_{\rm SM} = 0.470 \pm 0.012$ (1.4σ) $F_L(D^*e\nu)_{\rm SM} = 0.54 \pm 0.01$

Polarization observables in τ decays (into $\pi\nu, \rho\nu$)

 τ polarization asymmetry along the longitudinal directions of τ [Alonso, Camalich, Westhoff '17]

$$P_{\tau}(D^{(*)}) = \frac{\Gamma\left(B \to D^{(*)}\tau^{\lambda=+1/2}\nu\right) - \Gamma\left(B \to D^{(*)}\tau^{\lambda=-1/2}\nu\right)}{\Gamma\left(B \to D^{(*)}\tau\nu\right)}$$

Data vs. SM [Belle estimation, 1612.00529] [Belle, 1612.00529, 1709.00129] $P_{\tau}(D)$: no reuslt $P_{\tau}(D)_{\rm SM} = 0.325 \pm 0.009$ $P_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$ $P_{\tau}(D^*)_{\rm SM} = -0.497 \pm 0.013$ $(<1\sigma)$

Belle II sensitivity $\Delta P_{\tau}(D) = 3\%$ (stat. uncertainty only) [Alonso, Camalich, Westhoff '17] 50 ab⁻¹ $\Delta P_{\tau}(D^*) = \pm 0.07$ [Belle II Physics Book, 1808.10567]

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia [Bordone, Jung, van Dyk 1908.09398]

 $P_{\tau}(D)_{\rm SM} = 0.321 \pm 0.003$

 $P_{\tau}(D^*)_{\rm SM} = -0.488 \pm 0.018$

(<1*o*)

New Physics Interpretation

New physics interpretations

New Physics above *B* meson scale is described model-independently by

$$\begin{split} H_{\text{eff}}^{\text{NP}} &= 2\sqrt{2}G_F V_{cb} \left[\left(1 + C_V^L \right) O_V^L + C_S^R O_S^R + C_S^L O_S^L + C_T O_T \right] \\ O_V^L &= \left(\overline{c} \gamma^\mu P_L b \right) \left(\overline{\tau} \gamma_\mu P_L \nu_\tau \right) \\ O_S^R &= \left(\overline{c} P_R b \right) \left(\overline{\tau} P_L \nu_\tau \right) \\ O_S^L &= \left(\overline{c} P_L b \right) \left(\overline{\tau} P_L \nu_\tau \right) \\ O_T &= \left(\overline{c} \sigma^{\mu\nu} P_L b \right) \left(\overline{\tau} \sigma_{\mu\nu} P_L \nu_\tau \right) \end{split}$$

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

Light right-handed neutrinos can also be included but are constrained by the collider bound

Constraint from $BR(B_c \rightarrow \tau \nu)$

Searches for $B^+_{\mu,c} \to \tau^+ \nu$ at LEP1 set BR $(B_c \to \tau \nu) < 10\%$ (at Z peak)

Scalar OPs C_S^R , C_S^L are strongly constrained via BR $(B_c \to \tau \nu) \simeq 0.02 \left| 1 + C_V^L + 4.3 \left(C_S^R - C_S^L \right) \right|^2$

It has become clear that the original estimation misses the p_T dependence of f_c/f_μ

From CMS and LHCb [Akeroyd, Chen '17] $2.1 \times 10^{-3} \leq f_c \leq 4.4 \times 10^{-3}$ $\longleftarrow \quad \frac{f_c}{f_u} \frac{\mathrm{BR}\left(B_c^- \to J/\psi\pi^-\right)}{\mathrm{BR}\left(B^- \to J/\psi K^-\right)} = (6.72 \pm 0.19) \times 10^{-3}$

NRQCD next-to-leading order at Z peak [Zheng, Chang, Feng, Pan '18, Zheng, Chang, Feng, Wu '19] $f_c \sim 6 \times 10^{-4}$

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

[Blanke, Crivellin, de Boer, TK, Moscati, Nierste, Nisandzic, '19]

 p_T dependence of f_c/f_u from ATLAS and LHCb

Constraint from $pp \rightarrow \tau \nu$

The constraint $BR(B_c \rightarrow \tau \nu) < 10\%$ seems to be overestimated by a factor AT LEAST 3. Now, the constraint from $BR(B_c \rightarrow \tau \nu)$ is no longer the strongest one

The strongest constraint comes from collider search: high- p_T tails in mono- τ searches [Greljo, Camalich, Ruiz-Alvarez '19]

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

Tensor operator vs. $F_I(D^*)$

 $\mathcal{H}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} C_T(\mu) \left(\overline{c}\sigma^{\mu\nu} P_L b\right) \left(\overline{\tau}\sigma_{\mu\nu} P_L \nu_\tau\right)$

 $C_{T, SM} = 0$

 $F_L(D^*) = 0.60 \pm 0.08 \pm 0.04$ [Belle, 1903.03102]

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

[Iguro, TK, Omura, Watanabe, Yamamoto, '19, UPDATED]

One WC scenarios

W',

 C_V^L $SU(2)_{L}$ -triplet and/or -singlet scalar LQ

 $C_{\rm S}^R$

 $C_{\rm s}^L$

- Charged Higgs, $SU(2)_{L}$ -doublet vector LQ (V_{2})
- Charged Higgs with generic flavour structure

 $C_S^L = 4C_T$ scalar SU(2)_L-doublet LQ (R_2) ("4" is modified by RG evolution)

There are so many detailed studies for **each** single particle scenarios

There are also "two particle" scenarios [See Nejc Košnik talk]

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia [Blanke, Crivellin, TK, Moscati, Nierste, Nisandzic '19]

 $SU(2)_{L}$ -singlet vector LQ (U_1)

 $SU(2)_L$ -doublet scalar LQ (R_2)

 $P_{\tau}(D)$ can discriminate the new physics

 $P_{\tau}(D^*)$ could discriminate the new physics

 $F_L(D^*)$ is difficult to discriminate them

Predicted ranges of polarization observables

and $BR(B_c^+ \rightarrow \tau^+ \nu) < 30\%$ [Alonso, Grinstein, Martin Camalich '17] are included

		$F_L^{D^*}$	P^D_{τ}	$P_{ au}^{D^*}$	R_D	R_{D^*}
[Predicted ranges]	$R_2 LQ$	[0.442, 0.447]	[0.336, 0.456]	[-0.464, -0.424]	1σ data	1σ data
	$\mathrm{S}_1 \ \mathrm{LQ}$	[0.436, 0.481]	[-0.006, 0.489]	[-0.512, -0.450]	1σ data	1σ data
	${\rm U}_1 \; {\rm LQ}$	[0.440, 0.459]	[0.156, 0.422]	[-0.542, -0.488]	1σ data	1σ data
	\mathbf{SM}	0.46(4)	0.325(9)	-0.497(13)	0.299(3)	0.258(5)
[50 ab ⁻¹]	data	0.60(9)	_	-0.38(55)	0.340(30)	0.295(14)
	Belle II	0.04	3%	0.07	3%	2%

 $P_{\tau}(D)$ can discriminate the new physics

LHC mono- τ search gives more severe bound than BR($B_c^+ \rightarrow \tau^+ \nu$) < 30 %

- Full parameter searches of each LQ model. LHC mono- τ search [Greljo, Martin Camalich, Ruiz-Alvarez '19]

 - [Iguro, TK, Omura, Watanabe, Yamamoto '19, UPDATED]

Model-independent prediction: $R(\Lambda_c)$

Motivated two WCs scenarios 0.42 $BR(B_c \rightarrow \tau \nu) > 3($ 0.40 $SU(2)_{L}$ -singlet scalar LQ (S_1) (V) 80.38 **Charged Higgs** 0.36 0.34 $(C_V^L, C_S^L = -4 C_T)$ \star (C_S^R, C_S^L) 0.32 0.28 0.26 0.30 0.32 $\mathcal{R}(D^*)$

Sum rule for $R(\Lambda_c)$ prediction [Blanke, Crivellin, de Boer, TK, Moscati, Nierste, Nisandzic, '19]

Model-independent sum rule (also valid for RH neutrino)

 $\frac{R(\Lambda_c)}{R(\Lambda_c)_{\rm SM}} \simeq 0.26$

 $R\left(\Lambda_c\right) = 0.38$

[Detmold, Lehner, Meinel '15] $R(\Lambda_c)_{\rm SM} = 0$

Theory status and implications of $R(D^{(*)})$ and polarization observables **Teppei Kitahara**: Technion/Nagoya University, BEAUTY2019, October 3, 2019, Ljubljana, Slovenia

 $R(\Lambda_c) = BR(\Lambda_b \to \Lambda_c \tau \nu)/BR(\Lambda_b \to \Lambda_c \ell \nu) @ LHCb [Blanke, Crivellin, TK, Moscati, Nierste, Nisandzic '19]$

 $SU(2)_L$ -singlet vector LQ (U_1) $SU(2)_L$ -doublet scalar LQ (R_2)

Similar ellipses!

$$6\frac{R(D)}{R(D)_{\rm SM}} + 0.74\frac{R(D^*)}{R(D^*)_{\rm SM}}$$

$$8 \pm 0.01_{R(D^{(*)})} \pm 0.01_{\rm FF}$$

$$0.33 \pm 0.01$$

Crosscheck of $R(D^{(*)})$ anomaly is possible by $R(\Lambda_c)$

There is no data yet, but soon?

Conclusions

- SM expected values for $B \rightarrow D^{(*)}$ transitions are improved: $\mathcal{O}(1/m_c^2)$
- Soft-photon corrections depend on lepton's mass and velocity and hence can violate lepton flavor universality, which is also reproduced by PHOTOS v.3.56 with interference switch=on up to Coulomb contributions
- Polarisation observables, especially $P_{\tau}(D)$, are well suited to distinguish among different EFT scenarios
- $\Lambda_h \to \Lambda_c \tau \nu$ provides experimental cross-check of $R(D^{(*)})$ anomaly

