

Rare Charm Decays

Jolanta Brodzicka, INP Krakow on behalf of LHCb

(including also results from BaBar, Belle, BESIII)

Beauty, Ljubljana, October 2019

- Why important & challenging?
- Charm samples
- Rare charm so far
- Recent news
- Summary & Outlook

Charm: unique, complementary but difficult

- Complementary to strange & beauty Down-type quarks in loops: different New Particles?
- Unique access to up-type quarks (Flavour physics with t-quark hopeless)

But...

- Loops very suppressed in charm
 ⇒ rare decays suppressed in SM
- QCD corrections are large (~1/m_c)
 ⇒ difficult to calculate

Needed:

- Large & clean data samples
- Precise estimation of SM contribution (size of loop amplitude)

Spectrum of charm decays

•3

Charm samples & their properties

LHCD

- $\sigma(pp \rightarrow c\bar{c}) \sim O(mb) \Rightarrow 12 \times 10^{12}$ charm
- efficiencies < 0.1%</p>
- busy environment, nontrivial triggers
- good tracking, identification & vertexing $D^0 \rightarrow \mu^+ \mu^-, D^0 \rightarrow \pi \pi \mu^+ \mu^-, \Lambda^+_c \rightarrow p \mu^+ \mu^-$

Belle/BaBar

- $\sigma(e^+e^- \rightarrow \Upsilon(4S) \rightarrow c\bar{c}) \sim O(nb) \Rightarrow 2 \times 10^9$
- efficiencies ~ a few %
- clean environment, good calorimeter $D^0 \rightarrow e^+e^-$, $D \rightarrow hhe^+e^-$, $D^0 \rightarrow hh\gamma$, $D^0 \rightarrow \gamma\gamma$

BESIII/Cleo-c

- $\sigma(e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}) \sim O(nb) \Rightarrow 25 \times 10^6$
- efficiencies > 10%
- background-free charm

```
    Jolanta@Beauty'19
```


Precision down to 0(10-8) See signals! Hunting for rare charm signals

Decay	Note	SM	BF or best UL	Exp.
$D^0 \rightarrow \phi \gamma$	Radiative	~10 ⁻⁵	$(2.8 \pm 0.2 \pm 0.1) \times 10^{-5}$	Belle
D ⁰→ργ	>> >>	~10 ⁻⁶	$(1.8 \pm 0.3 \pm 0.1) \times 10^{-5}$	Belle
$D^0 \rightarrow \gamma \gamma$	>> >>	~10 ⁻⁸	$< 8.5 \times 10^{-7}$	Belle
$D_{(s)}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	FCNC, $\mu^+\mu^-$ non-resonant	~10 ⁻⁹	< 8.3 (48) × 10 ⁻⁸	LHCb
$\Lambda_c^+ \rightarrow p \mu^+ \mu^-$	cc >>	~10 ⁻⁹	$< 9.6 \times 10^{-8}$	LHCb
$D^+ \rightarrow \pi^+ / K^+ e^+ e^-$	FCNC, full e ⁺ e ⁻ spectrum	$10^{-8} \div 10^{-6}$	< 0.3 / 1.2 × 10 ⁻⁶	BESIII
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	FCNC, low-mass $\mu^+\mu^-$	~10 ⁻⁹	$(7.8 \pm 1.9 \pm 0.5 \pm 0.8) \times 10^{-8}$	LHCb
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$	FCNC, low-mass $\mu^+\mu^-$	~10 ⁻⁹	$(2.6 \pm 1.2 \pm 0.2 \pm 0.3) \times 10^{-8}$	LHCb
$D^0 \rightarrow \mu^+ \mu^-$	FCNC	$10^{-13} \div 10^{-12}$	$< 7.6 \times 10^{-9}$	LHCb
$D^0 \rightarrow e^+e^-$	FCNC	$10^{-13} \div 10^{-12}$	$< 7.9 \times 10^{-8}$	Belle
$D^0 \rightarrow \upsilon \overline{\upsilon}$	Helicity suppressed	~10 ⁻³⁰	$< 8.8 \times 10^{-5}$	Belle
$D^0 \rightarrow e^+ \mu^-$	Lepton Flavour Violating	0	$< 1.6 \times 10^{-8}$	LHCb
$D^+ \rightarrow \pi^- \mu^+ \mu^+$	Lepton Number Violating	0	$< 2.5 \times 10^{-8}$	LHCb
$D_s^+ \rightarrow \pi^- \mu^+ \mu^+$,, ,,	0	$< 1.4 \times 10^{-7}$	LHCb
$D^+ \rightarrow \pi^-/K^- e^+ e^+$,, ,,	0	$< 1.2 / 0.6 \times 10^{-6}$	BESIII

Decays with leptons: hot topic in beauty

Charm counterparts of $B \rightarrow K^{(*)}\mu\mu$

- No clean m($\mu^+\mu^-$) range in D \rightarrow h(h) $\mu^+\mu^-$
- Different angular observables useful in D→hhµ⁺µ⁻

Lepton Flavour Universality Tests in charm?

- ✓ D→h(h)e⁺e⁻ and D→h(h) $\mu^{+}\mu^{-}$ in resonance regions
- ✓ Leptonic decays, $R^{\tau/\mu}$

 $\frac{\mathcal{B}_{D_s^+ \to \tau^+ \nu_{\tau}}}{\bar{\mathcal{B}}_{D_s^+ \to \mu^+ \nu_{\mu}}} = 9.98 \pm 0.52$ SM: 9.76 $\frac{\mathcal{B}_{D^+ \to \tau^+ \nu_{\tau}}}{\mathcal{B}_{D^+ \to \mu^+ \nu_{\mu}}} = 3.21 \pm 0.64$ SM: 2.66

✓ Semileptonic decays, $R^{e/\mu}$

Jolanta@Beauty'19

PRD97 091101 (2018) LHCb

Search for $\Lambda^+_{c} \rightarrow p\mu^+\mu^-$

- Rare decays overwhelmed with resonances: ρ^{0}/ω , $\phi \rightarrow \mu^{+}\mu^{-}$
- FCNC rates ~10⁻⁹
 Resonances ~10⁻⁶
- Look for signals in bins of $m(\mu^+\mu^-)$
- LHCb, 3 fb⁻¹ of Run1 data
- Reference mode: $\Lambda^+_{c} \rightarrow p\phi(\rightarrow \mu^+\mu^-)$
- Non-resonant = ρ/ω , ϕ regions excluded $\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) < 9.6 \times 10^{-8} @ 95\%$ CL
- 1000× better precision than BaBar for full $m(\mu^+\mu^-)$ PRD84 072006 (2011)

PRD97 091101 (2018) LHCb

$\Lambda^+_{c} \rightarrow p\mu^+\mu^-$: issues & prospects

• Resonance tails in non-resonant regions ⇒ BFs not clean observables

PRL119 181805 (2017) LHCb

$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-, K^+ K^- \mu^+ \mu^-$: first signal!

4-body decays: higher BFs, rich observables ¹⁵ LHCb Low m($\mu^+\mu^-$) η region LHCb, 2 fb⁻¹ Run1 data 10 27 ± 6 D^0 from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ to suppress bkgd (5.4σ Candidates per 5 MeV/*c*² 35 $dB/dm [10^{-10} c^2/MeV]$ LHCb 30 80 $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^ \rho^0/\omega$ 25 φ 60 20 40 15 20 10 UL @ 5 Data High m($\mu^+\mu^-$) 95% CL UL @ 95% CL 10 Fit 500 1000 1500 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^$ $m(\mu^+\mu^-)$ [MeV/ c^2] $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ ····· Comb. backg. The rarest charm decay ever observed 1850 1900 1850 1900 Agrees with SM. Contains resonance tails $m(D^0)$ [MeV/ c^2] $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-)|_{\text{low } m(\mu^+ \mu^-)} = (7.8 \pm 1.9 \pm 0.5 \pm 0.8) \times 10^{-8}$

 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

PRL121 091801 (2018) LHCb

Asymmetries in $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$, $K^+ K^- \mu^+ \mu^-$

- Exploit rich dynamics of 4-body
 ⇒ sensitive SM probes
- A_{CP} A_{FB} A_φ ~null in SM
 In NP ~O(%), also for resonances
 JHEP04 135 (2013) PRD98 035041 (2018)
- 2fb⁻¹ Run1+ 3fb⁻¹ Run2 data

PRL 122 081802 (2019) BaBar

Observation of $D^0 \rightarrow K^-\pi^+e^+e^-$

- Consistent with SM and muon channel PLB 757 558 (2016) LHCb
- In non-resonant m(e⁺e⁻): S = $19 \pm 7 (2.6 \sigma)$ (resonance tails subtracted)

 $\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-)_{NR} < 3.2 \times 10^{-6} @ 90\% CL$

• Improves E791 upper limit of 4×10⁻⁴

Jolanta@Beauty'19

PRD 99 112002 (2019) BESIII

$D \rightarrow K\pi e^+e^+$ Lepton Number Violating decays

- Forbidden in SM ⇒ Signal = New Physics
- Rates with SUSY up to $\sim 10^{-5}$
- BESIII, 2.9 fb⁻¹ $@D\overline{D}$ threshold

$$\mathcal{B}(D^{0} \to K^{-}\pi^{-}e^{+}e^{+}) < 2.8 \times 10^{-6} @ 90\% \text{CL}$$

$$\mathcal{B}(D^{+} \to K_{S}\pi^{-}e^{+}e^{+}) < 3.3 \times 10^{-6} @ 90\% \text{CL}$$

$$\mathcal{B}(D^{+} \to K^{-}\pi^{0}e^{+}e^{+}) < 8.5 \times 10^{-6} @ 90\% \text{CL}$$

• Search for Majorana neutrino $v_m \rightarrow \pi^- e^+$

•12

Jolanta@Beauty'19

arXiv:1905.00608 BaBar

Lepton Number/Flavour Violating D⁰→hhll

- $D^0 \rightarrow hh\mu^+\mu^+$, hhe^+e^+ , $hhe^+\mu^+$, $hhe^+\mu^-$ where $h=K,\pi$
- Forbidden in SM. Rates with SUSY up to $\sim 10^{-5}$
- BaBar, full sample 468 fb⁻¹
- D^0 from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ to suppress bkgd
- Fits to $\Delta m = m(D^*) m(D^0)$ for $m(D^0)$ signal region

arXiv:1905.00608 BaBar

Lepton Number/Flavour Violating D⁰→hhll

• Normalisation channels: $D^0 \rightarrow 4\pi$, $K^-\pi^+\pi^-$, $K^+K^-\pi^+\pi^-$

Decay mode	$N_{ m sig}$	${\mathcal B}$	B 90% U.L.
$D^0 \rightarrow$	(candidates)	$(\times 10^{-7})$	$((\times 10^{-7}))$
$\pi^-\pi^-e^+e^+$	$0.22 \pm 3.15 \pm 0.54$	$0.27 \pm 3.90 \pm 0.67$	9.1
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	$7.40 \pm 5.40 \pm 0.91$	15.2
$\pi^-\pi^-e^+\mu^+$	$12.42 \pm 5.30 \pm 1.45$	$15.4 \pm 6.59 \pm 1.85$	30.6
$\pi^-\pi^+e^\pm\mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	$1.55 \pm 6.97 \pm 1.45$	17.1
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	$-0.38 \pm 1.60 \pm 2.11$	5.0
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	$-0.05 \pm 3.34 \pm 0.64$	5.3
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	$5.84 \pm 5.97 \pm 3.56$	21.0
$K^-\pi^+ e^\pm \mu^\mp$	$2.52 \pm 4.60 \pm 1.35$	$3.62 \pm 6.61 \pm 1.95$	19.0
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	$0.43 \pm 1.54 \pm 0.58$	3.4
$K^- K^- \mu^+ \mu^+$	$-1.09 \pm 1.29 \pm 0.42$	$-0.81 \pm 0.96 \pm 0.32$	1.0
$K^- K^- e^+ \mu^+$	$1.93 \pm 1.92 \pm 0.83$	$1.93 \pm 1.93 \pm 0.84$	5.8
$K^- K^+ e^\pm \mu^\mp$	$4.09 \pm 3.00 \pm 1.59$	$3.93 \pm 2.89 \pm 1.45$	10.0

- No signal found. Upper limits of $(1 \div 30) \times 10^{-7}$
- $10 \div 10^3 \times \text{more stringent limits than ones from E791}$ PRL86 3969 (2001)

Jolanta@Beauty'19

PRL 118 051801 (2017) Belle PRD 93 051102 (2016) Belle Decays with photons

- Theory problem: Long-distance rates ~ $10^3 \times$ Short Distance
- Cleaner probes: CP asymmetry, γ polarisation
- Experimental problem: π^0 background

S. de Boer, G. Hiller JHEP08, 101007 (2017)

- Belle2 dominated: $D^0 \rightarrow \gamma \gamma$, $D^+ \rightarrow \rho^+ \gamma$, $\Lambda_c \rightarrow p \gamma$
- LHCb Upgrade: improved calorimeter

 $\mathcal{B}(D^0 \to \gamma \gamma) < 8.5 \times 10^{-7} @ 90\% CL$

Summary & Outlook

- Rare charm decays start entering the SM regime
- Probing rates down to 10⁻⁸
- First signals!

 $BF(D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-)|_{low \ m(\mu^+ \mu^-)} = (7.8 \pm 1.9 \pm 0.5 \pm 0.8) \times 10^{-8}$

- First measurements for baryons: BF($\Lambda^+_c \rightarrow p\mu^+\mu^-$)|_{non-resonant $\mu+\mu^-$ < 9.6 ×10⁻⁸ @ 95% CL}
- LFV/LNV decays $D^0 \rightarrow hhll: UL \sim 10^{-7}$
- More than rates: $A_{CP} A_{FB} A_{\phi}$ for $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$
- With more statistics charm will take "B-brother" path: angular analysis of $D^0 \rightarrow h^+h^-\mu^+\mu^-$, photon polarisation
- Ongoing with Run2 LHCb data: $D^0 \rightarrow \rho\gamma, \phi\gamma, D_{(s)}^+ \rightarrow K/\pi l^+l^-, \Lambda^+_c \rightarrow p\mu^+\mu^-, D^0 \rightarrow l^+l^ D_{(s)}^+ \rightarrow K/\pi e^+\mu^-$

Backups

•

PRD 95 071102 (2017) BESIII PRD 99 072202 (2019) BESIII

Search for $D_{(s)}^+ \rightarrow \gamma e^+ \upsilon$

- Unlike $D_{(s)} \rightarrow e^+ v$, no helicity suppression
- BESIII, 2.9fb⁻¹@D \overline{D} and 3.2fb⁻¹@D_sD_s^{*} threshold
- Double Tag technique
- Photons with $E_{\gamma} > 10 \text{ MeV}$
- Signal identified with $U_{miss} = E_{miss} |\vec{p}_{miss}|$

Short-distance rate $\sim 10^{-5}$

PRL 119 181805 (2017)

 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-, K^+ K^- \mu^+ \mu^-$

• Total BFs: $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7},$ • Jolanta@Beauty'19 $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}.$ PRL121 091801 (2018) LHCb

Asymmetries in $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$, $K^+ K^- \mu^+ \mu^-$

$$A_{\rm FB} = \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos\theta_{\mu} < 0)}$$

$$A_{\phi} = \frac{\Gamma(\sin 2\phi > 0) - \Gamma(\sin 2\phi < 0)}{\Gamma(\sin 2\phi > 0) + \Gamma(\sin 2\phi < 0)}$$

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

Jolanta@Beauty'19

PRL121 091801 (2018) LHCb

 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-, K^+ K^- \mu^+ \mu^-$

• 2/fb Run1+ 3/fb Run2

Z^0	$\left\langle \begin{array}{c} q \\ \overline{u} \end{array} \right\rangle h^{-}$
$D^{0} \left\{ \begin{matrix} c & & \\ \bar{u} & & \\ W^{+} & & \bar{q} \end{matrix} \right\} h^{+}$	$D^0 \left\{ \begin{matrix} c & & & u \\ \bar{u} & & & W^+ & \bar{q} \end{matrix} \right\} h^+$
$\left\{ \begin{array}{c} q \\ \overline{u} \end{array} \right\} h^{-}$	$u \\ \overline{u} \} ho^0 $

$m(\mu^+\mu^-)$	Efficiency-weighted yields		Signal asymmetries					
$[MeV/c^2]$	Signal	Misid. back.	Comb. back.	A_{CP} [%]	$A_{\rm FB}$ [%]	A_{ϕ} [%]		
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$								
< 525	90 ± 17	233 ± 25	108 ± 22	$17\pm 20\pm 2$	$2\pm 20\pm 2$	$-28\pm20\pm2$		
525 - 565	—	—	—	—	—	-		
565 - 780	326 ± 23	253 ± 24	145 ± 21	$-12.9 \pm 7.1 \pm 0.7$	$8.1 \pm 7.1 \pm 0.7$	$7.4\pm7.1\pm0.7$		
780 - 950	141 ± 14	159 ± 15	89 ± 14	$17\pm10\pm1$	$7\pm10\pm1$	$-14 \pm 10 \pm 1$		
950 - 1020	244 ± 16	63 ± 13	43 ± 9	$7.5\pm6.5\pm0.7$	$3.1\pm6.5\pm0.6$	$1.2\pm6.4\pm0.5$		
1020 - 1100	258 ± 14	33 ± 9	44 ± 9	$9.9\pm5.5\pm0.7$	$0.9\pm5.6\pm0.7$	$1.4\pm5.5\pm0.6$		
> 1100	—	—	—	—	-	—		
Full range	1083 ± 41	827 ± 42	579 ± 39	$4.9 \pm 3.8 \pm 0.7$	$3.3 \pm 3.7 \pm 0.6$	$-0.6 \pm 3.7 \pm 0.6$		
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$								
< 525	32 ± 8	5 ± 13	124 ± 20	$-33\pm26\pm4$	$13 \pm 26 \pm 4$	$9\pm26\pm3$		
525 - 565	—	—	—	—	-	-		
> 565	74 ± 9	39 ± 7	48 ± 8	$13\pm12\pm1$	$1\pm12\pm1$	$22 \pm 12 \pm 1$		
Full range	110 ± 13	49 ± 12	181 ± 19	$0\pm11\pm2$	$0\pm11\pm2$	$9\pm11\pm1$		

Jolanta@Beauty'19

PLB 754 (2016) 167 LHCb

Search for LFV decays $D^0 \rightarrow e^+\mu^-$

- Forbidden in SM ⇒ Signal = New Physics
- With SUSY ~ 10^{-6} . With multiple Higgs doublets: $< 7 \times 10^{-10}$
- 3 fb⁻¹ of Run1 data
- D^0 from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ to suppress bkgd

 ${\cal B}(D^0 o e^\pm \mu^\mp) <$ 1.3 (1.6) imes 10⁻⁸ @90 (95)% C.L.

• 10× better precision than Belle PRD 81 091102 (2010)

PRD 93, 051102 (2016) Belle

Plenty of charm produced

