Search for Dark Matter with early Belle II data

Enrico Graziani

INFN – Roma 3

on behalf of the Belle II Collaboration

OUTLINE OF THE TALK

- ✓ Belle II and SuperKEKB
- ✓ Search of Z' to invisible
- ✓ Search of ALP
- ✓ Search of the invisible dark photon
- ✓ Perspectives & Summary

18th INTERNATIONAL CONFERENCE ON B-PHYSICS AT FRONTIER MACHINES

Ljubljana, Slovenia September 30 - October 4, 2019

E. Graziani - Dark Matter search with Belle II - Beauty 2019

Belle II detector

E. Graziani - Dark Matter search with Belle II - Beauty 2019

Data taking plan

Phase 2: 2018

✓ Incomplete detector (1/8 VXD) Machine + experiment commissioning ✓ First physics data: \approx 500 pb⁻¹ ✓ First dark sector searches

Phase 3: 2019 →

✓ Physics run started on March 11 ✓ Complete detector ✓ 6.5 fb⁻¹ collected up to now ✓ Will continue 7-9 months/year

Belle II performance snapshots: Phase 2 kaons Entries/(0.01 GeV/c² Belle II 2018 35 30 $J/\psi \rightarrow ee$ Preliminary Entries/(0.6 MeV/c² 6000 $L dt = 250 \text{ pb}^{-1}$ Data Belle II 2018 (preliminary) 25 F pions 5000 L dt = 250 pb⁻¹ Fit 20 4000 15 $k_s \rightarrow \pi \pi$ 3000 $\mu = (497.159 \pm 0.013) \text{ MeV/c}^2$ 10 $\sigma = (3.462 \pm 0.075) \text{ MeV/c}^2$ 2000 CDC dE/dx 1000 3.1 3.2 10^{-1} $M(e^+e^-)$ (GeV/c²) 0 0.47 0.48 0.49 0.5 0.51 0.52 **60**⊢ $m(\pi^+\pi^-)$ (GeV/c²) muonID>0.001 **Belle II** 2018 Preliminary B[±]->D(Kπ K3π Kππ⁰ KK K π B[±]->D(Kπ, K3π)α 50 B[±]->D^{*0}(Kπ, K3π)π[±] Entries / (0.001 GeV/c² Belle II

1.5

1.0

0.5

0.0

0.08

2018 (Preliminary)

0.10

0.12

0.14

🕂 Data

protons

deuterons

Searching for dark matter

Dark matter/mediators

arXiv: 1707.04591

E. Graziani - Dark Matter search with Belle II - Beauty 2019

 $e^+e^- \rightarrow \mu^+\mu^- + missing \, energy$

Look for bumps in recoil mass against a $\mu^+\mu^-$ pair

Main backgrounds:

$$e^+e^- \rightarrow \mu^+\mu^-(\gamma)$$

$$e^+e^- \rightarrow \tau^+\tau^-(\gamma), \ \tau^\pm \rightarrow \mu^\pm\nu\nu$$

$$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$$

Z' to invisible: $L_{\mu} - L_{\tau}$ model

- A new gauge boson which couples only to the 2° and 3° lepton family
- Invisible decay channel explored for the first time
- It may solve
 - dark matter puzzle
 Sterile v's
 Light Dirac fermions
 - ≻ (g-2)_µ
 - \succ B→K(^{*})µµ, R_κ, R_{κ*} anomalies

Z' to invisible: results

Phase 2 results

Only 276 pb⁻¹ usable due to trigger conditions

E. Graziani - Dark Matter search with Belle II - Beauty 2019

Systematics

Source	Error
Trigger efficiency	6%
Tracking efficiency	4%
PID	4%
Luminosity	1.5%
Background before $\boldsymbol{\tau}$ suppression	2%
τ suppression (background)	22%
Discrepancy in $\mu\mu$ yield (signal)	12.5%
will decrease with new data	

Z' to invisible: results

Phase 2 results

Only 276 pb⁻¹ usable due to trigger conditions

Projections

- Systematics down to 3%
- L_{int}=5, 50 ab⁻¹

E. Graziani - Dark Matter search with Belle II - Beauty 2019

E. Graziani - Dark Matter search with Belle II - Beauty 2019

Axion Like Particles (ALPs)

- Pseudo-scalars particles which couple to bosons
- No mass↔coupling relationship
- Focus on coupling to photons: $g_{a\gamma\gamma}$
- Alp-strahlung + photon fusion production mechanisms
- $\tau \sim 1 / g_{a\gamma\gamma}^2 m_a^3$
- No results at B factories yet

Axion Like Particles (ALPs): signal

ALPs can also decay to DM → single photon topology

Axion Like Particles (ALPs): sensitivity

Axion Like Particles (ALPs): sensitivity

Dark photon: introduction

P. Fayet, Phys. Lett. B **95**, 285 (1980),P.Fayet, Nucl. Phys. B **187**, 184 (1981)

- Paradigm of the vector portal extension of the SM
- Additional U(1)' \rightarrow new spin 1 gauge boson A'
- Couples to SM with kinetic mixing ε
- Couples to dark matter with strength α_{D}
- may acquire mass through Higgs or Stuckelberg mechanism

two basic scenarios depending on A' vs DM mass relationship

 $m_{A'} < 2m_{\gamma} \Rightarrow A'$ decays visibly to SM particles

 $m_{A'} > 2m_{\gamma} \Rightarrow A'$ decays $\approx 100\%$ invisibly to DM particles

Invisible dark photon: experimental signature

Invisible dark photon: sensitivity

Summary

- Belle II started operations in 2018 (Phase 2) with 0.5 fb⁻¹
- Successfull detector and machine commissioning
- -w. 's and F. Tenchini's talk see G. Mohanty's • Physics run (Phase 3) started in March: 6.5 fb⁻¹ collected up to now.
- Resonances, b-physics and charm physics «rediscovered»
- First physics results with Phase 2 data are coming

- ALP search Ready for box opening (Phase 2)
- Invisible dark photon search -

High priority in Phase 3 **Results expected by 2020**

Not even mentioned

- Y(1S) to invisible
- visible dark photon
- muonic dark force
- dark Higgstrahlung
- dark scalars

- Magnetic monopoles
- long-lived particles

We have ideas for measurements never done before. Theory/phenomenology inputs are very welcome

SPARE SLIDES

From KEKB to SuperKEKB

... For a 40x increase in intensity you have to make the beam as thin as a few x100 atomic layers

Belle II & SuperKEKB

Phase 2 Start of collisions: April 25th 2018

Phase 3 Start of collisions: March 25th 2019

Belle II & SuperKEKB

Phase 2 Start of collisions: April 25th 2018

Phase 3 Start of collisions: March 25th 2019

Z' to invisible: analysis

Z' to invisible: results

Axion Like Particles (ALPs): sensitivity

Invisible dark photon: backgrounds

Invisible dark photon: sensitivity

BaBar, 50 fb⁻¹ Phys. Rev. Lett 119, 131804 (2017)

Visible dark photon: sensitivity

