



# Heavy Flavor Production in ATLAS: Charmonium production in p-p at 13 TeV and in Pb-Pb collisions. Associated charmonium and Vector boson production **Brad Abbott** University of Oklahoma On behalf of the ATLAS Collaboration

# Outline

# Heavy Ion Results

Charmonium Production in Pb-Pb Eur. Phys. J. C78 (2018) 762

Quarkonium production in pp and pPb Eur. Phys. J. C 78 (2018) 171

 $J/\psi$  elliptic flow in Pb-Pb Eur. Phys. J. C 78 (2018) 784

# **Heavy Flavor Production**

J/ $\psi$  and  $\psi$ (2S) production cross sections at high p<sub>T</sub> at 13 TeV ATLAS-CONF-2019-047

 $J/\psi$  production in associated with a W boson at 8 TeV arXiv:hep-ex 1909.13626

# **Charmonium Production in Pb-Pb**

Eur. Phys. J. C78 (2018) 762

# **Charmonium Production in Pb-Pb**

Modification of prompt J/ $\psi$  production is not expected to be similar to non-prompt J/ $\psi$  production since different mechanisms contribute to the final states



Use simultaneous mass/lifetime fits to extract prompt/non-prompt component

Extract yields as a function of  $p_T$ , y and centrality

Centrality:  $\sum E_T^{FCal}$  Measures degree of geometrical overlap of two colliding nuclei in the plane perpendicular to the beam.

Each event corrected for acceptance, reconstruction efficiency and trigger efficiency

#### Nuclear Modification Factor R<sub>AA</sub>



Per Event Yield

Mean Nuclear Thickness \* Cross Section

Production of J/ $\psi$  strongly suppressed in central Pb-Pb collisions

Non-prompt consistent with flat

 $R_{AA}$ 

For  $p_T$ >12 GeV small increase in  $R_{AA}$ 

Consistent with color screening and parton-energy loss models

Suppression sign that the hot dense medium has a strong influence on particle production processes

Both prompt and non-prompt have similar behavior. Not expected since non-prompt dominated by b-decays that extend outside medium while prompt production happens primarily within medium

### Double ratio: $(\psi(2s)/J/\psi)Pb+Pb/(\psi(2S)/J/\psi)pp$



Consistent with interpretation that the tighter bound J/ $\psi$  survives in the hot and dense medium with higher probability than the more loosely bound  $\psi$ (2S).

## Quarkonium production in pp and pPb

Eur. Phys. J. C 78 (2018) 171

#### Quarkonium production in pp and pPb

Study of suppression of charmonium in pp and p-Pb

Simultaneous mass/lifetime fit in bins of  $P_T$ , rapidity and centrality for charmonium

Mass fits in bins of P<sub>T</sub>, rapidity and centrality for bottomonium





Events weighted for efficiency and acceptance

# Differential pp results





In pp collisions: Prompt: Charmonium good agreement observed between data and NRQCD

y\*: proton-nucleon center of mass rapidity

NRQCD: PRL 106 (2011) 042002, JHEP 05 (2015) 103

# Differential pp results



In pp collisions: Non-prompt: Charmonium good agreement observed between data and FONLL

# **Differential pp results**

$$\frac{d^2 \sigma_{O(nS)}}{d p_T d y^*} \times B(O(nS) \to \mu^+ \mu^-) = \frac{N_{O(nS)}}{\Delta p_T \times \Delta y \times L}$$

In pp collisions: Bottomonium agreement observed between data and NRQCD for p<sub>T</sub>>15 GeV









Prompt and non-prompt J/ $\psi$  consistent with unity across  $p_T$  range 8-40 GeV

Y(1s) shows significant discrepancy with unity at low  $p_T$ 



Low  $p_T~Y(1S)$  can probe smaller Bjorken-x region compared to J/ $\psi$  measured in 8<p\_T<40 GeV

Observed suppression of Y(1S) may come from the reduction of hard-scattering cross sections due to strong nPDF shadowing at smaller Bjorken-x

## **Double production ratio**

$$\rho_{pPb}^{O(nS)/O(1S)} = \frac{R_{pPb}(O(nS))}{R_{pPb}(O(1S))} = \frac{\sigma_{p+Pb}^{O(nS)}}{\sigma_{p+Pb}^{O(1S)}} / \frac{\sigma_{pp}^{O(nS)}}{\sigma_{pp}^{O(1S)}}$$

Suppression of Y(3S) and O(2S) states wrt O(1S) between 1-2 sigma



## **Double production ratio**

$$\rho_{pPb}^{O(nS)/O(1S)} = \frac{R_{pPb}(O(nS))}{R_{pPb}(O(1S))} = \frac{\sigma_{p+Pb}^{O(nS)}}{\sigma_{p+Pb}^{O(1S)}} / \frac{\sigma_{pp}^{O(nS)}}{\sigma_{pp}^{O(1S)}}$$

Decreasing trends from peripheral to central are at the significance level of 1 sigma

A stronger cold nuclear matter effect is observed in excited quarkonium states compared to that in ground states.



# $J/\psi$ elliptic flow in Pb-Pb

Eur. Phys. J. C 78 (2018) 784

# $J/\psi$ elliptic flow in Pb-Pb

Compare prompt vs non prompt J/ $\psi$  probes flavor dependence of the medium.

Study azimuthal distribution of particles characterized by

$$\frac{dN}{d\phi} \sim 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \psi_n)]$$

 $v_2$ : Elliptic flow



#### Events weighted for efficiency and acceptance



At high  $p_{T}$ , similar  $v_{2}$  for prompt and non-prompt suggesting similar suppression mechanism at high  $p_{T}$ 

# Measurement of the production cross-section of J/ $\psi$ and $\psi$ (2S) mesons at high transverse momentum at 13 TeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-047

Provides insight into QCD near boundary of perturbative and non-perturbative regimes

Previous measurements of cross sections used dimuon triggers with low thresholds

Dimuon triggers could not reach beyond  $p_T$  of ~ 100 GeV

Measuring high- $p_T$  production of quarkonium states important because high  $p_T$  behavior may help discriminate various theoretical models

Previous measurements reached J/ $\psi$  p<sub>T</sub> of 150 GeV Phys. Lett. B **780** (2018) 251

Single muon triggers and full run-2 dataset allows measurement at high  $p_T$  (60-360 GeV) significantly expanding range



# **Systematics**



Dominated by statistical uncertainty at high  $p_T$ 

Muon reconstruction and Trigger dominant at low  $p_T$ 





Brad Abbott

ATLAS and CMS results fit to a simple function

Consistent results with CMS in overlap region



Non Prompt



FONLL: JHEP 0103 (2001) 006, JHEP 1210 (2012) 137

Brad Abbott

Ratio of measurements to FONLL

Good agreement at lower end of  $p_T$  range, but FONLL predicting slightly larger cross sections at higher  $p_T$  for J/ $\psi$ 







#### $J/\psi$ production in associated with a W boson at 8 TeV

arXiv: hep-ex 1909.13626

#### $J/\psi$ production in associated with a W boson at 8 TeV

- Production mechanism of charmonium in hadronic collisions is not fully understood
- Relative contribution of Color Singlet (CS) and Color Octet (CO) is unknown
- Including both CS and CO brings theory and experiment into better agreement
- Requiring an associated object ( $W^{\pm}$ ) filters the possible CS/CO diagrams
- In addition contributions of double parton scattering vs single parton scattering processes unknown. J/ $\psi$  + W<sup>±</sup> can probe this using  $\Delta \phi$  between the two particles.

Measure  $R_{J/\psi}$ : Cross section of associated prompt J/ $\psi$  +W production divided by cross section of inclusive W production

$$R_{J/\psi} \equiv \frac{\sigma_{W+J/\psi}}{\sigma_W} \equiv \frac{\frac{N_{W+J/\psi}}{\overline{\mathcal{T} \times \mathcal{L} \times \epsilon_W \times \mathcal{A}_W \times \epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}}{\frac{N_W}{\overline{\mathcal{T} \times \mathcal{L} \times \epsilon_W \times \mathcal{A}_W}}} \equiv \frac{1}{N_W} [\frac{N_{W+J/\psi}}{\epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}]$$

Need

 $N_W$ : Background subtracted yield for inclusive W  $N_{W+J/\psi}$ : Background subtracted yield of prompt W+J/ $\psi$  $\epsilon_{J/\psi}$ ,  $A_{J/\psi}$ : Efficiency and acceptance for J/ $\psi$ 

#### Inclusive W sample

| $W^{\pm}$ boson selection                                                                  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| At least one isolated muon that originates < 1 mm from primary vertex along <i>z</i> -axis |  |  |  |  |  |
| $p_{\rm T}$ (trigger muon) > 25 GeV                                                        |  |  |  |  |  |
| $ \eta^{\mu}  < 2.4$                                                                       |  |  |  |  |  |
| Missing transverse momentum $> 20 \text{ GeV}$                                             |  |  |  |  |  |
| $m_{\rm T}(W^{\pm}) > 40 { m GeV}$                                                         |  |  |  |  |  |
| $ d_0 /\sigma_{d_0} < 3$                                                                   |  |  |  |  |  |





Combined mass-lifetime fit to extract prompt J/ $\psi$  yield





Ž.4

2.6 2.8

3

3.2 3.4 3.6 3.8 *m*(μ<sup>+</sup>μ<sup>-</sup>) [GeV] <u>1</u>2

0

2

4

6

8

τ(μ<sup>+</sup>μ<sup>-</sup>)[ps]

10

 $\epsilon_{J/\psi}$  and  $A_{J/\psi}$  determined using  $p_T$  and rapidity dependent corrections

#### **Double Parton Scattering**

Probability that a J/ $\psi$  is produced by a second hard process

$$P_{J/\psi|W^{\pm}}^{ij} = \frac{\sigma_{J/\psi}^{ij}}{\sigma_{\text{eff}}}$$

Exact shape of SPS unknown

Effective cross section  $\sigma_{\text{eff}}$  is unknown so choose two different values from previous ATLAS measurements

 $\sigma_{\text{eff}} = 15 \pm 3(\text{stat.})^{+5}_{-3}(\text{sys.}) \text{ mb from } W^{\pm} + 2\text{-jet events}$ 

 $\sigma_{\rm eff} = 6.3 \pm 1.6({\rm stat.}) \pm 1.0({\rm sys.})$  mb from prompt  $J/\psi$  pair production

Both values of  $\sigma_{\text{eff}}$  consistent with data at low  $\Delta \phi$ 



|              | Source of Uncertainty                                          | Uncertainty [%]    |                          |  |
|--------------|----------------------------------------------------------------|--------------------|--------------------------|--|
|              |                                                                | $ y_{J/\psi}  < 1$ | $1 <  y_{J/\psi}  < 2.1$ |  |
| Custometica  | $J/\psi$ mass fit                                              | 8.7                | 4.9                      |  |
| Systematics: | Vertex separation                                              | 12                 | 15                       |  |
|              | $\mu_{J/\psi}$ efficiency                                      | 2.0                | 1.6                      |  |
|              | Pile-up                                                        | 1.1                | 1.4                      |  |
|              | $J/\psi + Z$ and $J/\psi + W^{\pm}(\rightarrow \tau^{\pm}\nu)$ | 3.5                | 4.8                      |  |
|              | Efficiency correction                                          | 2.3                | 2.3                      |  |
|              | $J/\psi$ spin alignment                                        | 34                 | 28                       |  |

Fiducial measurement: Independent of unknown spin-alignment of  $J/\psi$ 

$$R_{J/\psi}^{\text{fid}} = \frac{\sigma_{\text{fid}}(pp \to J/\psi + W^{\pm})}{\sigma(pp \to W^{\pm})} \cdot \mathcal{B}(J/\psi \to \mu\mu) = \frac{1}{N(W^{\pm})} \sum_{p_{\text{T}} \text{ bins}} [N^{\text{eff}}(J/\psi + W^{\pm}) - N_{\text{pile-up}}^{\text{fid}}],$$
$$R_{J/\psi}^{\text{fid}} = (2.2 \pm 0.3 \pm 0.7) \times 10^{-6}$$

Inclusive measurement: Takes into account unknown J/ $\psi$  spin-alignment and J/ $\psi$  acceptance

$$R_{J/\psi}^{\text{incl}} = \frac{\sigma_{\text{incl}}(pp \to J/\psi + W^{\pm})}{\sigma(pp \to W^{\pm})} \cdot \mathcal{B}(J/\psi \to \mu\mu) = \frac{1}{N(W^{\pm})} \sum_{p_{\text{T}} \text{ bins}} [N^{\text{eff}+\text{acc}}(J/\psi + W^{\pm}) - N_{\text{pile-up}}],$$

$$R_{J/\psi}^{\text{incl}} = (5.3 \pm 0.7 \pm 0.8 \pm 1.7) \times 10^{-6}$$

$$1^{\text{st}} \text{ uncertainty: statistical}$$

$$2^{\text{nd}} \text{ uncertainty: systematic}$$

$$3^{\text{rd}} \text{ uncertainty: spin alignment}$$

Subtract estimated DPS contribution to allow measurement to be compared to theory

$$R_{J/\psi}^{\text{DPSsub}} = (3.6 \pm 0.7^{+1.1}_{-1.0} \pm 1.7) \times 10^{-6}, \ [\sigma_{\text{eff}} = 15^{+5.8}_{-4.2} \text{ mb}]$$

$$R_{J/\psi}^{\text{DPSsub}} = (1.3 \pm 0.7 \pm 1.5 \pm 1.7) \times 10^{-6}, \ [\sigma_{\text{eff}} = 6.3 \pm 1.9 \text{ mb}]$$



NLO:Phys. Rev. D 53(1996) 150, 6203

#### **Differential Measurement**



Neither value of  $\sigma_{eff}$  can correctly model J/ $\psi$  p<sub>T</sub> dependence

# Conclusions

Selected measurements in ATLAS heavy flavor production shown

Quarkonia allowing probes of QCD at the perturbative/non-perturbative boundary and in studying effects of Cold Nuclear Matter

For 13 TeV measurement

- > Good agreement with previous measurement from CMS
- $> p_T$  reach greatly extended
- > Non-prompt production of J/ $\psi$  consistent with FONLL at low  $p_T$
- > FONLL overestimates non-prompt J/ $\psi$  cross section at high p<sub>T</sub>

Prompt J/ $\psi$  + W

- > Measurement of  $\Delta \phi$  distribution indicates that both SPS and DPS contributions are present in data
- > Smaller value of  $\sigma_{\text{eff}}$  is preferred
- > Neither value of  $\sigma_{eff}$  can describe J/ $\psi$  p<sub>T</sub> dependence

First measurements with full Run-2 datasets presented, stayed tuned for more interesting results

# **Additional Material**

# ATLAS detector and triggers



#### Charmonium Production in Pb-Pb Eur. Phys. J. C78 (2018) 762

| i | Туре       | Source | $f_i(m)$                            | $h_i(	au)$    |
|---|------------|--------|-------------------------------------|---------------|
| 1 | $J/\psi$   | р      | $\omega CB_1(m) + (1-\omega)G_1(m)$ | $\delta(	au)$ |
| 2 | $J/\psi$   | np     | $\omega CB_1(m) + (1-\omega)G_1(m)$ | $E_1(	au)$    |
| 3 | $\psi(2S)$ | р      | $\omega CB_2(m) + (1-\omega)G_2(m)$ | $\delta(	au)$ |
| 4 | $\psi(2S)$ | np     | $\omega CB_2(m) + (1-\omega)G_2(m)$ | $E_2(	au)$    |
| 5 | Bkg        | р      | $E_3(m)$                            | $\delta(	au)$ |
| 6 | Bkg        | np     | $E_4(m)$                            | $E_5(	au)$    |
| 7 | Bkg        | np     | $E_6(m)$                            | $E_7( 	au )$  |

|                | $J/\psi$ | $J/\psi$ yield |         | $R^{J/\psi}_{\scriptscriptstyle \Delta\Delta}$ |         |  |
|----------------|----------|----------------|---------|------------------------------------------------|---------|--|
| Source         | Uncorr.  | Corr.          | Uncorr. | Corr.                                          | Uncorr. |  |
| Trigger        | 2 - 4%   | 3%             | 5 - 6%  | 5%                                             | < 1%    |  |
| Reconstruction | 4 - 5%   | 2%             | 6 - 7%  | 2%                                             | < 1%    |  |
| Fitting        | 1 - 2%   | 1%             | 1 - 2%  | 1%                                             | 8 - 9%  |  |
| $T_{\rm AA}$   | _        | 1 - 8%         | _       | 1 - 8%                                         | _       |  |
| Luminosity     | _        | _              | _       | 5.4%                                           | -       |  |

#### Quarkonium production in pp and pPb Eur. Phys. J. C 78 (2018) 171

| i | Туре       | Source     | $f_i(m_{\mu\mu})$                                             | $h_i(	au_{\mu\mu})$    |
|---|------------|------------|---------------------------------------------------------------|------------------------|
| 1 | $J/\psi$   | Prompt     | $\omega_1 C B_1(m_{\mu\mu}) + (1 - \omega_1) G_1(m_{\mu\mu})$ | $\delta(	au_{\mu\mu})$ |
| 2 | $J/\psi$   | Non-prompt | $\omega_1 C B_1(m_{\mu\mu}) + (1 - \omega_1) G_1(m_{\mu\mu})$ | $E_1(\tau_{\mu\mu})$   |
| 3 | $\psi(2S)$ | Prompt     | $\omega_2 CB_2(m_{\mu\mu}) + (1 - \omega_2)G_2(m_{\mu\mu})$   | $\delta(	au_{\mu\mu})$ |
| 4 | $\psi(2S)$ | Non-prompt | $\omega_2 CB_2(m_{\mu\mu}) + (1-\omega_2)G_2(m_{\mu\mu})$     | $E_2(	au_{\mu\mu})$    |
| 5 | Background | Prompt     | F                                                             | $\delta(	au_{\mu\mu})$ |
| 6 | Background | Non-prompt | $E_3(m_{\mu\mu})$                                             | $E_4(	au_{\mu\mu})$    |
| 7 | Background | Non-prompt | $E_5(m_{\mu\mu})$                                             | $E_6( \tau_{\mu\mu} )$ |

| Collision type        | Sources         | Ground-state | Excited-state | Ratio |
|-----------------------|-----------------|--------------|---------------|-------|
|                       |                 | yield [%]    | yield [%]     | [%]   |
|                       | Luminosity      | 2.7          | 2.7           | _     |
| n Dh collisions       | Acceptance      | 1–4          | 1–4           | -     |
| <i>p</i> +ro consions | Muon reco.      | 1–2          | 1–2           | < 1   |
|                       | Muon trigger    | 4–5          | 4–5           | < 1   |
|                       | Charmonium fit  | 2–5          | 4–10          | 7–15  |
|                       | Bottomonium fit | 2–15         | 2–15          | 5-12  |
|                       | Luminosity      | 5.4          | 5.4           | -     |
| nn collisions         | Acceptance      | 1–4          | 1–4           | -     |
| <i>pp</i> consions    | Muon reco.      | 1–5          | 1–5           | < 1   |
|                       | Muon trigger    | 5–7          | 5–7           | < 1   |
|                       | Charmonium fit  | 2–7          | 4–10          | 7–11  |
|                       | Bottomonium fit | 1–15         | 2–15          | 5-12  |

#### $J/\psi$ elliptic flow in Pb-Pb Eur. Phys. J. C 78 (2018) 784

|   |            | · · · ·    |                                                                   |                                      |
|---|------------|------------|-------------------------------------------------------------------|--------------------------------------|
| i | Туре       | Source     | $f_i(m_{\mu\mu})$                                                 | $h_i(	au_{\mu\mu})$                  |
| 1 | Signal     | Prompt     | $\omega F_{\rm CB}(m_{\mu\mu}) + (1-\omega)F_{\rm G}(m_{\mu\mu})$ | $\delta(	au_{\mu\mu})$               |
| 2 | Signal     | Non-prompt | $\omega F_{\rm CB}(m_{\mu\mu}) + (1-\omega)F_{\rm G}(m_{\mu\mu})$ | $F_{\mathrm{E}_{1}}(	au_{\mu\mu})$   |
| 3 | Background | Prompt     | $F_{ m E_2}(m_{\mu\mu})$                                          | $\delta(	au_{\mu\mu})$               |
| 4 | Background | Non-prompt | $F_{\mathrm{E}_3}(m_{\mu\mu})$                                    | $F_{\mathrm{E}_4}(\tau_{\mu\mu})$    |
| 5 | Background | Non-prompt | $F_{ m E_5}(m_{\mu\mu})$                                          | $F_{\mathrm{E}_{6}}( 	au_{\mu\mu} )$ |



#### J/ $\psi$ and $\psi$ (2S) production cross sections at high p<sub>T</sub> at 13 TeV

# Fit Model

PDF(m,
$$\tau$$
) =  $\sum_{i=1}^{7} \kappa_i f_i(m) \cdot (h_i(\tau) \otimes R(\tau)) \cdot C_i(m, \tau).$ 

| i | Type       | P/NP  | $f_{\cdot}(m)$                          | $h(\tau)$          | $C(m,\tau)$         |   |          |                          |
|---|------------|-------|-----------------------------------------|--------------------|---------------------|---|----------|--------------------------|
|   | турс       | 1/111 | $J_{i}(m)$                              | $n_l(t)$           | $C_l(m, r)$         | - | Notation | Function                 |
| 1 | $J/\psi$   | Р     | $\omega G_1(m) + (1-\omega)CB_1(m)$     | $\delta(	au)$      | $BV(m, \tau, \rho)$ | : | G        | Gaussian                 |
| 2 | $J/\psi$   | NP    | $\omega G_1(m) + (1-\omega)CB_1(m)$     | $E_1(\tau)$        | 1                   |   |          | Crustel Dell             |
| 3 | $\psi(2S)$ | Р     | $\omega G_2(m) + (1-\omega)CB_2(m)$     | $\delta(\tau)$     | 1                   |   |          | Crystal Ball             |
| Δ | $\psi(2S)$ | ND    | $\omega G_2(m) + (1 - \omega) C B_2(m)$ | $E_{\alpha}(\tau)$ | 1                   |   | E        | Exponential              |
|   | $\psi(23)$ |       | $\omega G_2(m) + (1-\omega)CB_2(m)$     | $\frac{L_2(i)}{2}$ | 1                   | - | В        | Bernstein polynomials    |
| 5 | Bkg        | Р     | В                                       | $\delta(\tau)$     | 1                   |   | BV       | Correlation term of the  |
| 6 | Bkg        | NP    | $E_4(m)$                                | $E_5(\tau)$        | 1                   |   | 2.       | bivariate Gaussian dist  |
| 7 | Bkg        | NP    | $E_6(m)$                                | $E_7( \tau )$      | 1                   | - |          | bivariate Gaussian dist. |

#### $R(\tau)$ : Resolution Function

$$\mathsf{BV} \sim \exp\left[\frac{1}{2(1-\rho^2)}\left(\frac{(m-\mu_m)^2}{\sigma_m^2} - \frac{2\rho(m-\mu_m)(\tau-\mu_\tau)}{\sigma_m\sigma_\tau} + \frac{(\tau-\mu_\tau)^2}{\sigma_\tau^2}\right)\right]$$

 $J/\psi$  production in associated with a W boson at 8 TeV

Reconstruction efficiencies for W+J/ $\psi$  and inclusive W samples do not exactly cancel so correction applied

Acceptance depends on the unknown polarization of the J/ $\psi$ 

$$\frac{d^2N}{d\cos\theta^{\star}d\phi^{\star}} \propto 1 + \lambda_{\theta}\cos\theta^{\star 2} + \lambda_{\phi}\sin\theta^{\star 2}\cos2\phi^{\star} + \lambda_{\theta\phi}\sin2\theta^{\star}\cos\phi^{\star}$$

- 1. Isotropic (nominal):  $\lambda_{\theta} = \lambda_{\phi} = \lambda_{\theta\phi} = 0$
- 2. Longitudinal:  $\lambda_{\theta} = -1$ ,  $\lambda_{\varphi} = \lambda_{\theta\varphi} = 0$
- 3. Transverse-0:  $\lambda_{\theta} = +1$ ,  $\lambda_{\varphi} = \lambda_{\theta\varphi} = 0$
- 4. Transverse-M:  $\lambda_{\theta} = +1$ ,  $\lambda_{\phi} = -1$ ,  $\lambda_{\theta\phi} = 0$
- 5. Transverse-P:  $\lambda_{\theta} = \lambda_{\varphi} = +1$ ,  $\lambda_{\theta\varphi} = 0$

### Largest systematic uncertainty in measurement