

Физический

институ

Sergey Polikarpov^{1,2} On behalf of CMS Collaboration ¹LPI RAS, ²NRNU MEPHI

Beauty2019 Ljubljana, Slovenia

29 September – 4 October

Outline

- Study of P-wave B⁰_s states <u>CMS-BPH-16-003</u>, <u>Eur. Phys. J. C 78 (2018) 939</u>
- Study of the B⁺ \rightarrow J/ $\psi \overline{\Lambda}$ p decay <u>CMS-BPH-18-005</u>, <u>arXiv:1907.05461</u>
- First observation of the $\Lambda_b^0 \rightarrow J/\psi \Lambda \phi$ decay <u>CMS-BPH-19-002</u>

Not included:

• Observation of two excited B_c^+ states \rightarrow see a separate talk by Leonardo Cristella later today

Study of P-wave B⁰_s states

p

- P-wave B_s^0 mesons were studied in B⁺K⁻ channel by D0, CDF, LHCb
- CMS: study in B^+K^- channel and search in the new $B^0K^0_S$ channel
- Using 8 TeV pp collision data (20 fb⁻¹)
- Use $B^0 \rightarrow J/\psi K^+\pi^-$ and $B^+ \rightarrow J/\psi K^+$ decays to reconstruct ground state B mesons $(J/\psi \rightarrow \mu^+\mu^- \text{trigger})$
- Select additional K⁻ from the tracks forming the primary vertex, additional K⁰_S from displaced 2-prong vertices

 μ^{1}

all selection criteria: backup

Phys. Rev. D 90, 012013 (2014)

 μ^{1}

B⁺K⁻ invariant mass distribution

Fit to B⁺K⁻ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions

+ $(x-x_0)^a \cdot Pol_6(x)$ for background, x_0 is threshold value

+ contributions from excited B^0 : $B_2^* \rightarrow B^+\pi^-$, $B_2^* \rightarrow B^{*+}\pi^-$, and $B_1^* \rightarrow B^+\pi^-$ (shapes fixed to MC, yields fixed to the fit results to the $B^+\pi^-$ invariant mass distribution)

$B^0K^0_S$ invariant mass distribution

Sources of systematic uncertainty

Systematic uncertainties in the branching fraction ratios, mass differences and Γ, are related to:

Choice of the fit model

separate uncertainties related to the fits of B⁺ π ⁻, B⁺K⁻ and B⁰K⁰_S invariant mass distributions; largest deviation in the results under changes of the fit model is used as systematic uncertainty

Track reconstruction efficiency (3.9% per extra track)

7.8% since 2 more tracks to reconstruct in $B^0K^0_S$ final state

Mass resolution

largest change of the results under simultaneous variations of the resolution by $\pm 3\%$

➤ Fraction of K↔π swapped component largest change of the results under variations of this fraction by ±3%

Uncertainty on m_{B*}-m_B

largest change of the results under variations of m_{B^*} -m_B by ± PDG uncertainty

- ► Non-K^{*} contribution in B⁰→J/ ψ K⁺ π^- decay estimated by fitting background-subtracted K⁺ π^- invariant mass distribution
- Possible detector misalignment estimated using additional MC samples with distorted detector geometries
- Finite size of the simulation samples uncertainties in efficiencies = N_{reconstructed} / N_{generated}

Results

Uncertainties here are, respectively, statistical, systematic, related to PDG uncertainties

$$R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.432 \pm 0.077 \pm 0.075 \pm 0.021,$$

$$\frac{arXiv:1202.1224}{arXiv:1607.02812}$$

$$R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = 0.49 \pm 0.12 \pm 0.07 \pm 0.02,$$

$$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.081 \pm 0.021 \pm 0.015,$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{S}^{0})} = 0.093 \pm 0.086 \pm 0.014.$$

$$R_{\sigma}^{\pm} = \frac{\sigma(pp \to B_{s1}X) \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}X) \mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.233 \pm 0.019 \pm 0.018.$$

$$R_{\sigma}^{0} = \frac{\sigma(pp \to B_{s1}X) \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}X) \mathcal{B}(B_{s2}^{*} \to B^{0}K_{S}^{0})} = 0.266 \pm 0.079 \pm 0.063$$

<u>Results agree with existing measurements of LHCb and CDF, and with theoretical predictions</u>

CMS 2018: <u>CMS-BPH-16-003</u>, <u>Eur. Phys. J. C 78 (2018) 939</u> LHCb 2013: <u>doi:10.1103/PhysRevLett.110.151803</u> CDF 2014: <u>doi:10.1103/PhysRevD.90.012013</u>

Results

 $\Delta M_{B_{s2}^{\pm}}^{\pm} = M(B_{s2}^{*}) - M_{B^{+}}^{PDG} - M_{K^{-}}^{PDG} = 66.87 \pm 0.09 \pm 0.07 \text{ MeV},$ $\Delta M_{B_{s2}^{*}}^{0} = M(B_{s2}^{*}) - M_{B^{0}}^{PDG} - M_{K_{s}^{0}}^{PDG} = 62.37 \pm 0.48 \pm 0.07 \text{ MeV},$ $\Delta M_{B_{s1}}^{\pm} = M(B_{s1}) - M_{B^{*+}}^{PDG} - M_{K^{-}}^{PDG} = 10.45 \pm 0.09 \pm 0.06 \text{ MeV},$ $\Delta M_{B_{s1}}^{0} = M(B_{s1}) - M_{B^{*0}}^{PDG} - M_{K_{s}^{0}}^{PDG} = 5.61 \pm 0.23 \pm 0.06 \text{ MeV}.$ $\Gamma_{B_{s2}^{*}} = 1.52 \pm 0.34 \pm 0.30 \text{ MeV}$

Comparison to		M(B [*] _{s2})-M(B ⁺)-M(K ⁻)	M(B _{s1})-M(B ^{*+})-M(K ⁻)	Γ(B [*] _{s2})
previous measurements:	LHCb	67.06±0.12	10.46 ± 0.06	1.56±0.49
Consistent with LHCb and CDF	CDF	66.73±0.19	10.35±0.19	1.4 ± 0.44
	CMS	66.87±0.12	10.45±0.11	1.52±0.43

We also measure the mass differences between neutral and charged B^(*) mesons:

 $M_{
m B^0} - M_{
m B^+} = 0.57 \pm 0.49 \pm 0.10 \pm 0.02 \,{
m MeV} \qquad \leftrightarrow (0.31 \pm 0.06) \,{
m MeV}$ [PDG] MeV $M_{
m B^{*0}} - M_{
m B^{*+}} = 0.91 \pm 0.24 \pm 0.09 \pm 0.02 \,{
m MeV}$

We present a new method to measure these mass differences! It may become very precise with more data

Study of the B⁺ \rightarrow J/ $\psi \overline{\Lambda} p$ decay <u>CMS-BPH-18-005</u>, <u>arXiv:1907.05461</u>

$B^+ \rightarrow J/\psi \overline{\Lambda} p decay$

- Previously studied by Belle with 17 signal events
- CMS: study using 8 TeV pp collision data (20 fb⁻¹)
- <u>Possibility to search for exotic hadron contributions</u> in the $J/\psi\Lambda$ and $J/\psi p$ mass distributions (pentaquarks, similar to $\Lambda_b^0 \rightarrow J/\psi p K^-$, $P_c^+ \rightarrow J/\psi p$)
- For the BF measurement, $B^+ \rightarrow J/\psi K^{*+}$, $K^{*+} \rightarrow K^0_S \pi^+$ channel is used as normalization
 - uses the same $J/\psi \rightarrow \mu^+\mu^-$ trigger and has similar decay topology
- Event selection:
 - $\mu^+\mu^-$ form a good quality-vertex, $p_T(\mu)>4$ GeV, M($\mu\mu$) in ±100 MeV from J/ ψ mass
 - $\overline{\Lambda} \rightarrow \overline{p}\pi^+$ candidates formed from displaced 2-prong vertices, $p_T(\overline{\Lambda}) > 1$ GeV
 - Additional proton track, OS to p from $\overline{\Lambda}$, $p_T(p) > 1$ GeV,
 - B⁺ obtained by vertex fitting $\mu^+\mu^-\overline{\Lambda}p$, with $\mu^+\mu^-$ mass constrained to $m_{J/\psi}$
 - K^0_S contribution to $\overline{\Lambda}$ removed, $\overline{\Lambda}$ momentum points to B⁺ vertex
 - B⁺ vertex $L_{xy}/\sigma_{Lxy} > 3$, cos(B⁺ pointing angle) > 0.99, vertex fit probability > 1%

$B^+ \rightarrow J/\psi \overline{\Lambda}$ p branching fraction

Model-independent approach to the intermediate resonance study in $B^+ \rightarrow J/\psi \overline{\Lambda} p$ decay

Introduced by BaBar [<u>Phys.Rev.D79:112001 (2009)</u>], used by LHCb [<u>Phys.Rev.D.92:112009 (2015)</u>] The only known contributions come from $K_4^*(2045)^+$, $K_2^*(2250)^+$, $K_3^*(2320)^+ \rightarrow p\overline{\Lambda}$ decays

Their possible contributions are taken into account by reweighting 3-body phase-space MC

Accounting for K* resonances with spin up to 4 brings the agreement between efficiency-corrected data and reweighted MC to **2.8σ** level: <u>no need for extra exotic states to describe the observed data</u>

Summary of the study of $B^+ \rightarrow J/\psi \overline{\Lambda} p$ decay

The **branching fraction is measured** with the **best precision** to date

 $\frac{\Re(B^+ \to J/\psi \Lambda p)}{\Re(B^+ \to J/\psi K^{*+})} = (1.054 \pm 0.057(\text{stat}) \pm 0.035(\text{syst}) \pm 0.011(\text{B}))\%$ $\Re(B^+ \to J/\psi \Lambda p) = (15.1 \pm 0.8(\text{stat}) \pm 0.5(\text{syst}) \pm 0.9(\text{B})) \bullet 10^{-6}$

The intermediate invariant mass distributions $J/\psi p$, $J/\psi \overline{\Lambda}$, $\overline{\Lambda} p$ are **incompatible with phase-space** hypothesis (>6.1, 5.5, 3.4 σ)

Using a model-independent approach that accounts for K* resonances with spin up to 4, decaying into $\overline{\Lambda}$ p, the agreement is improved significantly:

the significance of discrepancy is below 3σ

Therefore, there is **no need for extra exotic states to describe the observed data**

First observation of the $\Lambda_b^0 \rightarrow J/\psi \Lambda \phi$ decay

CMS-BPH-19-002

$\Lambda_b^0 \rightarrow J/\psi \Lambda \phi$ decay

- Not studied previously
- CMS: study using 13 TeV pp collision data (60 fb⁻¹, 2018 only)
- <u>Possibility to search for exotic hadron contributions</u> in the J/ $\psi\Lambda$ and J/ $\psi\phi$ mass distributions (pentaquarks \rightarrow J/ $\psi\Lambda$, tetraquarks \rightarrow J/ $\psi\phi$)
- For the BF measurement, $\Lambda_b^0 \rightarrow \psi(2S)\Lambda$, $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ channel is used as normalization
 - uses the same J/ψ + 2 Trk trigger and has similar decay topology

$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi \Lambda \phi)}{\mathcal{B}(\Lambda_{b}^{0} \to \psi(2S)\Lambda)} = \frac{N(\Lambda_{b}^{0} \to J/\psi \Lambda \phi)\mathcal{B}(\psi(2S) \to J/\psi \pi^{-}\pi^{+})\epsilon(\Lambda_{b}^{0} \to \psi(2S)\Lambda)}{N(\Lambda_{b}^{0} \to \psi(2S)\Lambda)\epsilon(\Lambda_{b}^{0} \to J/\psi \Lambda \phi)\mathcal{B}(\phi \to K^{+}K^{-})}$$

- Event selection:
 - $\mu^+\mu^-$ form a good quality-vertex, $p_T(\mu)>4$ GeV, $M(\mu\mu)$ in ±100 MeV from J/ ψ mass
 - $\Lambda \rightarrow p\pi^-$ candidates formed from displaced 2-prong vertices, $p_T(\Lambda) > 1 \text{ GeV}$
 - Two OS tracks form $\phi \rightarrow K^+K^-$ candidate, $p_T(K) > 0.8$ GeV, 0.99 < M(KK) < 1.05 GeV
 - Λ_b^0 obtained by vertex fitting $\mu^+\mu^-K^+K^-\Lambda$, with $\mu^+\mu^-$ mass constrained to $m_{J/\psi}$
 - Λ_b^0 vertex $L_{xy}/\sigma_{Lxy} > 3$, $cos(\Lambda_b^0 \text{ pointing angle}) > 0.99$, vertex fit probability > 1%

Observation of the $\Lambda_{\rm b}^0 \rightarrow J/\psi \Lambda \phi$ decay

+ 3rd order polynomial for bkg

 380 ± 32 signal $\Lambda_{\rm b}^0 \rightarrow J/\psi \Lambda K^+ K^-$ events

Signal resolutions fixed to simulation

+ 1st order polynomial for bkg

286±29 signal $Λ_{\rm b}^0$ →J/ψΛφ events

 $\Gamma(\phi)$ fixed to PDG

Not enough signal to perform intermediate invariant mass distribution studies

CMS-BPH-19-002

Branching fraction measurement

• Data/MC difference in kinematic distributions

 $\frac{\Re(\Lambda_b^0 \to J/\psi \Lambda \phi)}{\Re(\Lambda_b^0 \to \psi(2S)\Lambda)} = (8.26 \pm 0.90(\text{stat}) \pm 0.68(\text{syst}) \pm 0.11(\Re))\%$

Summary

First observation (6.3 σ) of the $B_{s2}^* \rightarrow B^0 K_S^0$ decay

<u>CMS-BPH-16-003</u>, Eur. Phys. J. C 78 (2018) 939

First evidence (3.9 σ) for the $B_{s1} \rightarrow B^{*0}K_S^0$ decay Measured $R_2^{0\pm} = \frac{\mathcal{B}(B_{s2}^* \rightarrow B^0K_S^0)}{\mathcal{B}(B_{s2}^* \rightarrow B^+K^-)} = 0.432 \pm 0.077 \pm 0.075 \pm 0.021$, 5 other ratios, $\Gamma(B_{s2}^*(5840)^0) = 1.52 \pm 0.32 \pm 0.30$ MeV,

 $M_{B^{*0}}-M_{B^{*+}}$ = $0.91\pm0.24\pm0.09\pm0.02~MeV$ and 5 other mass differences

 $\mathfrak{B}(B^+ \rightarrow J/\psi \overline{\Lambda} p) = (15.1 \pm 0.8(\text{stat}) \pm 0.5(\text{syst}) \pm 0.9(\mathfrak{B})) \cdot 10^{-6}$ most precise measurement to date

The intermediate mass distributions $J/\psi p$, $J/\psi \overline{\Lambda}$, $\overline{\Lambda} p$ are **incompatible with phase-space** hypothesis

Using a model-independent approach that accounts for K^{*} resonances decaying into $\overline{\Lambda}$ p, the agreement is improved significantly, to the level of $< 3\sigma$ discrepancy

Therefore, there is no need for extra exotic states to describe the observed data

CMS-BPH-18-005, arXiv:1907.05461

First observation (9.7 σ) of the $\Lambda_b^0 \rightarrow J/\psi \Lambda \phi$ decay

 $\frac{\Re(\Lambda_b^0 \rightarrow J/\psi \Lambda \phi)}{\Re(\Lambda_b^0 \rightarrow \psi(2S)\Lambda)} = (8.26 \pm 0.90 (\text{stat}) \pm 0.68 (\text{syst}) \pm 0.11 (\text{B}))\%$

CMS-BPH-19-002

Thank you !

BACKUP

B⁺h⁻ invariant mass distributions

To describe the signal B^+K^- invariant mass distribution, we need to take into account the **reflections from excited** B^0 decays into $B^{(*)+}\pi^-$

(see backup for details on the procedure)

Reflections

5000

VeM 7 \ setabibnaD

4000

3000

2000

Signals Comb.

6000

Data

7000

CMS

19.6 fb⁻¹ (8 TeV)

Shapes of reflections from $B^{*0} \rightarrow B^{(*)+}\pi^-$ decays in B^+K^- invariant mass distribution

Measuring BF ratios

Formulae and efficiencies ratios for all 6 measured ratios – in backup

Overview

B⁺ is reconstructed in $J/\psi K^+$ channel

 B^0 is reconstructed in $J/\psi K^+\pi^-$ channel

"Reflections":

From $B^{**} \rightarrow B^{(*)+}\pi^-$ in B^+K^- channel, yields fixed from the fit to $B^+\pi^-$ invariant mass; From $K \leftrightarrow \pi$ swap in $B^0K^0_S$ channel, yields fixed relative to the signal yields

We also measure masses, mass differences and $\Gamma(B_{s2}^*)$ in these decays

P-wave B⁰_s states

The decay $B_{s1} \rightarrow B^+K^-$ corresponds to (in J^P) $1^+ \rightarrow 0^-0^-$ and is forbidden

The decay $B_{s1} \rightarrow B^{*+}K^{-}$ corresponds to (in J^{P}) $1^{+} \rightarrow 1^{-}0^{-}$ and $\frac{3}{2}^{-} \rightarrow \frac{1}{2}^{+}0^{-}$ in j^{P} In HQET j^{P} is also conserved \Rightarrow it cannot proceed in S-wave; but can proceed in D-wave. Similarly, $B_{s2}^{*} \rightarrow B^{+}K^{-}$ and $B_{s2}^{*} \rightarrow B^{*+}K^{-}$ decays are expected to proceed in D-wave.

Summary of all reported measurements

Highlighted in yellow are the first measurements

$$\begin{split} R_{2}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.432 \pm 0.077 \text{ (stat)} \pm 0.075 \text{ (syst)} \pm 0.021 \text{ (PDG)} \\ R_{1}^{0\pm} &= \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = 0.492 \pm 0.122 \text{ (stat)} \pm 0.068 \text{ (syst)} \pm 0.024 \text{ (PDG)} \\ R_{2}^{\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = 0.081 \pm 0.021 \text{ (stat)} \pm 0.015 \text{ (syst)}, \\ R_{2}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.093 \pm 0.086 \text{ (stat)} \pm 0.014 \text{ (syst)}, \\ R_{\sigma}^{\pm} &= \frac{\sigma(\text{pp} \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(\text{pp} \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s1}^{*} \to B^{*0}K_{s}^{0})} = 0.233 \pm 0.019 \text{ (stat)} \pm 0.018 \text{ (syst)} \\ R_{\sigma}^{0} &= \frac{\sigma(\text{pp} \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\sigma(\text{pp} \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)} \\ \Delta M_{B_{s2}}^{\pm} &= M(B_{s2}^{*}) - M(B^{+}) - M(K^{-}) = 66.870 \pm 0.093 \text{ (stat)} \pm 0.073 \text{ (syst)} \text{ MeV} \\ \Delta M_{B_{s2}}^{\pm} &= M(B_{s1}^{*}) - M(B^{*+}) - M(K^{-}) = 10.452 \pm 0.089 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV} \\ \Delta M_{B_{s1}}^{0} &= M(B_{s1}) - M(B^{*+}) - M(K^{-}) = 5.61 \pm 0.23 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV} \\ \end{split}$$

 $M(B_{s2}^*) = 5839.86 \pm 0.09 \pm 0.07 \pm 0.15 \text{ MeV}$ $M(B_{s1}) = 5828.78 \pm 0.09 \pm 0.06 \pm 0.28 \text{ MeV}$

 $m_{B^0} - m_{B^+} = 0.57 \pm 0.49 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.02 \text{ (PDG)} \text{ MeV}$ $m_{B^{*0}} - m_{B^{*+}} = 0.91 \pm 0.24 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.02 \text{ (PDG)} \text{ MeV}$

 $\Gamma(B_{s2}^{*}) = 1.52 \pm 0.34 \,(stat) \pm 0.30 \,(syst) \,\text{MeV}$

Modelled with triple Gaussian function with common mean for signal, exponential for bkg additional small contribution to account for Cabibbo suppressed $B^+ \rightarrow J/\psi \pi^+$ decay

The B⁺ invariant mass resolution is consistent between data and MC Effective resolution* is about 24 MeV * $\sigma_{eff} = \sqrt{f_1\sigma_1^2 + f_2\sigma_2^2 + (1 - f_1 - f_2)\sigma_3^2}$

A small difference of \sim 3% is used in the estimation of the systematic uncertainties

Now combine B⁺ with a track from the same PV

More details on $B^+ \rightarrow J/\psi \overline{\Lambda} p$ decay study

In each $M(\overline{\Lambda}p)$ bin, the $\cos \theta_{K^*}$ distribution can be expressed as an expansion in terms of Legendre polynomials:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{\mathrm{K}^*}} = \sum_{j=0}^{l_{\mathrm{max}}} \langle P_j^U \rangle P_j(\cos\theta_{\mathrm{K}^*}),$$

(2)
$$\langle P_j^U \rangle = \sum_{i=1}^{N_{\text{reco}}} \frac{P_j(\cos \theta_{\mathrm{K}^*})}{\epsilon^i}$$

Calculated in data events Using 2D efficiency from MC

28

Source	Relative uncertainty (%)
Discrepancy between data and simulation	2.2
Background model in the $M(J/\psi \overline{\Lambda} p)$ distribution	1.1
Background model in the $M(J/\psi K_S^0 \pi^+)$ distribution	0.1
Background model in the $M(K_{S}^{0}\pi^{+})$ distribution	1.2
Signal model in the $M(J/\psi \overline{\Lambda} p)$ distribution	0.9
Signal model in the $M(J/\psi K_{\rm S}^0\pi^+)$ distribution	0.6
Simulated sample event count	1.7
CMS-BPH-18-005, arXiv:1907.05461 Total systematic uncertainty	3.3

$B^+\pi^-$ invariant mass distribution

To obtain yields of these reflections, we fit $B^+\pi^-$ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions (*from MC*)

+ $(x-x_0)^a \bullet Pol_m(x)$ for background, x_0 is threshold value, $Pol_m(x)$ is polynomial of degree m

+ (small) contributions from $B_{s1,2}^{(*)}$

In the baseline fit, masses and natural widths of excited B⁰ states are fixed to PDG

The fit returns yields of about 8500, 10500 and 12000 events for the $B_2^* \rightarrow B^+\pi^-$, $B_2^* \rightarrow B^{*+}\pi^-$, and $B_1^* \rightarrow B^+\pi^-$ decays, respectively

Data and event selection

2012 dataset (19.6 fb⁻¹), trigger optimized to select $B \rightarrow J/\psi$... decays Muons matched to trigger; $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$, $|\eta(\mu^{\pm})| < 2.2$ Standard CMS "high purity" tracks, $p_T > 1 \text{ GeV}$

```
P_{vtx}(B) > 1\%
PV \text{ is chosen as the one with best pointing angle}
L_{xy}/\sigma_{Lxy}(B) > 5.0
Cos\alpha_{xy} > 0.99 \text{ (B momentum points to PV in xy plane)}
B \text{ mass in } \sim \pm 2\sigma_{eff} \text{ from PDG}
K^{+}
```

р

ΡV

B⁺K⁻ channel: K⁻ is chosen from PV track collection

B⁰K⁰_S channel:

Common selection for B^+ and B^0

M(K⁺ π ⁻) in ±90 MeV from K^{*}(892) mass,

 $M(K^+,K^-) > 1.035 \text{ GeV}$ to cut out $B^0_s \rightarrow J/\psi \phi$

K/ π mass assignment: chose the candidate closer to K*(892) mass

 K_S^0 is build from displaced 2-prong vertices $\cos \alpha_{xy}$ >0.999 (K_S^0 momentum points to PV in xy plane)<u>CMS-BPH-16-003</u>, Eur. Phys. J. C 78 (2018) 939p

K-

р

K+

K⁰

р

B⁺K⁻ signal extraction logic

The shapes of reflections from $B_{s1,2}^0$ decays in $B^+\pi^-$ invariant mass

32

B⁰ invariant mass distribution (MC)

B⁰ is reconstructed in the decay to $J/\psi K^+\pi^-$, where kaon and pion can be misidentified (swapped) in the reconstruction. The selection requirements are

 $M(K^{+}\pi^{-})$ in ±90 MeV from K*(892) mass,

 $M(K^{+},K^{-}) > 1.035 \text{ GeV to cut out } B_s^0 \rightarrow J/\psi\varphi$, as in P5' analysis

 K/π mass assignment: as in P5', chose the candidate closer to $K^*(892)$ mass

We use MC to obtain the signal resolution and shape of $K{\leftrightarrow}\pi$ swapped component:

B⁰ invariant mass distribution

The resolution parameters and the shape of $K \leftrightarrow \pi$ swapped component are fixed from simulation (see backup)

The B⁰ signal region [5245, 5313] MeV includes ~220000 signal candidates and ~41000 K $\leftrightarrow \pi$ swap candidates \Rightarrow "fraction of swapped component w.r.t. signal" = (18.9±0.3)%

Vary the signal resolution by + and -3% (see B⁺ fit) \Rightarrow variation of this fraction is (18.9±3.0)% (uncertainty will be considered as systematics source)

Systematic uncertainties in the branching fraction ratios

 $R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})}$ $R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})}$

l	incertainty in %		
Source	$ R_2^{0\pm}$	$R_1^{0\pm}$	
Track reconstruction efficiency	7.8	7.8	
$m_{\mathrm{B}^{+}\pi^{-}}$ distribution model	2.5	2.0	
$m_{\mathrm{B^+K^-}}$ distribution model	2.4	4.6	
$m_{\mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{S}}}$ distribution model	14	8.1	
Mass resolution	0.7	2.2	
Fraction of KPS	2.6	2.6	
Non-K ^{*0} contribution	5.0	5.0	
Finite size of simulated samples	1.2	1.2	
Total	18	14	

Systematic uncertainty in %

$$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} \quad R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s2}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s2}^{0})}$$
$$R_{\sigma}^{\pm} = \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*+}K^{-})}{\sigma(pp \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})}$$
$$R_{\sigma}^{0} = \frac{\sigma(pp \to B_{s1} \dots) \times \mathcal{B}(B_{s1} \to B^{*0}K_{s2}^{0})}{\sigma(pp \to B_{s2}^{*} \dots) \times \mathcal{B}(B_{s2}^{*} \to B^{0}K_{s2}^{0})}$$

Source	R_{2*}^{\pm}	R_{2*}^{0}	R^\pm_σ	R^0_σ
$m_{\mathrm{B}^+\pi^-}$ distribution model	2.9		2.7	
$m_{\mathrm{B^+K^-}}$ distribution model	17		7.1	
$m_{\mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{S}}}$ distribution model		13		24
Mass resolution	1.2	3.0	1.5	1.1
Uncertainties in $M_{B^*}^{PDG} - M_B^{PDG}$	7.7	4.8		
Finite size of simulated samples	1.1	1.3	1.1	1.3
Total	19	15	7.8	24

Systematic uncertainties

Four mass differences obtained from the fits

$$\Delta M_{B_{s2}^*}^{\pm} = M(B_{s2}^*) - M_{B^+}^{PDG} - M_{K^-}^{PDG}, \qquad \Delta M_{B_{s1}}^{\pm} = M(B_{s1}) - M_{B^{*+}}^{PDG} - M_{K^-}^{PDG}$$

$$\Delta M_{B_{s2}^*}^0 = M(B_{s2}^*) - M_{B^0}^{PDG} - M_{K_s^0}^{PDG}, \qquad \Delta M_{B_{s1}}^0 = M(B_{s1}) - M_{B^{*0}}^{PDG} - M_{K_s^0}^{PDG}$$

allow to measure the mass differences between neutral and charged B^(*) mesons:

$$M_{B^{0}} - M_{B^{+}} = \Delta M_{B_{s2}^{*}}^{\pm} - \Delta M_{B_{s2}^{*}}^{0} + M_{K^{-}}^{PDG} - M_{K_{S}^{0}}^{PDG}$$
$$M_{B^{*0}} - M_{B^{*+}} = \Delta M_{B_{s1}}^{\pm} - \Delta M_{B_{s1}}^{0} + M_{K^{-}}^{PDG} - M_{K_{S}^{0}}^{PDG}$$

Additional systematic uncertainties are related to

> Shift from reconstruction: values obtained from the reconstructed MC differ a bit from those in the generation configuration. Our measurements are corrected by these shifts, and value of each shift is used as systematic uncertainty.

> Detector misalignment: 18 additional MC samples for each measurement are produced with differently distorted detector geometry, and maximum deviation from the case of no misalignment is taken as systematic uncertainty.

Source	$\Delta M^\pm_{ m B^*_{s2}}$	$\Delta M^{\pm}_{ m B_{s1}}$	$\Delta M^0_{ m B^*_{s2}}$	$\Delta M^0_{ m B_{s1}}$	$M_{\mathrm{B}^0}-M_{\mathrm{B}^+}$	$M_{{ m B}^{*0}}-M_{{ m B}^{*+}}$	$\Gamma_{B^{\ast}_{s2}}$
$m_{\mathrm{B}^+\pi^-}$ distribution model	0.024	0.008			0.024	0.008	0.11
$m_{\rm B^+K^-}$ distribution model	0.011	0.043			0.011	0.043	0.11
$m_{\mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}}}$ distribution model	—		0.039	0.038	0.039	0.038	
Uncertainties in $M_{B^*}^{PDG} - M_B^{PDG}$	0.012	0.003	0.003	0.0001	0.012	0.003	0.03
Shift from reconstruction	0.056	0.044	0.050	0.042	0.075	0.061	
Detector misalignment	0.036	0.005	0.031	0.006	0.038	0.008	0.15
Mass resolution	0.007	0.005	0.005	0.005	0.009	0.007	0.20
Total	0.073	0.063	0.071	0.057	0.098	0.085	0.30

<u>CMS-BPH-16-003</u>, <u>Eur. Phys. J. C 78 (2018) 939</u>

Measured BF ratios

CMS-BPH-16-003, Eur. Phys. J. C 78 (2018) 939

$$\begin{split} R_{2}^{0\pm} &= \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\varepsilon(B_{s2}^{*} \to B^{+}K^{-})}{\varepsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \\ &\times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{+}\pi^{-})\mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-})} \\ R_{1}^{0\pm} &= \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s1} \to B^{*0}K_{s}^{0})} = \frac{N(B_{s1} \to B^{*0}K_{s}^{0})}{N(B_{s1} \to B^{*0}K_{s}^{0})} \times \frac{\varepsilon(B_{s1} \to B^{*+}K^{-})}{\varepsilon(B_{s1} \to B^{*0}K_{s}^{0})} \times \\ &\times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{+}\pi^{-})\mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-})'} \end{split}$$

$$R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{*+}K^{-})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{+}K^{-})}{\epsilon(B_{s2}^{*} \to B^{*+}K^{-})},$$

$$R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{s}^{0})} = \frac{N(B_{s2}^{*} \to B^{*0}K_{s}^{0})}{N(B_{s2}^{*} \to B^{0}K_{s}^{0})} \times \frac{\epsilon(B_{s2}^{*} \to B^{0}K_{s}^{0})}{\epsilon(B_{s2}^{*} \to B^{*0}K_{s}^{0})},$$

$$R_{\sigma}^{\pm} = \frac{\sigma(\mathrm{pp} \to \mathrm{B}_{\mathrm{s1}} \dots) \times \mathcal{B}(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*+}\mathrm{K}^{-})}{\sigma(\mathrm{pp} \to \mathrm{B}_{\mathrm{s2}}^{*} \dots) \times \mathcal{B}(\mathrm{B}_{\mathrm{s2}}^{*} \to \mathrm{B}^{+}\mathrm{K}^{-})} = \frac{N(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*+}\mathrm{K}^{-})}{N(\mathrm{B}_{\mathrm{s2}}^{*} \to \mathrm{B}^{+}\mathrm{K}^{-})} \times \frac{\epsilon(\mathrm{B}_{\mathrm{s2}}^{*} \to \mathrm{B}^{+}\mathrm{K}^{-})}{\epsilon(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*+}\mathrm{K}^{-})},$$

$$R^{0}_{\sigma} = \frac{\sigma(\mathrm{pp} \to \mathrm{B}_{\mathrm{s1}} \dots) \times \mathcal{B}(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*0}\mathrm{K}^{0}_{\mathrm{s}})}{\sigma(\mathrm{pp} \to \mathrm{B}^{*}_{\mathrm{s2}} \dots) \times \mathcal{B}(\mathrm{B}^{*}_{\mathrm{s2}} \to \mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}})} = \frac{N(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*0}\mathrm{K}^{0}_{\mathrm{s}})}{N(\mathrm{B}^{*}_{\mathrm{s2}} \to \mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}})} \times \frac{\epsilon(\mathrm{B}^{*}_{\mathrm{s2}} \to \mathrm{B}^{0}\mathrm{K}^{0}_{\mathrm{s}})}{\epsilon(\mathrm{B}_{\mathrm{s1}} \to \mathrm{B}^{*0}\mathrm{K}^{0}_{\mathrm{s}})},$$

Relative efficiencies

$$\begin{split} & \frac{\varepsilon(B_{s2}^* \to B^+ K^-)}{\varepsilon(B_{s2}^* \to B^0 K_s^0)} = 15.77 \pm 0.18, \quad \frac{\varepsilon(B_{s1} \to B^{*+} K^-)}{\varepsilon(B_{s1} \to B^{*0} K_s^0)} = 16.33 \pm 0.20, \\ & \frac{\varepsilon(B_{s2}^* \to B^+ K^-)}{\varepsilon(B_{s2}^* \to B^{*+} K^-)} = 0.961 \pm 0.010, \quad \frac{\varepsilon(B_{s2}^* \to B^0 K_s^0)}{\varepsilon(B_{s2}^* \to B^{*0} K_s^0)} = 0.970 \pm 0.012, \\ & \frac{\varepsilon(B_{s2}^* \to B^+ K^-)}{\varepsilon(B_{s1} \to B^{*+} K^-)} = 0.953 \pm 0.010, \quad \frac{\varepsilon(B_{s2}^* \to B^0 K_s^0)}{\varepsilon(B_{s1} \to B^{*0} K_s^0)} = 0.987 \pm 0.012, \end{split}$$

Their uncertainties are used as systematic uncertainties

Previous results on P-wave B⁰_s states

observed and studied only by CDF, D0, and LHCb, only in B⁺K⁻ channel

Result	CDF 2008 [2]	D0 2008 [3]	LHCb 2013 [4]	CDF 2014 [5]
$N(B^*_{s2} \rightarrow B^+K^-)$	95 ± 23	125 ± 25	3140 ± 100	1110 ± 60
$N(\mathrm{B}^*_{\mathrm{s2}} ightarrow \mathrm{B}^{*+}\mathrm{K}^-)$	—	_	307 ± 46	$?? \sim 100$
$N(\mathrm{B_{s1}} ightarrow \mathrm{B^{*+}K^{-}})$	39 ± 9	25 ± 10	750 ± 36	280 ± 40
$M(B_{s2}^*)$, MeV	5839.6 ± 0.7	5839.6 ± 1.3	5839.99 ± 0.21	5839.7 ± 0.2
$M(B_{s1})$, MeV	5829.4 ± 0.7	_	5828.40 ± 0.41	5828.3 ± 0.5
$M(B_{s2}^*) - M(B^+) - M(K^-)$, MeV	66.96 ± 0.41	66.7 ± 1.1	67.06 ± 0.12	66.73 ± 0.19
$M(B_{s1}) - M(B^{*+}) - M(K^{-})$, MeV	10.73 ± 0.25	11.5 ± 1.4	10.46 ± 0.06	10.35 ± 0.19
$\Gamma(B_{s2}^*)$, MeV	—	_	1.56 ± 0.49	1.4 ± 0.4
$\Gamma(B_{s1})$, MeV	—	_	—	0.5 ± 0.4

Belle observation of the $B^+ \rightarrow J/\psi \Lambda p$ decay

CMS experiment

