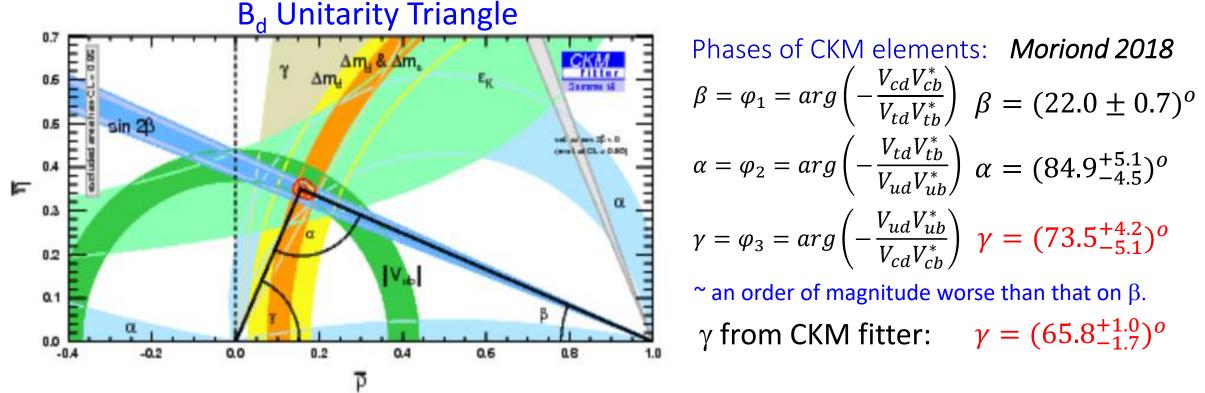
## Quantum-correlated DD̄ inputs to CKM angle γ from BESIII



18<sup>th</sup> International Conference on B-Physics at Frontier Machines, Ljubljana, Slovenia, September 30–Octobor 4, 2019

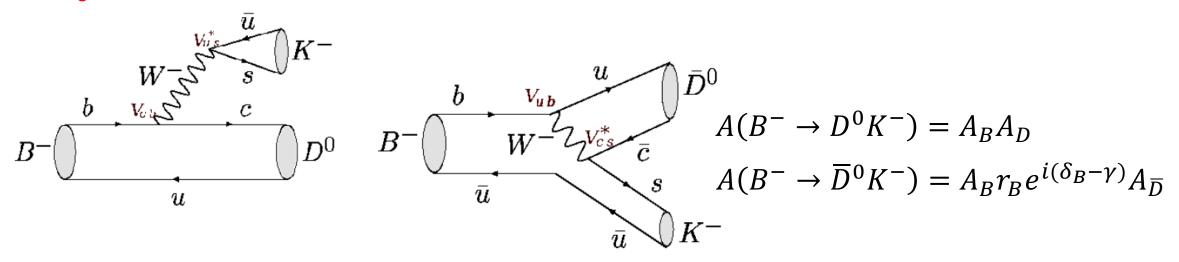


#### □ Introduction


#### **Quantum correlated studies**

#### **Summary**

#### Introduction


 $\Box \gamma/\phi_3$  is the only CKM angle that can be measured in tree-level processes, in which the contribution of non-SM effects is expected to be small [JHEP 01(2014)051].

 $\Box$  Measurement of  $\gamma$  provides a benchmark of the SM with negligible theoretical uncertainty.



The current world-average of γ deviates the indirect determination from CKM fitter by ~1.5σ.
 Clearly, an improved knowledge of the measurement of γ is important to further test the SM and probe for new physics.

 $\Box \gamma/\phi_3$  can be measured by studying the interference between  $B^- \rightarrow D^0 K^-$  and  $B^- \rightarrow \overline{D}^0 K^-$ 



where  $r_{\rm B}$  is ratio of suppressed to favored amplitudes,  $\delta_{\rm B}$  is the strong-phase difference between the favoured and suppressed amplitudes.

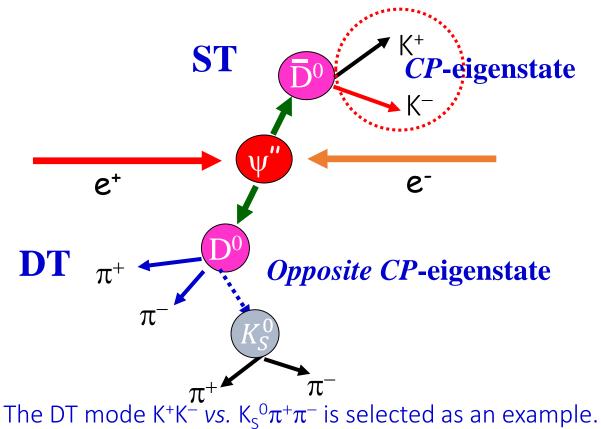
#### $\Box$ Generally, three methods were proposed to measure $\gamma/\phi_3$ :

- ✓ GLW <sup>[1]</sup>: via D<sup>0</sup>→CP eigenstate, K<sup>+</sup>K<sup>-</sup>,  $\pi^+\pi^-$ , K<sub>S</sub><sup>0</sup> $\pi^0$  etc.
- ✓ ADS <sup>[2]</sup>: via D<sup>0</sup>→CF and DCS, such as K<sup>+</sup> $\pi^-$ , K<sup>+</sup> $\pi^-\pi^0$ , K<sup>+</sup> $\pi^-\pi^-\pi^+$  etc.
- ✓ GGSZ <sup>[3]</sup>: via with D<sup>0</sup>→Multi-body self-conjugate decays,  $K_s^0 \pi^+ \pi^-$  etc.

Measurements from strong phases are key inputs.

For GGSZ:  $d\Gamma(B^{\pm} \rightarrow DK^{\pm}) = |\mathcal{A}_D|^2 + r_B^2 |\mathcal{A}_{\bar{D}}|^2 + 2r_B |\mathcal{A}_D| |\mathcal{A}_{\bar{D}}| \times [\cos\Delta\delta_D \cos(\delta_B \pm \phi_3) + [\sin\Delta\delta_D \sin(\delta_B \pm \phi_3)]$ 

[1] M. Gronau, D. London, Phys. Lett. B 253, 483 (1991); M. Gronau, D. Wyler, Phys. Lett. B 265, 172 (1991).
[2] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).
[3] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).

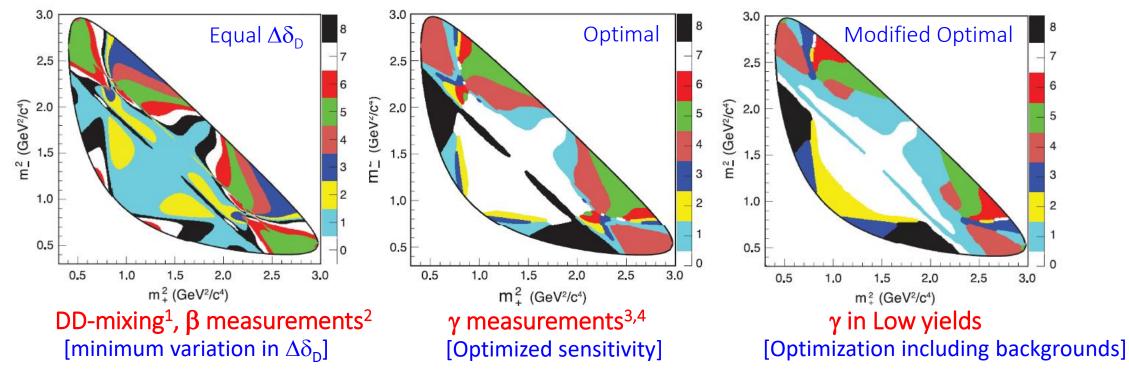

## The Quantum Correlated DD meson pairs

 $\Box \psi$ (3770) is a spin -1 state and therefore the amplitude of  $\psi$ (3770) $\rightarrow D^0 \overline{D}^0$ :

 $(|D^0\rangle|\overline{D^0}\rangle - |\overline{D^0}\rangle|D^0\rangle)/\sqrt{2}$  [anti-symmetric wave function]

The amplitude for two D mesons to decay to states F and G is [D. Atwood and A. Soni, PRD68, 033003 (2003)]:  $\Gamma(F|G) = \Gamma_0 \left[ A_F^2 \bar{A}_G^2 + \bar{A}_F^2 A_G^2 - 2R_F R_G A_F \bar{A}_F A_G \bar{A}_G \cos[\delta_D^F - \delta_D^G] \right]$ 

The coherence factors  $R_{\rm F}$  the strong-phase difference (or the related parameters)  $\delta_{\rm D}^{\rm F}$ , can be extracted based on the study of the quantum correlated DD meson pairs.

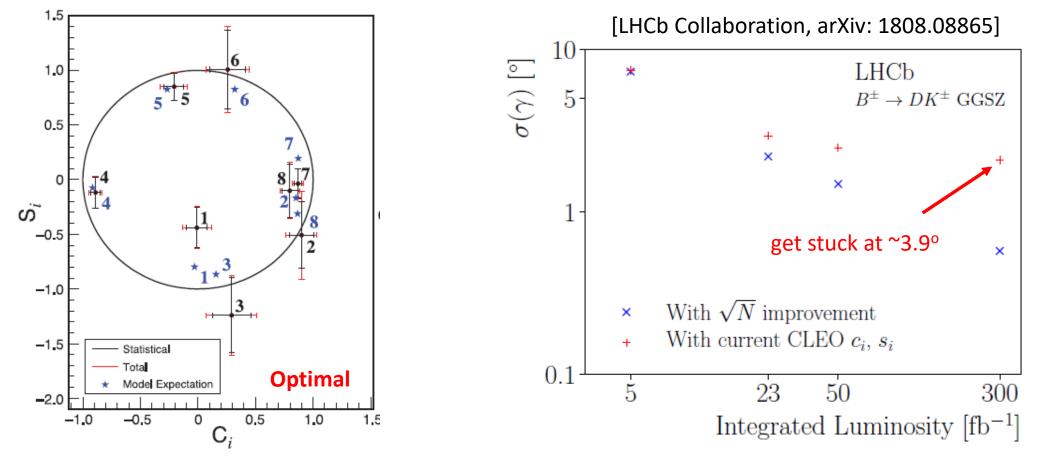



- Single tag (ST) samples:
   decay products of only one D meson are reconstructed
- ✓ Double tag (DT) samples:
   decay products of both D mesons are
   reconstructed
- ✓ Some typical reconstructed D decay modes

 ✓ Using this method, CLEO had performed lots of important and excellent measurements related to strong phases.

## Strong-phase parameters in $D \rightarrow K_S^{0} \pi^+ \pi^-$

Three typical binning schemes [J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82,112006 (2010)]

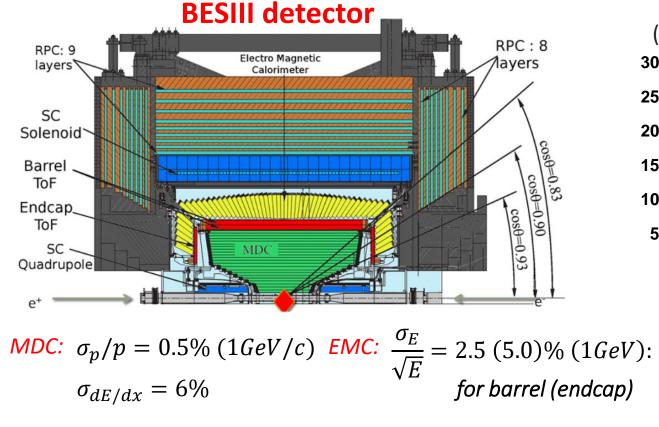


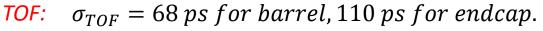

✓ "BaBar K-matrix"  $D^0 \rightarrow K_s^0 \pi^+ \pi^-$  model as in Ref. [Phys. Rev. D 78, 034023 (2008)].

It should be noted that although the choice of binning is model-dependent, however, a poor choice of model results only in a loss of precision, instead of bias in measuring γ/φ<sub>3</sub>.
 [1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 231802 (2019); JHEP 04(2016) 033.
 [2] V. Vorobyev et al. (Belle Collaboration), Phys. Rev. D 94, 052004 (2016).
 [3] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 718, 43 (2012); JHEP 10 (2014) 097; JHEP 06 (2016) 131; JHEP 08 (2018) 176.
 [4] H. Aihara et al. (Belle Collaboration), Phys. Rev. D 85, 112014 (2012).

## Strong-phase parameters in $D \rightarrow K_{S/L}^{0} \pi^{+} \pi^{-}$

✓ Results of  $c_i$  and  $s_i$  in optimal binning from CLEO experiments.





The systematic uncertainty in measurement of γ due to input strong-phase parameters is 3.9° for optimal binning. The overall sensitivity is limited to ~3.9° for model-independent GGSZ approach.
 Therefore, improved measurements in c<sub>i</sub> & s<sub>i</sub> from BESIII are essential for degree-level precision of measuring γ via model-independent GGSZ approach.


# $\psi(3770) \rightarrow D^0 \overline{D}^0$ samples at BESIII

Uncertainty of strong-phase inputs from CLEO-c contribute ~2° to γ, and will be comparable with the experimental statistical uncertainty at LHCb-Run2.

 $\Box$  BESIII is only machine running at  $\tau$ -charm energy region. Related quantum-correlated studies are key to constrain the  $\gamma$  measurement at LHCb upgrades 1(2) and Belle II.







 ✓ Good performance of BESIII detector: high tracking & PID efficiencies, high purity samples

8

🖌 Largest  $\psi$ (3770) data sample

## Strong-phase parameters in D $\rightarrow K_{S/L}^{0}\pi^{+}\pi^{-}$ at BESIII

 $\Box \psi(3770)$  is a spin -1 state and therefore the amplitude of  $\psi(3770) \rightarrow D^0 D^0$ :

 $(|D^0\rangle|\overline{D^0}\rangle - |\overline{D^0}\rangle|D^0\rangle)/\sqrt{2}$  [anti-symmetric wave function]

✓ For CP-tagged  $K_s^0 \pi^+ \pi^-$ , its amplitude is expressed by:

$$f_{CP\pm} = \frac{1}{\sqrt{2}} [f_D(m_+^2, m_-^2) \pm f_D(m_-^2, m_+^2)]$$

The expected yields in Dalitz Plot (DP) bins:

$$\implies M_i^{\pm} = h_{CP\pm}(K_i \pm 2c_i \sqrt{K_i K_{-i}} + K_{-i})$$

✓ Similarly, for  $K_s^0 \pi^+ \pi^- vs$ .  $K_s^0 \pi^+ \pi^-$ , the expected yields in DP bins is:  $K_s^0 \pi^+ \pi^- vs$ . CP-tag &

$$\implies M_{ij} = h_{corr} [K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j)]$$

c<sub>i</sub>&s<sub>i</sub> are obtained by studying DT events:  $K_s^0\pi^+\pi^- vs. CP$ -tag &  $K_s^0\pi^+\pi^- vs. K_s^0\pi^+\pi^- tags$ 

Here  $h_{cp\pm}$  and  $h_{corr}$  are the normalization factors related to yields of single tags and the number of neutral D meson pairs. From above equations, the precision on  $s_i$  is limited by yield of  $K_s^0 \pi^+ \pi^-$ .vs.  $K_s^0 \pi^+ \pi^-$ .

## Measurements of strong-phase parameters c<sub>i</sub><sup>(')</sup> & s<sub>i</sub><sup>(')</sup> at BESIII

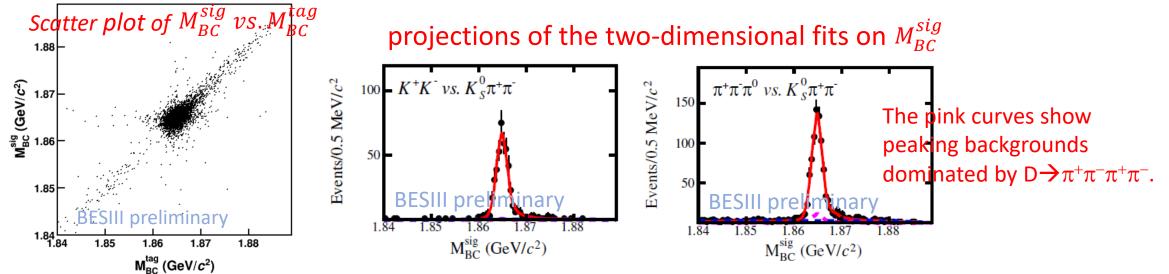
□ To improve the precision of measuring  $s_i$ , the  $K_s^0 \pi^+ \pi^- vs$ .  $K_L^0 \pi^+ \pi^-$  events are added, which is dependent on ( $c_i$ ,  $s_i$ ,  $c_i'$  and  $s_i'$ ). Due to similarities between the decays, weak model assumptions<sup>[1,2,3]</sup> can provide a constraint on the differences between  $c_i$  and  $c_i'$ ,  $s_i$  and  $s_i'$ .

$$K_{S}^{0}\pi^{+}\pi^{-} vs. K_{L}^{0}\pi^{+}\pi^{-} \quad M_{ij}' = h_{corr}' \left[ K_{i}K_{-j}' + K_{-i}K_{j}' + 2\sqrt{K_{i}K_{-j}'K_{-i}K_{j}'}(c_{i}c_{j}' + s_{i}s_{j}') \right]$$
  
CP tag vs.  $K_{L}^{0}\pi^{+}\pi^{-} \quad M_{i}'^{\pm} = h_{CP\pm}' (K_{i}' \mp 2c_{i}'\sqrt{K_{i}'K_{-i}'} + K_{-i}')$ 

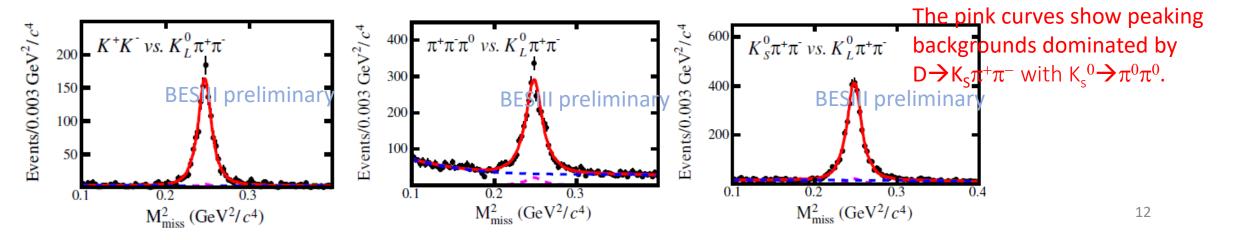
- □ The c<sub>i</sub>' and s<sub>i</sub>' parameters are useful for Belle-II experiment if they use the decay mode B→DK, with D→K<sub>L</sub><sup>0</sup> $\pi^+\pi^-$  to measure  $\gamma$ .
- □ The strong-phase parameters are obtained by minimizing the log-likelihood function constructed by using the observed and expected yields.

[1] R. A. Briere et al. (CLEO Collaboration), Phys. Rev. D 80, 032002 (2009).
[2] J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82, 112006 (2010).
[3] I.I.Bigi and H. Yamamoto, Phys. Lett. B 349, 363 (1995).

#### **Beam-constrained mass distributions**

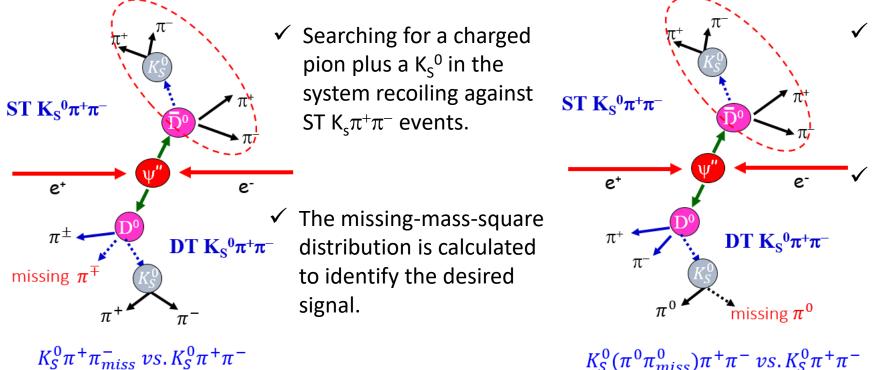



✓ D→ $\pi^+\pi^-\pi^0$  is not fully CP-even and the corrections for the decay is always applied. ✓ The fractional *CP*-even content of D→ $\pi^+\pi^-\pi^0$ : F<sub>+</sub><sup> $\pi^+\pi^-\pi^0$ </sup>=0.973±0.017 [PLB747, 9 (2015)].


11

## DT samples of $D \rightarrow K_S \pi^+ \pi^-$ and $D \rightarrow K_L \pi^+ \pi^-$

✓ The fully reconstructed DT  $K_s \pi^+ \pi^-$  events are obtained by searching for the  $K_s \pi^+ \pi^-$  signals in the recoiling system of fully-reconstructed ST events.

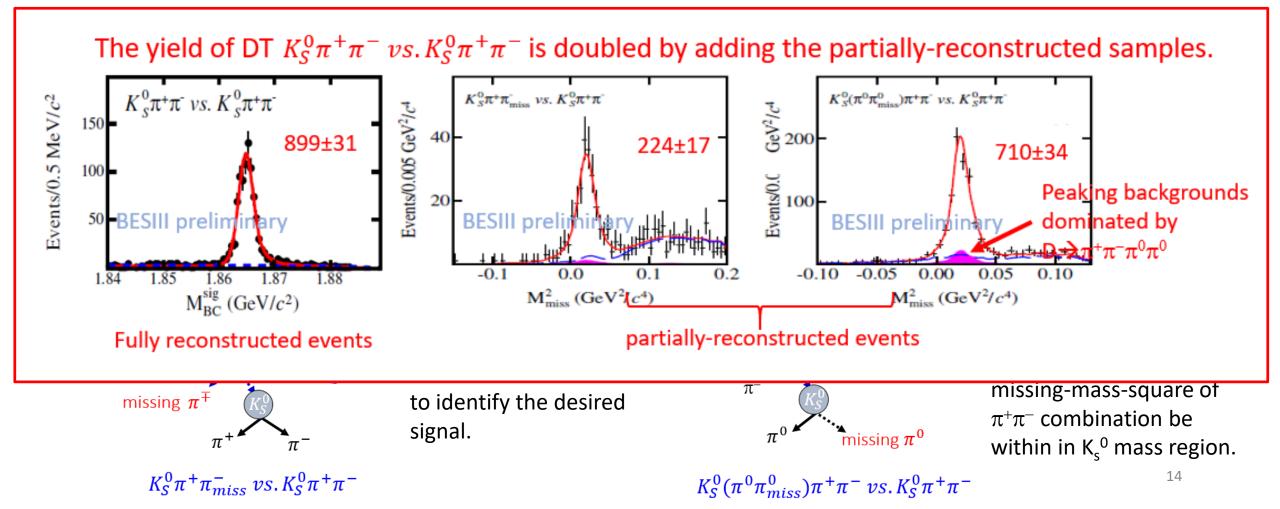



✓ DT events containing  $K_L^0$  particles are identified via kinematic variable missing-mass-square ( $M^2_{miss}$ ).



## DT samples of $K_S \pi^+ \pi^- vs. K_S \pi^+ \pi^-$

- ✓ To increase the sensitivity of measuring  $s_i$ , the partially-reconstructed  $K_S^0 \pi^+ \pi^- vs. K_S^0 \pi^+ \pi^$ events are introduced into analysis to increase the yield of  $K_S^0 \pi^+ \pi^- vs. K_S^0 \pi^+ \pi^-$  events.
- ✓ Two partially reconstructed samples are selected at BESIII.
  - 1) Missing a charged pion originating from D<sup>0</sup>, denoted as  $K_S^0 \pi^+ \pi_{miss}^- vs. K_S^0 \pi^+ \pi^-$
  - 2) Missing a neutral pion originating from  $K_S^0 \rightarrow \pi^0 \pi^0$ , denoted as  $K_S^0 (\pi^0 \pi_{miss}^0) \pi^+ \pi^- vs. K_S^0 \pi^+ \pi^-$




- identifying  $\pi^+\pi^-$  from D<sup>0</sup> decays and a  $\pi^0$  unused in ST reconstruction, in the system recoiling against ST  $K_s\pi^+\pi^-$  events.
- ✓ the peaking π<sup>+</sup>π<sup>−</sup>π<sup>0</sup>π<sup>0</sup> background are suppressed by requiring missing-mass-square of π<sup>+</sup>π<sup>−</sup> combination be within in K<sub>s</sub><sup>0</sup> mass region.

#### Distributions of DT $K_S \pi^+ \pi^- vs$ . $K_S \pi^+ \pi^- events$

✓ To increase the sensitivity of measuring  $s_i$ , the partially-reconstructed  $K_S^0 \pi^+ \pi^- vs. K_S^0 \pi^+ \pi^$ events are introduced into analysis to increase the yield of  $K_S^0 \pi^+ \pi^- vs. K_S^0 \pi^+ \pi^-$  events.

✓ Two partially reconstructed samples are selected at BESIII.

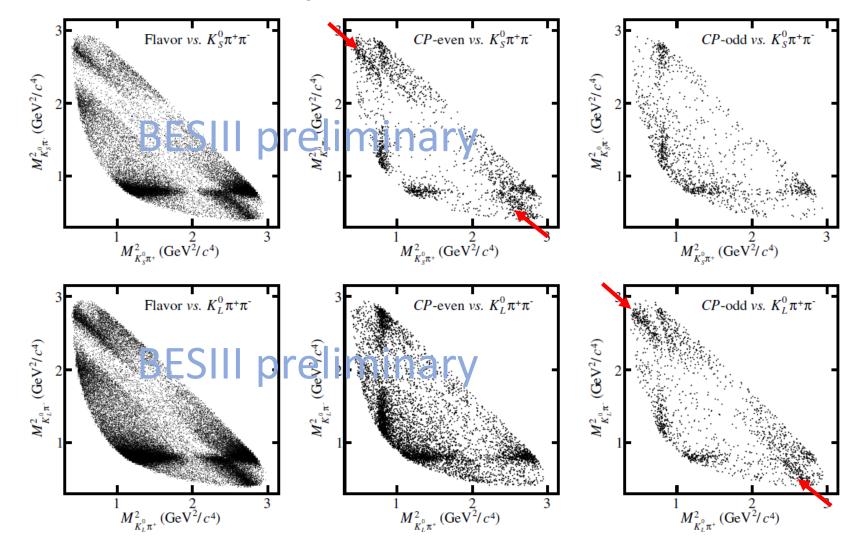


#### Comparisons of DT events between BESIII and CLEO

|                                                      | BESIII [signal yields]                    |                                           | CLEO [raw yields]                           |                                           |              |
|------------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------|--------------|
| Mode                                                 | $N_{K_{S}^{0}\pi^{+}\pi^{-}}^{\text{DT}}$ | $N_{K_{L}^{0}\pi^{+}\pi^{-}}^{\text{DT}}$ | $N_{K_{S}^{0}\pi^{+}\pi^{-}}^{\mathrm{DT}}$ | $N_{K_{L}^{0}\pi^{+}\pi^{-}}^{\text{DT}}$ | $\checkmark$ |
| Flavor tags                                          |                                           | Ľ                                         | 5                                           | L                                         | B            |
| $K^+\pi^-$                                           | $4740\pm71$                               | $9511 \pm 115$                            | 1444                                        | 2857                                      |              |
| $K^+\pi^-\pi^0$                                      | $8899 \pm 95$                             | $19225 \pm 176$                           | 2759                                        | 5133                                      | $\checkmark$ |
| $K^+\pi^-\pi^-\pi^+$                                 | $5695 \pm 78$                             | $11906 \pm 132$                           | 2240                                        | 4100                                      | C            |
| $K^+e^-\bar{\nu}_e$                                  | $4123\pm75$                               |                                           | 1191                                        |                                           |              |
| CP-even tags                                         |                                           |                                           |                                             |                                           | С            |
| $K^+K^-$                                             | $443 \pm 22$                              | $1289 \pm 41$                             | 124                                         | 357                                       |              |
| $\pi^+\pi^-$                                         | $184 \pm 14$                              | $531 \pm 28$                              | 61                                          | 184                                       |              |
| $K_{S}^{0}\pi^{0}\pi^{0}$                            | $198 \pm 16$                              | $12 \pm 35$                               | 56                                          | <u>nev</u>                                | v modes      |
| $\pi^+\pi^-\pi^0$                                    | $790 \pm 31$                              | $2571 \pm 74$                             |                                             |                                           |              |
| $K_L^0 \pi^0$                                        | $913 \pm 41$                              | e la  | 237                                         |                                           |              |
| CP-odd tags                                          |                                           |                                           |                                             |                                           |              |
| $K_S^0 \pi^0$                                        | $643 \pm 26$                              | $861 \pm 46$                              | 189                                         | 288                                       |              |
| $K^0_S \eta_{\gamma\gamma}$                          | $89 \pm 10$                               | $105 \pm 15$                              | 39                                          | 43                                        |              |
| $K^{0}_{S}\eta_{\pi^{+}\pi^{-}\pi^{0}}$              | $23 \pm 5$                                | $40 \pm 9$                                |                                             |                                           |              |
| $\kappa_{\bar{q}}\omega$                             | $245 \pm 17$                              | $321 \pm 25$                              | 83                                          |                                           |              |
| $K_{S}^{0}\eta'_{\pi^{+}\pi^{-}\eta}$                | $24 \pm 6$                                | $38 \pm 8$                                |                                             |                                           |              |
| $K_{S}^{0}\eta'_{\gamma\pi^{+}\pi^{-}}$              | $81 \pm 10$                               | $120\pm14$                                |                                             |                                           |              |
| $K^0_S \eta'_{\gamma\pi^+\pi^-} \ K^0_L \pi^0 \pi^0$ | $620 \pm 32$                              |                                           |                                             |                                           |              |
| Mixed <i>CP</i> tags                                 |                                           |                                           |                                             |                                           |              |
| $K_S^0 \pi^+ \pi^-$                                  | $899\pm31$                                | $3438\pm72$                               | 473                                         | 1201                                      |              |
| $K_S^0 \pi^+ \pi_{\rm miss}^-$                       | $224\pm17$                                |                                           |                                             |                                           |              |
| $K_S^0(\pi^0\pi_{\rm miss}^0)\pi^+\pi^-$             | $710 \pm 34$                              |                                           |                                             |                                           |              |

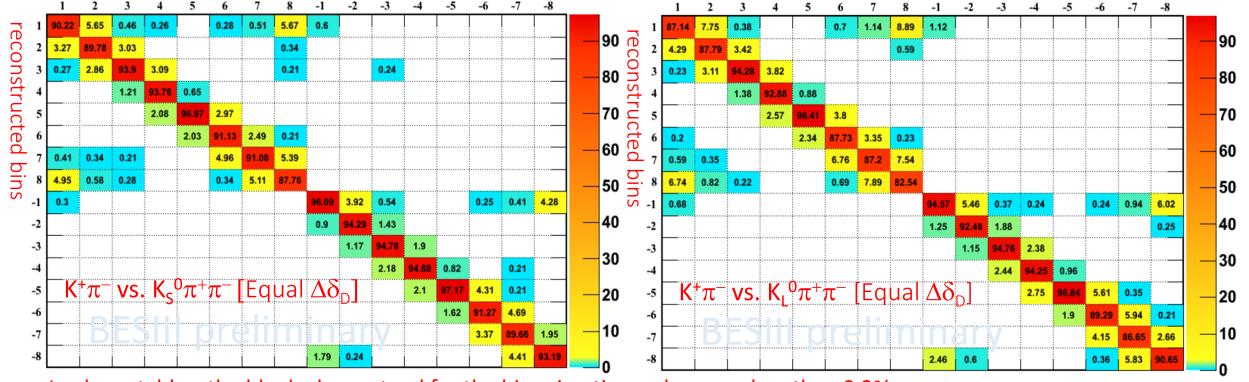
✓ More tag decay modes are used in BESIII analysis.

 ✓ DT events detected at BESIII and comparisons with CLEO [J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82,112006 (2010)]:


 $CP - eigenstate \ vs. K_{S}^{0}\pi^{+}\pi^{-}: 5.3 \times CLEO$   $CP - eigenstate \ vs. K_{L}^{0}\pi^{+}\pi^{-}: 9.2 \times CLEO$   $K_{S}^{0}\pi^{+}\pi^{-} \ vs. K_{S}^{0}\pi^{+}\pi^{-}: 3.9 \times CLEO$   $K_{L}^{0}\pi^{+}\pi^{-} \ vs. K_{S}^{0}\pi^{+}\pi^{-}: 2.9 \times CLEO$ 

✓ "− –" stands for unused mode in CLEO analysis.

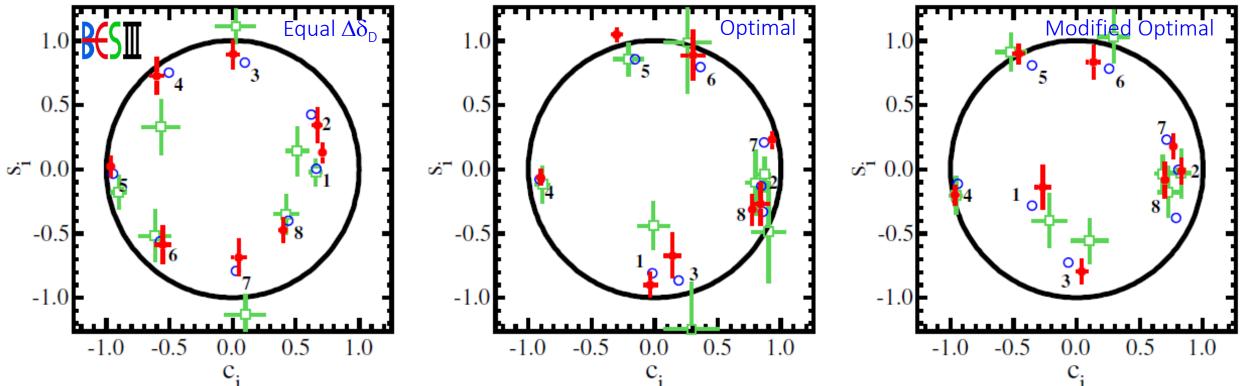
#### Dalitz plots observed in data


The effect of quantum correlation is immediately seen in Dalitz plots.

✓ The CP-odd component  $K_s^0 \rho$ (770)<sup>0</sup> is visible in CP-even tagged  $K_s^0 \pi^+ \pi^-$  decays, but is absent in CP-odd tagged  $K_s^0 \pi^+ \pi^-$  decays.



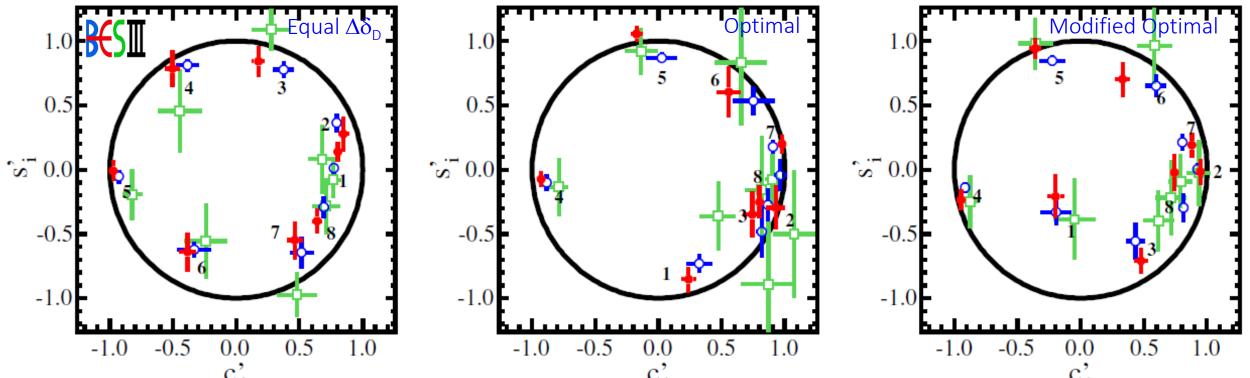
## **Bin migration effects**


- The finite detector resolution can cause some of the selected events to migrate between Dalitz plot bins after reconstruction.
- Due to the irregular shape of binning, the bin migrations in different bins could differ greatly. This effects can be evaluated by studying the efficiency matrix obtained from the simulated data.
   True bins from bin +1 to bin -8



In above tables, the blank places stand for the bin migrations where are less than 0.2%.

Due to the difference of resolutions (0.0068 GeV<sup>2</sup>/c<sup>4</sup> for D→K<sub>S</sub><sup>0</sup>π<sup>+</sup>π<sup>-</sup> and 0.0105 GeV<sup>2</sup>/c<sup>4</sup> for D→K<sub>L</sub><sup>0</sup>π<sup>+</sup>π<sup>-</sup>), the effects of bin migrations across bins ranges from (3-12)% for K<sub>S</sub>ππ and (3-18)% for K<sub>L</sub>ππ, respectively.
 Neglecting bin migration leads to ~0.7(0.3)×σ<sub>stat</sub> deviation in the measurement of ci(si).


#### The preliminary strong-phase parameters



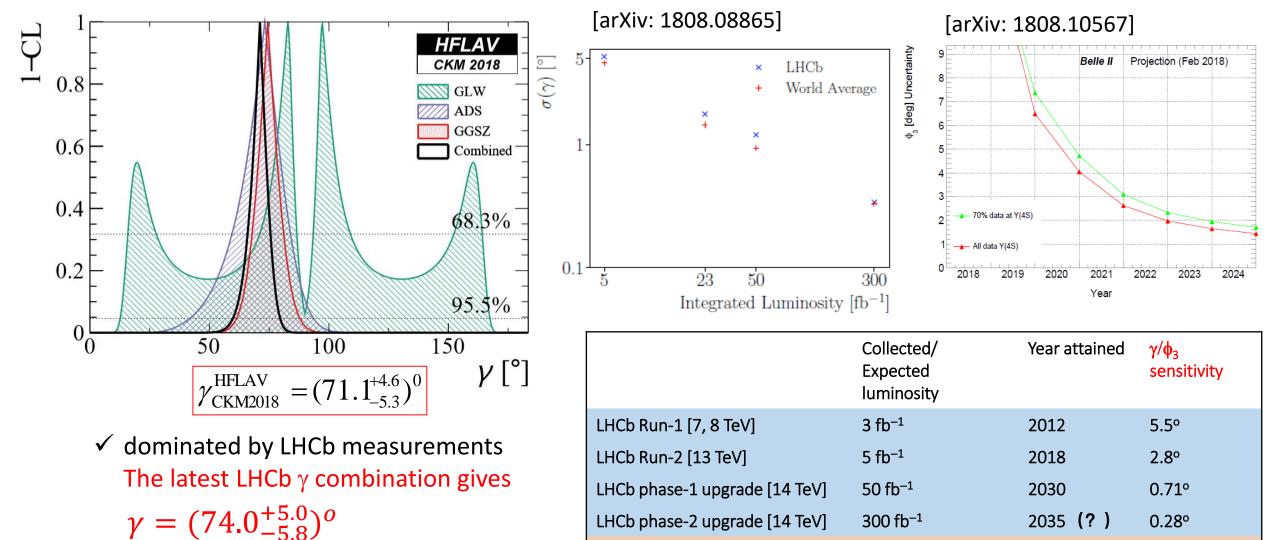
The c<sub>i</sub> and s<sub>i</sub> measured in this work (red dots with error bars), the expected results from Ref. [I. Adachi *et al.* (BaBar and Belle Collaborations), Phys. Rev. D 98, 110212 (2018)] (blue open circles) and the CLEO results (green open squares with error bars) [J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82,112006 (2010)]. The strong-phase parameters are limited by statistical errors.

- The strong-phase parameters are infinited by statistical errors.
   There is no single dominant systematic uncertainty in measurement of
- ✓ There is no single dominant systematic uncertainty in measurement of c<sub>i</sub> & s<sub>i</sub>.
   ✓ on average a factor of ~2.5 (2.0) more precise for c<sub>i</sub> (s<sub>i</sub>) than CLEO measurements.
- ✓ Using BESIII results, the associated uncertainty on  $\gamma/\phi_3$  is expected to be approximately a factor of three smaller than that from CLEO analysis, if using an analysis of B<sup>-</sup>→DK<sup>-</sup>, D→K<sub>S</sub><sup>0</sup> $\pi^+\pi^-$ .

#### The preliminary strong-phase parameters



The c'<sub>i</sub> and s'<sub>i</sub> measured in this work (red dots with error bars), the expected results from Ref. [1. Adachi *et al.* (BaBar and Belle Collaborations), Phys. Rev. D 98, 110212 (2018)] (blue open circles) and the CLEO results (green open squares with error bars) [J. Libby et al. (CLEO Collaboration), Phys. Rev. D 82,112006 (2010)].


- ✓ The strong-phase parameters are limited by statistical errors.
- ✓ There is no single dominant systematic uncertainty in measurement of  $c_i^{'} \& s_i^{'}$ .
- ✓ on average a factor of ~2.8 (2.2) more precise for  $c'_i$  (s'<sub>i</sub>) than CLEO measurements.
- ✓ The improved precision on c'<sub>i</sub> and s'<sub>i</sub> are important for Belle-II experiment in γ measurement, if using an analysis of B<sup>-</sup>→DK<sup>-</sup>, D→K<sup>0</sup><sub>L</sub>π<sup>+</sup>π<sup>-</sup>.

## Summary

- BESIII is an unique experiment which is the only machine running at  $\tau\text{-charm}$  factory.
- The largest  $\psi(3770)$  data can be used to improve the measurements of strongphase parameters, which provide the key inputs in ranges of  $\gamma$  measurements,  $D^0D^0$  mixing and CPV studies.
- Studies in  $D \rightarrow K_{S/L} \pi^+ \pi^-$  show excellent preliminary results. These results will have important impacts over a wide range studies in flavour physics.
- A range of quantum-correlated studies are undergoing at BESIII.
- More 10 fb<sup>-1</sup>  $\psi$ (3770) data has been proposed to collect in next few years.

# THANKS

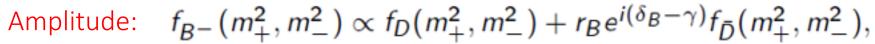
## Status and prospects of $\gamma$ measurements

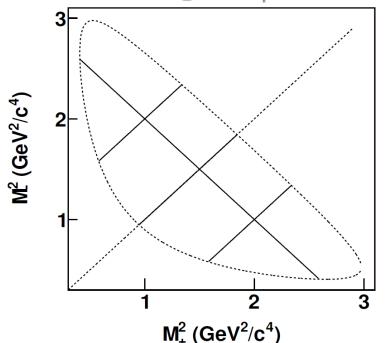


**Belle-II Run** 

✓ The degree-level precision on  $\gamma$  can be expected in near future.




In above table, sensitivity from LHCb is obtained by scaling Run-I statistical error. 22


2025

1.5°

50 ab<sup>-1</sup>

- ✓ GGSZ approach [A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018] :
  - $B^{-} \rightarrow D^{0}K^{-}$  with  $D^{0} \rightarrow Multi-body$  self-conjugate decays,  $K_{s}^{0}\pi^{+}\pi^{-}$  etc.



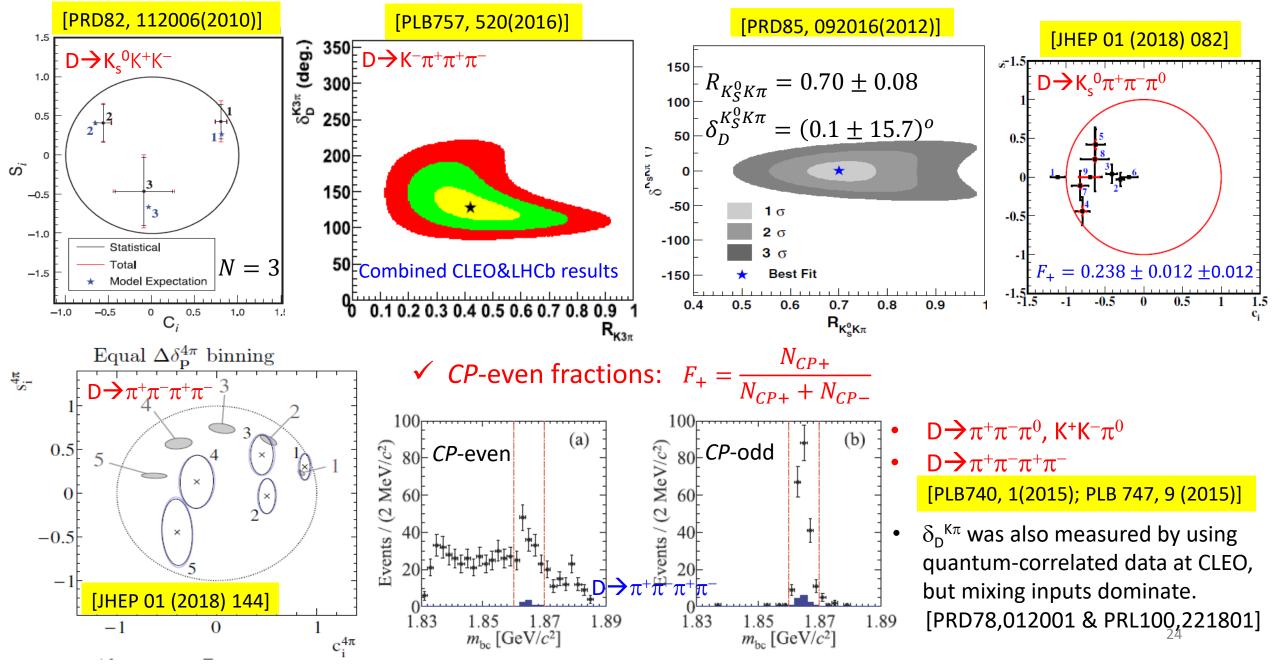


- Dividing the DP into symmetrically bins
- Produced events in DP bins:

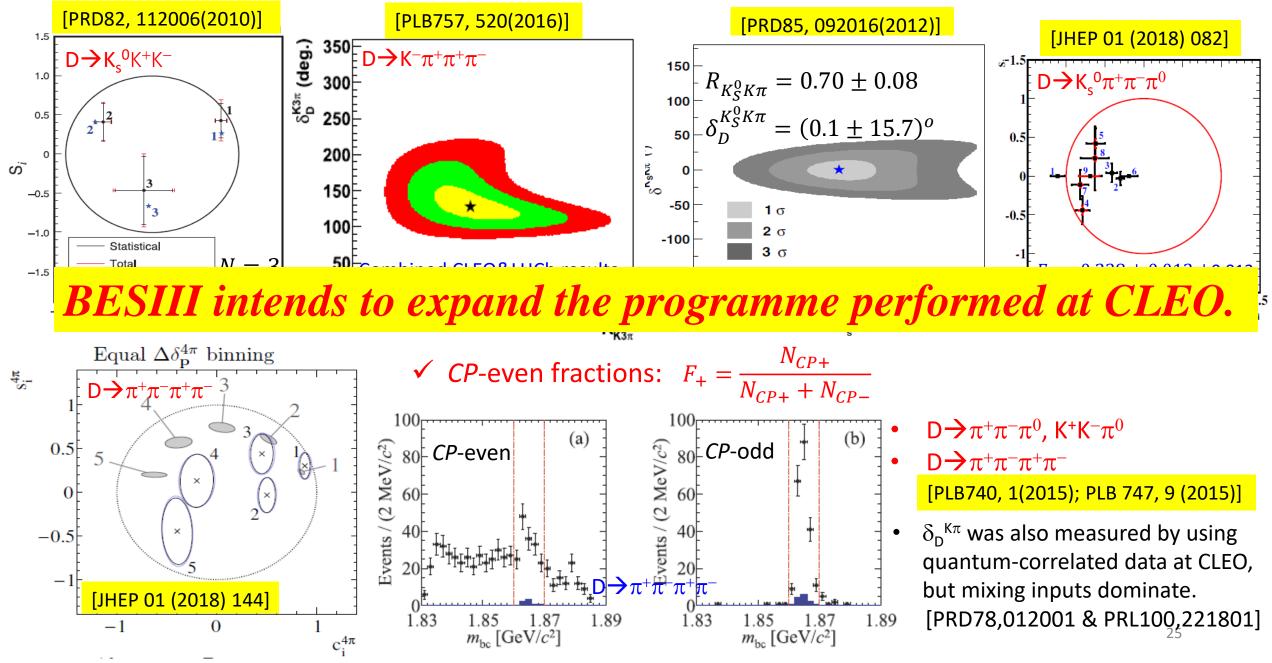
$$K_i = A_D \int_{\mathcal{D}_i} |f_D(m_+^2, m_-^2)|^2 dm_-^2 dm_+^2 \equiv A_D F_i$$

In model-dependent GGSZ approach, the (square) binning scheme is further developed by Bondar and Poluektov. [A. Bondar, A. Poluektov, Eur. Phys. J. C 47, 347(2006); 55, 51 (2008)].

The strong-phase interference between  $D^0$  and  $\overline{D}^0$  can be parameterized as:


$$c_{i} = \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \cos[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2}$$
  

$$s_{i} = \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \sin[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2}$$


$$(23)$$

In model-independent GGSZ approach, strong-phase parameters (c<sub>i</sub> & s<sub>i</sub>) measured from quantum-correlated DD decays are key input parameters.

#### Other related strong-phase measurements at CLEO



#### Other related strong-phase measurements at CLEO



#### Taking the bin migrations into account,

✓ For CP-tagged  $K_s^0 \pi^+ \pi^-$ , the expected yield in each of the Dalitz-plot bins is expressed by: No migration effects

$$N_{i}^{\exp\pm} = h_{CP\pm} \sum_{j}^{N_{\text{bins}}} \epsilon_{ij}^{CP} (K_{j} \pm 2c_{j}\sqrt{K_{j}K_{-j}} + K_{-j}) \longleftrightarrow M_{i}^{\pm} = h_{CP\pm} (K_{i} \pm 2c_{i}\sqrt{K_{i}K_{-i}} + K_{-i})$$

✓ For  $K_s^0 \pi^+ \pi^-$ .vs.  $K_s^0 \pi^+ \pi^-$ , the expected yield in each of the Dalitz-plot bins is expressed by:

$$N_{n}^{\exp} = h_{\operatorname{corr}} \sum_{m=1}^{N_{bins}'} \epsilon_{nm}^{K_{S}^{0} \pi^{+} \pi^{-}} [K_{i_{m}} K_{-j_{m}} + K_{-i_{m}} K_{j_{m}} - 2\sqrt{K_{i_{m}} K_{-j_{m}} K_{-i_{m}} K_{j_{m}}} (c_{i_{m}} c_{j_{m}} + s_{i_{m}} s_{j_{m}})]$$

where  $h_{CP\pm}$  and  $h_{corr}$  are the normalization factors,  $\mathcal{E}_{ij}$  is the efficiency matrix determined from the simulated data.  $K_i$  and  $K_j$  are the produced flavour-tagged yields of  $D \rightarrow K_s^{0} \pi^+ \pi^-$  in each of the Dalitz-plot bins.

The amplitudes of  $D^0 \to K_S^0 \pi^+ \pi^-$  and  $D^0 \to K_L^0 \pi^+ \pi^-$  can be separated into a CF decay  $(D^0 \to \overline{K}^0 \pi^+ \pi^-)$  and a DCS decay  $(D^0 \to K^0 \pi^+ \pi^-)$ . These amplitudes can be expressed as:

$$A(D^{0} \to K_{S}^{0}\pi^{+}\pi^{-}) = \left[A(D^{0} \to \bar{K}^{0}\pi^{+}\pi^{-}) + A(D^{0} \to K^{0}\pi^{+}\pi^{-})\right]/\sqrt{2}$$

and

$$A(D^{0} \to K_{L}^{0}\pi^{+}\pi^{-}) = \left[A(D^{0} \to \bar{K}^{0}\pi^{+}\pi^{-}) - A(D^{0} \to K^{0}\pi^{+}\pi^{-})\right]/\sqrt{2}$$

If considering the largest four resonances [ $K^{*-}$  (CF),  $K^{*+}$  (DCS),  $\rho^0$  and  $f_0$  (CF+DCS)], these amplitudes can be expressed as

$$A(K_{S}^{0}\pi^{+}\pi^{-}) = \frac{1}{\sqrt{2}} \left[ \sum_{i} a_{i}K^{*-}\pi^{+} + \sum_{i} b_{i}K^{*+}\pi^{-} + \sum_{j} (a_{j} + b_{j})K^{0}\rho^{0} + \sum_{k} (a_{k} + b_{k})K^{0}f_{0} \right]$$

and

$$A(K_L^0 \pi^+ \pi^-) = \frac{1}{\sqrt{2}} \left[ \sum_i a_i K^{*-} \pi^+ - \sum_i b_i K^{*+} \pi^- + \sum_j (a_j - b_j) K^0 \rho^0 + \sum_k (a_k - b_k) K^0 f_0 \right]$$

in which we have assumed the coefficients  $a_i$  and  $b_i$  to CF decays and DCS decays, respectively. From the above equation, we can see that there is no change in amplitudes for  $K^{*-}\pi^+$  components. For  $K^{*+}\pi^-$ , the sign of its amplitudes in  $D^0 \to K_S^0 \pi^+ \pi^-$  and  $D^0 \to K_L^0 \pi^+ \pi^-$  is opposite. For CP-eigenstate  $K^0 \rho^0$  and  $K^0 f_0$ , the  $K_L^0$  coefficients will be smaller than  $K_S^0$  cases by

$$rac{a_j-b_j}{a_j+b_j}pprox (1-2re^{i\delta}),$$

where  $r = \tan^2 \theta_c$ , where  $\theta_c$  is the cabibbo angle and  $\delta$  can take any value from 0 to  $2\pi$ .