

Spectroscopy and production of $\rm B_{c}$ mesons in ATLAS

Konstantin Toms on behalf of the ATLAS Collaboration

University of New Mexico

September 30, 2019

BEAUTY 2019, Ljubljana

Outline

- The ATLAS detector @ LHC
- Recent ATLAS result covered in this talk:

 – relative B_c/B[±] production cross section measurements @ 8 TeV

Conclusions

The ATLAS detector @ LHC

- Subsystems essential for B-physics: Inner Detector and Muon Spectrometer.
- Inner detector: tracking, momentum and vertexing, $|\eta| < 2.5$, d₀ resolution ~10 μ m.
- Muon spectrometer: trigger and muon identification, $|\eta| < 2.7$.
- J/ ψ mass resolution: 60±1 MeV, Y(1S): 119±1 MeV (resolutions depend on η).

Relative B_c/B[±] production cross section measurement

- About to be submitted to ArXiV.
- 20.3 fb⁻¹ of 2012 pp collision data @ 8 TeV.
- Motivation:
 - test of QCD predictions;
 - important input for heavy quark production models;
 - first doubly-differential measurement in the central rapidity region;
 - complements CMS and LHCb measurements

Analysis overview (1)

- Dimuon trigger, $p_T(\mu_1,\mu_2)>4$ GeV, 2.5<m($\mu\mu$)<4.3 GeV.
- $B_c \rightarrow J/\psi(\mu^+\mu^-) \pi^{\pm}, B^{\pm} \rightarrow J/\psi(\mu^+\mu^-) K^{\pm}.$
- J/ψ candidates are formed from oppositely charged muons, p_T(µ)>4 GeV, |η|<2.3, 2.6<m(J/ψ)<3.5. Three invariant mass windows, defined by the ATLAS detector resolution.
- Hadronic tracks: $p_T > 2$ GeV.
- A cut on the impact parameter significance of the hadronic track (wrt primary vertex) is introduced: $d_{xy}^0/\sigma(d_{xy}^0) > 1.2$.
- B candidates are formed from the 3 tracks: two muonic and one hadronic.
- The χ^2 (B vertex)/NDoF < 1.8.

Analysis overview (2)

 Extended unbinned maximum likelihood fits to the B invariant mass distributions yield ~400k events for the B[±] and ~800 events for the B_c; p_T(B)>13 GeV, |y|<2.3.

Analysis overview (3)

- In addition to the full bin we define two bins in p_T ([13—22 GeV] and [>22 GeV]) and two bins in rapidity (|y|<0.75 and 0.75<|y|<2.3).
- Bin sizes are selected to equalize the B_c yields.
- Example: fits for two bins in p_T for the $B_{c.}$

Analysis overview (4)

 The relative cross section times branching fraction is given by:

 $\frac{\sigma(B_c^{\pm}) \cdot BR(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot BR(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot BR(B^{\pm} \to J/\psi K^{\pm}) \cdot BR(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{\text{reco}}(B_c^{\pm})}{N^{\text{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_c^{\pm})}$

- N^{reco}(B) are obtained from the fits. Overall analysis efficiencies $\varepsilon(B_c)$ and $\varepsilon(B^{\pm})$ are obtained from the MC.
- MC is corrected in several ways:
 - sPlot reweighting of the $p_{T}(B)$ and y(B)distributions;
 - trigger acceptance;
 - distributions of variables used for minimal selections.

Results (1)

• The measurement of the relative cross section times branching fraction is performed in 5 bins:

Analysis bin	$\sigma(B_c^{\pm})/\sigma(B^{\pm}) \times \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm})/\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 2.3$	$(0.34 \pm 0.04_{\text{stat}} \pm 0.02_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$22 > p_{\rm T}(B) > 13$ GeV, $ y(B) < 2.3$	$(0.44 \pm 0.07_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 22 \text{ GeV}, y(B) < 2.3$	$(0.24 \pm 0.04_{\text{stat}} \pm 0.01_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 0.75$	$(0.38 \pm 0.06_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 13 \text{ GeV}, 2.3 > y(B) > 0.75$	$(0.29 \pm 0.05_{\text{stat}} \pm 0.02_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$

Results (2)

- The measurement precision is limited by the statistical uncertainty on the number of B_c candidates.
- The following systematic uncertainties are considered:
 - fitting procedure (including Cabibbo-suppressed decays contribution);
 - trigger, reconstruction and tracking effects;
 - B_c lifetime uncertainty;
 - MC-related uncertainties (sample size, minimal selection criteria).
- The measurement suggest a dependence on the p_T : the production cross section of the B_c meson decreases faster with p_T than the production cross section of the B[±] meson. No significant dependence on rapidity has been observed.

Conclusions

- ATLAS has studied the B_c/B[±] production cross section at 8 TeV.
- First doubly-differential study in the central rapidity region.
- The measurement suggests some p_T dependence.

BACKUP

Trigger and datasets

 B-physics starts with single or di-muon triggers with various thresholds:

Di-muon mass range: m(µµ)∈[2.5; 4.3] GeV (final states containing J/ψ) and m(µµ)∈[4.0; 8.5] GeV (B to µ transitions).