CMS Studies in Heavy Flavour Production

Mario Galanti

(U. of Rochester)

on behalf of the CMS Collaboration

Beauty 2019 1 October 2019

Summary

• In this talk: general review of the CMS measurements of heavy flavor production published recently

Outline

- Open heavy flavour production
- Heavy quarkonia production

• Disclaimer: Some (small) overlap with other more specific talks

Data taking summary and performance CMS DP-2018/036

- Analyses shown in this talk use CMS data taken between 2011 and 2018
- Integrated luminosity good for physics:
 - Run 1: ~5/fb @ 7 TeV

~20/fb @ 8 TeV

- Run 2: ~140/fb @ 13 TeV
- Data taking stopped since the end of 2018 due to LHC LS2, to resume in 2021

- HF physics mostly studied through **final** states containing muons
- Several single- and multi-muon triggers to cover a wide range of processes
- HF reconstruction mainly relying on tracking and muon subdetectors
 - Δp_T/p_T~O(1-5%) for low-momentum tracks
 - Vertex and IP resolution O(10-100μm)

Open heavy flavour production

B⁺ cross section at 13 TeV

- CMS measured the B+ cross section in pp collisions at 13 TeV using 48.1/pb of data
- $B^+ \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)K^+$ decay mode
- Considered the fiducial phase space

 $|y(B^+)| < 1.45$ for $10 \le p_T(B^+) < 17$ GeV, and $|y(B^+)| < 2.1$ for $17 \le p_T(B^+) < 100$ GeV

• Main backgrounds: **combinatorial dimuons**, $B^+ \rightarrow J/\psi \pi^+$, and $B^+ \rightarrow J/\psi + hadrons$ decays

Systematic sources	Relative
	uncertainties (%)
Muon trigger, identification,	6.0-14
and reconstruction	0.0-14
Detector alignment	2.8
B ⁺ vertex reconstruction	1.4
Size of simulated samples	0.5-3.9
Track reconstruction efficiency	3.9
$B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$ branching fraction	3.1
Model in likelihood fits	1.0-6.4
Bin-to-bin migration	0.4–3.7
B ⁺ kinematic distributions	0.4–11
Parton distribution functions	0.1 - 0.7
B ⁺ lifetime	0.3
Total (excluding the integrated luminosity)	9.1–16
Integrated luminosity	2.3

- Main systematic uncertainties from
 - Muon trigger, identification, and reconstruction
 - Likelihood fit model
 - Kinematic distributions of B⁺ events in simulation
- Analysis is not statisticallylimited

Beauty2019 – 1 October 2019

B⁺ cross section at 13 TeV

- Cross section given in bins of p_T(B⁺) and |y(B⁺)|
- 13 TeV results compared to FONLL predictions and with PYTHIA
 - Data compatible with FONLL at high p_T , while they favour higher cross sections at low p_T
 - Previous CMS (PRL 106 (2011) 112001, shown above) and ATLAS measurements at 7 TeV (JHEP 10 (2013) 042) have a better data-theory agreement at low p_T
- Total cross section in the fiducial region at 13 TeV measured from the sum over all bins

 $\sigma(pp \rightarrow B^+X) = 15.3 \pm 0.4(stat) \pm 2.1 (syst) \pm 0.4(lumi) pb$

$B_{\rm c}$ and $B^{\scriptscriptstyle +}$ cross sections at 7 TeV

- CMS measured the B_c^+ and B^+ cross sections at 7 TeV, using 4.77 fb⁻¹ of Run 1 pp data
- Mesons reconstructed through their $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ decays
- Inclusive $\sigma \times BRs$:
 - $B_c^+ \rightarrow J/\psi \pi^+$: $\sigma = 40.8 \pm 4.7 \text{ (stat)} \pm 2.8 \text{ (syst) pb} \quad [p_T(B_c^+) > 10 \text{ GeV and } |y(B_c^+)| < 1.5]$
 - $B^+ \rightarrow J/\psi K^+$: $\sigma = 5851 \pm 37 \text{ (stat)} \pm 446 \text{ (syst) pb} [p_T(B^+) > 10 \text{ GeV and } |y(B^+)| < 1.5]$
- B_c shape in agreement with BCVEGPY prediction, normalization off by a factor ~2.75
- B^+ measurement consistent with predictions from PYTHIA, NLO, and FONLL

Observation of two excited B⁺_c states

More details in yesterday's talk by L. Cristella

- CMS resolved for the first time the $B_c(2S)$ doublet, using 143 fb⁻¹ of 13 TeV data collected in the LHC Run 2
 - These states had first been seen by ATLAS as a single wide enhancement (**PRL 113 (2014) 212004**)
- The B_c excited states are reconstructed in the $B_c \pi^+\pi^-$ decay channel
 - Soft photon from $B_c^* \rightarrow B_c \gamma$ decay not reconstructed
- The two peaks are resolved with $>5\sigma$ significance
- The mass split is measured to be:
 ΔM = 29.1 ± 1.5(stat) ± 0.7(syst) MeV
- The $B_c(2S)$ mass is measured to be:

 $M = 6871.0 \pm 1.2(stat) \pm 0.8(syst) \pm 0.8(B_c) MeV$

60

50

40

30

20

10

Events / 10 MeV

B_c*+(2S) 2S $B_{c}^{+}(2S)$ 2P $\pi\pi$ 1S Data CMS $L = 143 \text{ fb}^{-1}$ Fit result √s = 13 TeV Signal $B_{c}^{+}(J/\psi K^{+}) \pi^{+}\pi^{-}$ Comb. backg. 6.7 6.8 6.9 7.0 7.1 $M(B_{c}^{+} \pi^{+}\pi^{-}) - M(B_{c}^{+}) + m_{B_{c}^{+}}$ (GeV)

Λ_b polarization at 7 and 8 TeV

- The polarization parameters of Λ_b baryons were measured by CMS on 7 and 8 TeV data
 - $\Lambda_b \rightarrow J/\psi(\rightarrow \mu^+\mu^-) \Lambda(\rightarrow p\pi^-)$ decay used
- The decay can be described as a function of the **helicity amplitudes** $T_{\lambda_1\lambda_2}$ (λ_i are the helicities of J/ ψ and Λ particles) > 400
- Measured parameters depending on $T_{\lambda_1\lambda_2}$:
 - **P** $\Rightarrow \Lambda_b$ polarization
 - $\alpha_1 \Rightarrow Asymmetry in \Lambda_b \rightarrow J/\psi \Lambda decay$
 - $\alpha_2 \Rightarrow$ Longitudinal \land polarization
 - $\gamma_0 \Rightarrow$ Depending on J/ ψ polarization
- Parameters measured through a fit to the invatiant mass m(J/ψ Λ) and the three angles θ_Λ, θ_p, θ_μ
- Analysis is statistically-limited, main systematics from reconstruction bias (evaluated in MC by comparing input and measured values)

Λ_{b} polarization at 7 and 8 TeV

• The four parameters are measured to be

$$P = 0.00 \pm 0.06(\text{stat}) \pm 0.06(\text{syst}),$$

$$\alpha_1 = 0.14 \pm 0.14(\text{stat}) \pm 0.10(\text{syst}),$$

$$\alpha_2 = -1.11 \pm 0.04(\text{stat}) \pm 0.05(\text{syst}),$$

$$\gamma_0 = -0.27 \pm 0.08(\text{stat}) \pm 0.11(\text{syst}),$$

• They correspond to the helicity amplitudes

$$\begin{split} |T_{++}|^2 &= 0.05 \pm 0.04(\text{stat}) \pm 0.04(\text{syst}), \\ |T_{+0}|^2 &= -0.10 \pm 0.04(\text{stat}) \pm 0.04(\text{syst}), \\ |T_{-0}|^2 &= 0.51 \pm 0.03(\text{stat}) \pm 0.04(\text{syst}), \\ |T_{--}|^2 &= 0.52 \pm 0.04(\text{stat}) \pm 0.04(\text{syst}). \end{split}$$

- Consistent with previous measurements by LHCb (PLB 724 (2013) 27) and ATLAS (PRD 89 (2014) 092009)
- Inconsistent (at >5σ) with HQET, but consistent with predictions from PQCD and quark model techniques

Quarkonium production

J/ψ production from jet fragmentation

- J/ ψ production in jets can be used to probe LDME contributions to jet fragmentation
- Studied by CMS on 19.1 fb⁻¹ of 8 TeV pp collisions
 - 4 different LDMEs studied: ${}^{1}S_{0}^{(8)}$, ${}^{3}S_{1}^{(8)}$, ${}^{3}S_{1}^{(1)}$, and ${}^{3}P_{j}^{(8)}$
- Measurement conducted in different bins of the J/ ψ energy fraction z:

 $z = E(J/\psi) / E(jet)$

• Using $\Xi(E_1, z_1)$ as sensitive variable:

$$\Xi(E_1, z_1) \equiv \frac{N(E_1, z_1)}{\int_{0.3}^{0.8} N(E_1, z) dz} \equiv \frac{d\tilde{\sigma}}{dEdz}|_{E_1, z_1}$$

- $N(E_1, z_1)$ is the number of events in a z interval $\Delta_z = \pm 0.025$
- Last term is the sum of the contributions from the 4 LDMEs to the differential cross section

⇒ If just one LDME dominates at a given z value, then it will give a good description of the the jet energy dependence in data. ⇒ Otherwise it is unlikely that any single LDME will be a good match for data.

J/ψ production from jet fragmentation

- Theory using the fragmenting jet approach (FJF, JHEP 1411 (2014) 003) with 2 sets of LDMEs:
 - Bodwin, Chung, Kim, Lee (BCKL) PRL 113 (2014) 022001
 - Butenshoen and Kniehl (BK) MPL A 28 (2013) 1350027

J/ψ production from jet fragmentation

- Terms ³S₁⁽⁸⁾ and ³P_j⁽⁸⁾ are disfavored at all z
- ³S₁⁽¹⁾ implies a significant transferse polarization, not observed in data
- FJF method allows to discriminate between BCKL and BK LDMEs

Quarkonium production at central rapidity

• Production of J/ ψ , ψ (2S) and Y(nS) for |y|<1.2 studied by CMS on 2.3-2.7 fb⁻¹ of 13 TeV data

- Single- and double-differential cross sections times branching fractions measured
- Results in reasonable agreement with NRQCD predictions within uncertainties
 - Confirms what seen for J/ψ and $\psi(2S)$ at 7 and 8 TeV by ATLAS (Eur. Phys. J. C (2016) 76)

- Ratios of $\psi(2S)/J/\psi$, of Y(2S,3S)/Y(1S), and of 13/7 TeV cross sections also given
 - Slight increase with p_T observed for both ratios

References for the 13/7 TeV ratios from PRL 114 (2015) 191 802 and PLB 749 (2015) 14

Observation of $\chi_{b_{1,2}}(3P)$ mass split

- χ_b(3P) state first discovered by ATLAS (PRL 108 (2012) 152 001), seen also by D0 and LHCb
- Analyzing 80 fb⁻¹ of LHC Run 2 data CMS observed for the first time the split in the χ_{b1}(3P)-χ_{b2}(3P) doublet and measured the masses of the two states
- $\chi_b(3P)$ reconstructed in Y(3S)+ γ mode, with γ converting inside the CMS tracker
- Photon energy scale calibrated with high-yield $\chi_{c1} \rightarrow J/\psi + \gamma$ decays
- Results
 - $M_1 = 10513.42\pm0.41(stat)\pm0.18(syst) \text{ MeV}$
 - $M_2 = 10524.02\pm0.57(stat)\pm0.18(syst) MeV$
 - $\Delta M = 10.60 \pm 0.64 (stat) \pm 0.17 (syst) MeV$
- Significantly constrains theoretical predictions, which give mass splits in the range [-2, 18] GeV

Summary and conclusions

- Even if CMS has not been taking data for almost 1 year, new results on heavy favour production are still being published
- Measurements are based on newer 13 TeV Run-2 data as well as on 7 and 8 TeV Run-1 data
- Older data relatively more important for production measurements since they cover different \sqrt{s} points
- Among the newer CMS results are:
- The first observation of the mass splits of the $B_c(2S)$ and of the $\chi_{b_{1,2}}(3P)$ doublets
- A study of J/ψ production inside jets shedding light on the fragmentation process
- Cross section measurements for quarkonia at 13 TeV and for open beauty at 7 and 13 TeV
- A measurement of the $\Lambda_{\rm b}$ polarization at 7 and 8 TeV

• More analyses in the pipeline with the data currently on tape, while we wait for the LHC Run 3 to start in 2021!

Backup

CMS detector

• General-purpose LHC experiment, conducting a wide range of measurements and searches

• Highly-configurable multi-level triggers saving to disk O(500-1000)Hz of events for offline analysis

Quarkonium production at central rapidity

• Results in reasonable agreement with NRQCD predictions within uncertainties

References for the 13/7 TeV ratios from PRL 114 (2015) 191802 and PLB 749 (2015) 14