Measurement of CP violating phase ϕ_s at CMS

PCP violating phase in B_s mesons decays arises from interference between direct B_s $\rightarrow J/\psi \phi$ decay amplitude with its mixed amplitude.

Standard Model prediction

• $\phi_s = -2\beta_s + P \sim 2 \arg(V_{ts} V_{tb}^*/V_{cs} V_{cb}^*) = -(0.0370 \pm 0.0006)$

[CKMfitter, Phys. Rev. D84, 033005 (2011), updated with <u>Summer 2016 results</u>] where β_s is the B_s unitarity CKM triangle CP violating phase and P the penguin (~0) contribution

Ingredients for a measurement

Time dependent angular analysis of differential decay rate

$$\frac{d^{4}\Gamma}{d\Theta d(t)} = f(\Theta, t, \alpha) \propto \sum_{i=1}^{10} \varepsilon(\Theta)\varepsilon(t) \cdot \tilde{O}_{i}(\alpha, t) \cdot g_{i}(\Theta)$$
$$\tilde{O}_{i}(\alpha, t) = \int O_{i}(\alpha, t')R(t - t')dt'$$

Solution where O_i are time dependent functions, g_i are angular functions, and α a set of parameters, and R a the per-event resolution function

$$\alpha = \left\{ \Delta \Gamma_{\rm s}, c\tau, \phi_{\rm s}, \Delta m_{\rm s}, |A_0|^2, |A_\perp|^2, |A_\parallel|^2, |A_{\rm s}|^2, \delta_\parallel, \delta_\perp, \delta_{\rm S}, \delta_0 \right\}$$

$$O_{i}(\alpha,t) = N_{i}e^{-ict/c\tau} \left[a_{i}\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \frac{b_{i}}{2}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + c_{i}\xi(1-2\omega)\cdot\cos(\Delta m_{s}t) + \frac{d_{i}\xi(1-2\omega)}{2}\cdot\sin(\Delta m_{s}t) \right]$$

Where ξ=0,±1 if tag is present or not, and ω is the fraction of mistagged events
•Untagged events also contribute!

 \bigcirc b_i and d_i coefficients are sensitive to $\cos(\phi_s)$ and $\sin(\phi_s)$

Reconstruction

Flavour tagging

Opposite side muons and electrons

 $p_T(\mu)>2.2 \text{ GeV}; p_T(e)>2.0 \text{ GeV}$

 $\square \Delta R(B_s,\mu) > 0.3; \Delta R(B_s,e) > 0.2$

MLP-NN from TMVA toolkit based on simulated MC events (24K per each lepton) separates right- and wrong-tagged events

Solution \mathbb{Q} Use self-tagged 700k B[±] $\rightarrow J/\psi K^{\pm}$ events to obtain mistag probabilities in data

Fitting

- Angular efficiencies and resolutions from MC simulation
 - Secolutions not included in fit model
 - \bigcirc Efficiencies $\varepsilon(\boldsymbol{\Theta}) = \varepsilon(\cos\psi_T, \cos\vartheta_T, \varphi_T)$ used in the fit
 - Efficiency for proper decay-length (PDL) uniform between 0.02 and 3 cm
 - \bigcirc Average PDL uncertainty 23.4 μ m (78 fs)
 - Systematic uncertainties due to angular resolutions and deviations from flat PDL efficiency taken as systematics
- \mathbf{G} Multidimensional fit to ϕ_{s} to mass & angular functions
 - - f (ct, α , θ , ξ)decay rate function
 - G (ct, σ_{ct}) per-event PDL resolution function
 - $\varepsilon(\boldsymbol{\theta})$ angular efficiency function
 - P_s(M_{Bs}) Mass pdf for B_s signal
 - $P_s(\sigma_{ct})$ proper decay length error pdf for B_s signal
 - $P_s(\xi)$ tag decision pdf for B_s signal
 - \bigcirc L total = L signal + L background

Fit results

Systematics and results

Source of uncertainty	$\phi_{ m s}\left[{ m rad} ight]$	$\Delta\Gamma_{\rm s}[{\rm ps}^{-1}]$	$ A_0 ^2$	$ A_{S} ^{2}$	$ A_{\perp} ^2$	δ_{\parallel} [rad]	$\delta_{S\perp}$ [rad]	δ_{\perp} [rad]	$c\tau [\mu { m m}]$
PDL efficiency	0.002	0.0057	0.0015	-	0.0023	-	-	-	1.0
Angular efficiency	0.016	0.0021	0.0060	0.008	0.0104	0.674	0.14	0.66	0.8
Kaon p_T weighting	0.014	0.0015	0.0094	0.020	0.0041	0.085	0.11	0.02	1.1
PDL resolution	0.006	0.0021	0.0009	-	0.0008	0.004	-	0.02	2.9
Mistag distribution modelling	0.004	0.0003	0.0006	-	-	0.008	0.01	-	0.1
Flavour tagging	0.003	0.0003	-	-	-	0.006	0.02	-	-
Model bias	0.015	0.0012	0.0008	-	-	0.025	0.03	-	0.4
pdf modelling assumptions	0.006	0.0021	0.0016	0.002	0.0021	0.010	0.03	0.04	0.2
$ \lambda $ as a free parameter	0.015	0.0003	0.0001	0.005	0.0001	0.002	0.01	0.03	-
Tracker alignment	-	-	-	-	-	-	-	-	1.5
Total systematic uncertainty	0.031	0.0070	0.0114	0.022	0.0116	0.680	0.18	0.66	3.7
Statistical uncertainty	0.097	0.0134	0.0053	0.008	0.0075	0.081	0.17	0.36	2.9

Run 2 conditions

Pro's:

- Higher c.o.m energy (13 TeV instead of 8 TeV), ~x2 cross-section
- •Upgraded pixel detector since 2017: Lower material budget and closer to beam pipe
- Con's:
 - Higher pileup: trigger thresholds need to be raised or new triggers to be implemented, and more combinatorics

Decay length resolution improvement

HL-LHC ϕ_s prospects - I

New Tracker system

 \bigcirc Less material budget, L1 track reconstruction for p_T>2 GeV

Improved muon system

Extended forward coverage, better timing and trigger capabilities

Timing detector

 \odot Offers capabilities to discriminate pileup and some K/ π separation up to ~ 2-3 GeV

Conclusions

- \bigcirc CMS measured the weak phase ϕ_s with 19.7 fb⁻¹ of data at $\sqrt{s}=8$ TeV
 - The measurement is in agreement with the Standard Model prediction
- Currently working on Run-II data
 - Increased statistics
 - Improved proper time resolution thanks to better pixel detector
- \bigcirc HL-LHC reach will be statistically limited ~ 5 mrad

Beauty 2019 - Ljubljana